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DNA brick self-assembly with an off-lattice potential

Aleks Reinhardt* and Daan Frenkel*

We report Monte Carlo simulations of a simple off-lattice patchy-particle model for DNA ‘bricks’. We

relate the parameters that characterise this model with the binding free energy of pairs of single-

stranded DNA molecules. We verify that an off-lattice potential parameterised in this way reproduces

much of the behaviour seen with a simpler lattice model we introduced previously, although the

relaxation of the geometric constraints leads to a more error-prone self-assembly pathway. We

investigate the self-assembly process as a function of the strength of the non-specific interactions. We

show that our off-lattice model for DNA bricks results in robust self-assembly into a variety of target

structures.

1 Introduction

Self-assembling materials have been the subject of considerable
scrutiny by researchers.1–3 However, most self-assembling structures
investigated thus far have been constructed using only a small
number of distinct building blocks. The reason is that a system
consisting of many different components usually fails to self-
assemble due to self-poisoning. It was therefore rather surprising
to the community when Peng Yin’s group demonstrated that
potentially thousands of distinct DNA molecules can reproducibly
self-assemble into complex, fully addressable, nearly error-free
target structures.4,5 The prospect of such addressable complex
self-assembly has captured the imagination of several groups, and
much experimental and theoretical work has been undertaken
to try and understand the principles and behaviours of such
systems.6–11

In the canonical DNA brick set-up, short single-stranded
DNA molecules have sequences chosen in such a way that
molecules with which they are designed to hybridise in the
target structure are made to be complementary to each other.
DNA molecules can hybridise whether or not they are completely
complementary; however, the free energy of hybridisation depends
strongly on the sequence and Watson–Crick pairing is much more
favourable than other combinations of bases. Thus it is generally
the case that ‘designed’ interactions (i.e. those interactions
corresponding to hybridisation pairs that are present in the
target structure, and which are designed to be complementary)
are considerably stronger than all other (‘incidental’) interac-
tions. This permits the large number of distinct DNA molecules
to self-assemble into structures comprising potentially thousands
of molecules,4 although there is in principle an upper limit to the

target structure size on entropic grounds.6 To try to explain why
self-assembly succeeded for such DNA-based structures whilst
it failed for many other, similar – and often even considerably
simpler – systems, we have recently developed simulation-
based12,13 and theoretical approaches14–17 to studying the problem.

The original experiments on DNA bricks4 entailed short,
32-nucleotide single-stranded DNA molecules. Each molecule
was divided into four domains, with each of the four domains
designed to hybridise with a different neighbouring DNA
molecule in the target structure. By designing which molecules
hybridise with which other molecules, intricate target structures
can be designed in a modular manner.4 However, the choice of
the length of the DNA molecules was not arbitrary: as domains
form a double-stranded helix with a length of 8 base pairs, this
results in a dihedral angle very close to 901,4 since the normal
(‘B’) form of DNA comprises a helix with 10.5 base pairs per turn.
This creates a rectangular pattern of DNA helices, but the centres
of mass of each of the single-stranded DNA molecules form a
(distorted) diamond lattice.4 We have previously used this fact to
design a very simple ‘patchy particle’ potential, where each
particle has four rigid tetrahedrally arranged patches, each with
a distinct DNA sequence, to represent the four domains of a DNA
molecule.

Our previous simulations with this simple lattice potential
have confirmed the experimental hypothesis that nucleation
plays a crucial role in the self-assembly process. The underlying
idea is simple: at high temperatures, a dilute solution (effectively
a ‘vapour’ phase) is thermodynamically stable, whilst at low
temperatures, any incidental, undesigned interaction is favoured
and large aggregates form instead of the target structure. At
intermediate temperatures, incidental interactions are not yet
dominant, but designed interactions are sufficiently favourable
that the target structure can form. However, there is a free-energy
barrier that prevents the target structure from forming en masse:
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the process is initiated by nucleation. Since the nucleation of a
cluster involves crossing a not insignificant free-energy barrier, it
is often described as a rare event. Crucially, this means that the
clusters that become post-critical are on average very far apart
from each other, meaning that they do not interact and do not
have the opportunity to form larger incorrect structures. More-
over, the monomers do not all suddenly rush to form clusters,
meaning that the monomers are not depleted too rapidly from
the surrounding solution.12,15

Intriguingly, although this process is not entirely unlike
crystal growth, and crystals are well known to form by nucleation,
the nucleation behaviour seen in DNA brick self-assembly is
non-classical. Unlike in classical nucleation theory, where the
nucleating cluster grows without limit once the maximum in
the free-energy barrier has been crossed, in the self-assembly of
finite structures, the fully assembled structure does not normally
appear to be stable at the point at which the nucleation barrier
just becomes surmountable.15 The reason for this is that whilst
there is only a single way to arrange all the particles in the target
structure, there are numerous ways of constructing slightly
smaller structures, since there are many distinct monomers which
can be missing to arrive at a structure of a given incomplete size.
At sufficiently high temperatures, this additional entropy wins
over the enthalpic favourability of forming the target structure in
full. DNA brick structures must therefore be prepared by following
a cooling protocol:15 once nucleation has occurred, the structure
must be cooled further still in order to assemble the target
structure to completion.

We have gained a very considerable degree of insight by
performing both lattice simulations and theoretical calculations.
However, whilst we have begun to understand the underlying
physics which permits DNA brick structures to form successfully,
there are several questions that remain unanswered. One particular
weakness of the model we have previously proposed is the fact that
we have assumed DNA molecules can only move on a lattice and can
only adopt one of 24 fixed orientations. A similar constraint was
applied in the theoretical approach. Clearly, such constraints have a
significant effect on the entropy of the system, and it is therefore
important to determine whether the self-assembly that is observed in
our lattice model is robust when we go off-lattice. It is not at all clear
a priori that just because a lattice model forms a finite ordered
structure, an off-lattice analogue will as well: a lattice model cannot
distinguish between a dense phase that is liquid-like and one that is
crystalline. However, the difference between a truly ordered and
simply a ‘dense’ structure is crucial in the study of self-assembly.

In this work, we propose a simple off-lattice potential that,
while still very much a coarse-grained representation of DNA
bricks, can capture more of the translational and orientational
entropy of the structural building blocks. We present a general
statistical mechanical derivation that results in a simple, yet
realistic mapping of the model’s parameters to experimental
data. Finally, we show that such an off-lattice potential behaves
in a way that is analogous to the lattice potential we had
introduced previously and permits us to construct a variety of
target structures in a similar manner to that already investigated,
but with a few significant differences which we address below.

2 Matching an off-lattice potential to
experimental data

One of the simplest possible off-lattice potentials that we can
use to model the ‘patchy’ nature of the interaction of the DNA
bricks introduced above is a Kern–Frenkel-type18 potential,

U ri; rj ;xi;xj

� �
¼

1 if rij os;

f rij ;xi;xj

� �
if s � rij � ls;

0 otherwise;

8>>><
>>>:

(1)

where rij is the interparticle vector of length rij, ri and rj are the
position vectors of particles i and j, respectively, and xi and xj

are their orientations. This is effectively a square well potential,
but with an additional angular dependence given by

f rij ;xi;xj

� �
¼

�e if r̂ij � r̂ia � cosyc
� �
^ r̂ji � r̂jb � cosyc
� �

;

p otherwise;

8>>><
>>>:

(2)

where r̂ia is the normalised position vector of patch a on
particle i (see Fig. 1) and p is an optional penalty that can
minimise the chance of generating interpenetrating lattices
(in our simulations, p = 0 or p/kB = 100 K).19 The parameter s
is the unit of length, whilst l, e and yc are parameters yet to be
determined.

It is possible to parameterise a potential by finding a suitable
mapping between the potential of interest and either experi-
mental data or another potential for which the parameterisation
is known; see e.g. ref. 20. In this work, we consider the hybridisa-
tion of two single-stranded DNA molecules A and B to give a
hybridised (double-stranded) molecule AB,

A + B " AB, (3)

for which the equilibrium constant can be written as

K ¼ ½AB�=½�J�
ð½A�=½�J�Þð½B�=½�J�Þ ¼

rABr
�J

rArB
¼ expð�bDG�JÞ; (4)

where [�J] = 1 mol dm�3 is the standard state concentration,
r�J = [�J]NA = 6.022 � 1026 m�3 is the standard number density
and DG�J is the standard Gibbs energy for the transformation
given in eqn (3) where 50% of the monomers have hybridised.
This hybridisation free energy can be obtained from the
SantaLucia thermodynamic model.21,22

We can write an equivalent expression to eqn (4) for the
simple Kern–Frenkel model presented above. Assuming that the
solution of monomers and dimers is ideal, which is reasonable
provided the concentration of each species is small, we can write

Fig. 1 Definitions of vectors used in the potential.
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the canonical partition function of each species x (where x can
be A, B or AB) as

Qx ¼
VNx

Nx!Lx
3Nx

qNx
x ; (5)

where V is the volume of the container, Nx is the number of
particles of species x, Lx is the de Broglie thermal wavelength of
species x and qx is the internal partition function of species x.
Note that the thermal wavelength of AB involves integrals over
the momenta of both A and B and thus has the dimensions of
area rather than length. Each of the chemical potentials can
straightforwardly be calculated from the canonical partition
function,

mx ¼ �kBT
@ lnQx

@Nx
¼ kBT ln rxLx

3
�
qx

� �
: (6)

At equilibrium, mA + mB = mAB, which we can solve as

rAB

rArB
¼ qABLA

3LB
3

qAqBLAB
3
: (7)

We assume that the internal state of the monomeric units that
bind is not affected by binding. We express this by setting the
internal partition functions of the two monomers equal to unity,
qA = qB = 1.23 Moreover, because the AB molecule is described
classically as a dimer of the A and B particles, the de Broglie
thermal wavelengths cancel out, since the momenta of the two
monomeric units in the dimer are uncoupled. The rotational
partition function of the dimer is thus subsumed into the
translational degrees of freedom of the constituting monomers,
given that we integrate over the potential energy over all possible
states; we include this contribution in the internal partition
function qAB, which will therefore have dimensions of volume.
We show in Appendix A that it is given by

qAB ¼
p
3
l3 � 1
� �

s3 cos yc � 1ð Þ2ebe: (8)

The equilibrium condition given by eqn (7) can thus be
written as

rAB

rArB
¼ p

3
l3 � 1
� �

s3 cos yc � 1ð Þ2ebe: (9)

Comparing this equation with eqn (4) allows us to write

p
3
l3 � 1
� �

s3 cos yc � 1ð Þ2eber�J ¼ exp �bDG�Jð Þ: (10)

Using typical dimensions of a DNA brick,4 s3 E 2.5 nm� 2.5 nm�
2.7 nm, gives r�Js3 E 10.1, leaving only the parameters l, yc

and e unaccounted for.
Ideally, we might wish to choose e = �DG�J . However, at a

reasonable bonding distance of ls = 21/3s = 1.26s, eqn (10)
would lead to a patch width of yc = 461. This is a very wide patch
width, which would allow more than one simultaneous patch–
patch interaction for any given patch, and thus lead to rather
ill-defined structures. Instead, rather than fix e and l, we can
set l and yc to reasonable values, for example yc = 201 and
l = 1.5.24 We then find that e = �DG + 2.387kBT. In other words,

the energy of interaction now accounts for the fact that some
entropy is being lost by constraining the bond angle.

The approach we have followed allows us to parameterise an
off-lattice potential in a way that captures much of the funda-
mental physics of the system of interest without introducing a
significant bias beyond that of the choice of the form of the
potential. However, it ought to be borne in mind that the
parameters are not uniquely determined by this mapping. In
particular, l, e and yc are interdependent. An unreasonably
large choice of l or yc can mean that the assumptions we have
made in the derivation can be inappropriate: for example, if
more than one particle can bond to a single patch, the dimer
assumption is clearly broken. By contrast, a very small patch
width or cutoff radius can lead to exceedingly slow dynamics,
and so the equilibrium situation may never be reached in
simulations. The parameters must therefore be chosen with
some consideration given to the practicalities of the required
simulations.

3 Results

To verify that the model introduced above and parameterised to
correspond roughly to experimentally-derived data represents a
reasonable approach to simulating DNA brick self-assembly, we
perform canonical Metropolis Monte Carlo25 simulations with
‘virtual moves’26 accounting for the motion of clusters. Following
the approach we have used with lattice simulations,12 we have
used umbrella sampling with adaptive weights,27 with umbrella
sampling steps performed every 200 000 Monte Carlo steps,28 in
order to determine the free-energy barrier as a function of the size
of the crystalline cluster in the system. Each particle type in the
system has four patches arranged in a tetrahedral manner; each
patch is assigned a random DNA sequence, but such that patches
that point at each other in the target structure have complementary
sequences. In every simulation reported here, a single instance of
each particle type was placed in the simulation box, so that at most
a single copy of the target structure can assemble.

The behaviour we observe is analogous to that seen in lattice
simulations, and this in turn has been shown to correspond
remarkably well to experimental results.12,15 For example, we are
able to self-assemble a range of relatively complex target structures
in brute-force simulations, as shown in Fig. 2. The underlying
behaviour we have proposed for this process in our previous
work12–16 is still predominantly unchanged: self-assembly in such
systems is possible over a limited range of temperatures because of
a free-energy barrier to nucleation that prevents immediate aggre-
gation and monomer depletion. The structures shown in Fig. 2
correspond to some of the largest structures that spontaneously
self-assemble in brute-force simulations; while the majority of the
target structure can be seen to have formed in each case, the
structures are incomplete: as discussed above, the full target
structure can be assembled by lowering the temperature after the
nucleation process has taken place.

It is noteworthy that for a relatively short-ranged potential
such as the one studied here, previous work suggests that the
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open diamond-like structure is only stable at low pressures and
temperatures.29 At the temperatures and densities we considered,
the work of Romano et al.30,31 suggests that for tetrahedral
patchy particles with identical interactions, at equilibrium the
mixture phase-separates into a gas and a diamond cubic crystal.
In brute-force simulations of patchy particles where every
particle is identical and all bonds equally strong, we find that
the resulting phase is typically a vapour in equilibrium with a
dense fluid, perhaps indicating that the nucleation barrier to
forming a diamond-like phase is significant, as expected for
patch widths as large as the one we are considering.32,33 It
appears that the fact that each particle is distinct and can only
bond strongly with very specific other particles in the system
plays a crucial role in enabling us to form tetrahedral structures
even in conditions where single-component patchy particles
cannot successfully self-assemble.

In addition to brute-force simulations, we have calculated
free-energy barriers for small target structures (Fig. 3) in a range
of conditions (Fig. 4). It is convenient in the first instance to
compute the free-energy barrier for a system in which only the
designed interactions are switched on, and they all have the
same bonding energy. A free-energy profile for such a system is
shown in Fig. 4(a). The behaviour observed is very similar to
that seen in lattice simulations, and the basic features are
essentially identical to those observed in lattice simulations12

and in theoretical work:14,15 the free energy initially increases
with the cluster size, as the enthalpic gain of a single bond is
insufficient to compensate for the entropic loss of binding a
monomer from the vapour phase to the growing cluster. However,
the completion of every ‘cycle’, i.e. a closed loop of particles that

are bonded to one another, is a process in which two bonds are
formed simultaneously, and this process is thermodynamically
favoured. This gives the free-energy barrier as a function of
cluster size a distinctive jaggedness, as the free energy decreases
upon the formation of individual ‘cycles’ in the largest cluster.

Although this behaviour is expected, the picture changes as
interactions between patches that are not bonded in the target
structure are switched on. We have investigated this behaviour
further by studying a range of systems with pre-determined
interaction strengths both for the ‘designed’ and the ‘incidental’
interactions (i.e. interactions that are present in the target structure
and all other possible patch–patch interactions, respectively),

Fig. 2 Snapshots from brute-force simulations of several structures self-assembled in brute-force Monte Carlo simulations using the off-lattice
potential described in the text. A schematic of the designed target structure is also shown for each of the structures. (a) A simple cube. 396 particles in the
target structure. T = 310 K, rs3 = 1.48 � 10�6. (b) A cylinder on a slab. 489 particles in the target structure. T = 310 K, rs3 = 1.64 � 10�6. (c) A central cavity
structure. 806 particles in the target structure. T = 314 K, rs3 = 1.64 � 10�6. (d) An H-shaped structure. 696 particles in the target structure. T = 313 K,
rs3 = 1.64 � 10�6.

Fig. 3 Two target structures considered in umbrella sampling simulations.
The structure in (a) comprises 26 particles with 32 designed bonds, whilst
that in (b) comprises 56 particles with 79 designed bonds. For simplicity,
each patch is colour-coded, and by design, red patches bond with green
ones and blue patches bond with yellow ones; however, each particle and
each patch in the structures are in fact unique. Patches that are bonded in
the target structure are shown with a brown ‘bond’. The outermost patches,
shown in paler colours, are passivated by being assigned a poly-T sequence.
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whereby all designed patch–patch interactions contribute an
energy of edesigned/kB = 4000 K and the incidental patch–patch

interactions contribute an energy that ranges from eincidental/
kB = 200 K to 1800 K (where e is defined in eqn (2)), but in any
one simulation all the designed and all the incidental interactions
have the same strength.34 Free-energy profiles for a selection of
these systems are shown in Fig. 4(b). Clearly, the more significant
the incidental interactions are, the smoother the free-energy profile
becomes. The greater number of possible clusters in off-lattice
simulations, including in particular cycles comprising fewer than
six monomers, can stabilise the incomplete structures near the top
of the free-energy profile in ways that are not possible in on-lattice
simulations. Moreover, whilst both the vapour phase and the
growing nucleus are stabilised by such incidental interactions,
the growing nucleus is stabilised more, reducing the overall height
of the nucleation free-energy barrier.35

The free-energy behaviour of systems that can interact via
incidental bonds is interesting because it demonstrates that the
finer features of the free-energy profile can be lost when
studying more realistic systems than the lattice potential we
have previously used as a model for DNA brick self-assembly.
Furthermore, because the free-energy barrier to nucleation is
smaller for off-lattice systems including incidental interactions
than it is for on-lattice analogues, the temperature window in
which the nucleation barrier is surmountable but incidental
interactions are still sufficiently weak for self-assembly to occur
is likely to be even smaller than previously estimated. However,
the key features of the non-classical nucleation behaviour we
have identified previously remain: because the target structure
is fully addressable, there is only one possible target structure
(even if it may now have more practical realisations because the
particles are no longer fixed to lattice sites), whereas there are
many possible ways in which to assemble partially formed
structures. This means that, in conditions where a free-energy
barrier exists to prevent instantaneous nucleation, the target
structure is not stable. In order to form the full target structure –
which one can envisage is of crucial importance in experiment,
where only the fully formed target structure may exhibit the
functionality we desire –, it is still crucial that a self-assembly
protocol be adopted, with the temperature gradually being
reduced as the self-assembly proceeds.15

Free-energy barriers for target structures simulated using
the full potential described above, with interactions between
any two patches, whether ‘designed’ or ‘incidental’, calculated
using the longest complementary set of their associated DNA
sequences, are shown in Fig. 4(c). Three free-energy profiles are
plotted: the curves labelled (i)F and (i)D correspond to the same
choice of DNA sequences, but differ in that the curve labelled D
was computed in simulations where only designed interactions
were taken into consideration, whilst the curve labelled F
corresponds to the full interaction potential, including all
incidental interactions. However, the incidental interactions
calculated using the DNA sequences associated with each patch
are quite weak, and including such weak incidental interactions
only slightly stabilises high free-energy structures and thus
somewhat reduces the free-energy barrier to nucleation. Finally,
the free-energy curve labelled (ii)F in Fig. 4(c) corresponds to a
system with a larger target structure. As the target structure size

Fig. 4 The nucleation free energy DA of the system relative to the vapour
of monomers for a very small target structure of 26 particles [Fig. 3(a)]. In (a),
only designed interactions are included in the energy calculation. T = 318 K,
edesigned/kB = 4000 K (or equivalently edesigned/kBT = 12.58). In (b), all
designed interactions have a uniform energy of edesigned/kB = 4000 K
(or equivalently edesigned/kBT = 12.31), while the incidental interaction
strength varies as labelled (in units of kBT, einc/kBT is 0.62, 3.69 and 5.54).
T = 325 K. Alternating line styles are used for the individual umbrella
sampling windows and the initial brute force simulation. In (c), three free-
energy profiles corresponding to the full interaction potential, with e
computed from the SantaLucia model depending on the DNA sequence
of each patch, are shown: (i) corresponding to a 26-particle target structure
[Fig. 3(a)], and (ii) corresponding to a 56-particle target structure [Fig. 3(b)].
The label ‘D’ means that only designed interactions were taken into account,
whilst ‘F’ indicates that all interactions, designed and undesigned, were
taken into account. (i) T = 308 K, (ii) T = 316 K. rs3 = 1.48 � 10�6.
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increases, the free-energy barrier to nucleation becomes noticeably
smoother, since there are simply many more possible clusters that
can form with the same number of building blocks.

The free-energy profiles shown here are not radically different
from those we have previously reported for lattice simulations.
While the free energy as a function of the largest cluster size is
somewhat more difficult to interpret in such off-lattice simula-
tions, it remains the case that the self-assembly is controlled by
nucleation, and brute-force simulations confirm that it is still
possible to find conditions under which the free-energy barrier
to nucleation is sufficiently small that nucleation can occur
spontaneously, but large enough to be rate-limiting, as appears
to be necessary for successful self-assembly.

4 Conclusion

In this work, we have introduced a very simple approach to
obtaining a relatively sound parameterisation of a simple off-lattice
coarse-grained potential of DNA bricks. In particular, we have
shown how a Kern–Frenkel-type potential can be fitted to the
hybridisation free energy of two single-stranded DNA molecules
that is known from experiment, which allows us to parameterise
the potential with comparatively little effort. We have verified that
an off-lattice model parameterised in this way gives a reasonable
description of the self-assembly of DNA bricks.

The behaviour of DNA bricks that we previously studied using a
lattice-based approach both in simulations and using theoretical
methods does not change significantly when simulated using this
more realistic off-lattice potential, which helps to support the claim
we have previously made that the majority of the underlying
physics of self-assembly is captured by the simple patchy model
we have previously studied. However, the different dependence on
incidental interactions present in the system demonstrates that,
not unexpectedly, the off-lattice potential self-assembly is some-
what less robust than its on-lattice analogue. Moreover, comparing
the lattice and off-lattice approaches provides us with significant
insight into the types of interaction that truly are fundamental and
which can safely be coarse-grained away.

Although the computational model we have introduced is still
very simple, its off-lattice nature allows us to relax the severe
constraints on the geometry of the structures that were able to be
assembled using our previous models.12,13 The fact that the under-
lying self-assembly behaviour is not significantly different when
studied using an off-lattice potential is very good news, particularly
if a different experimental set-up were to be used to construct the
kinds of many-component structures we have investigated. For
example, DNA Holliday junctions and multi-arm motifs36 could be
used as building blocks instead of short single-stranded DNA;
however, such structures might be expected to be much more
floppy than canonical DNA bricks. Although our simulations show
that relaxing the geometric constraints that the system must satisfy
results in slower, more error-prone assembly, the target structures
do in fact form reliably over a narrow range of conditions, which
gives us some degree of confidence that alternative experimental
strategies are worth exploring in more detail.

In future work, it would be prudent to investigate the initial
stages of the nucleation behaviour with a much more realistic
model of DNA, perhaps of the order of complexity afforded by
oxDNA,37 to verify to what extent the predictions made by our
simple coarse-grained potentials are reproduced by DNA. How-
ever, this will be a very challenging endeavour indeed, since
more realistic potentials are prohibitively expensive to simulate
over times sufficiently long to obtain representative behaviour.

Appendix
A Dimer internal partition function

The internal partition function of the dimer corresponds to the
volume available for bonding, which is a known result,38 but we
explicitly derive it here for reference. The internal partition
function of the dimer depends on rAB, the relative distance of
the centres of the monomeric units. For notational simplicity,
we define 7rAB7 = r. We take into account the relative orienta-
tions by integrating over both xA and xB. Since the resulting
integral is spherically symmetric in drAB, we can rewrite the
volume element in spherical polar co-ordinates as drAB =
dxABdyABdzAB = 4pr2 dr, giving

qAB ¼ 4p
ð
r2dr

ð
dxA

ð
dxBe

�bU : (11)

To evaluate the remaining integrals over the orientational
degrees of freedom, we define the Euler angles y, j and c as
shown in Fig. 5. The angle y measures deviations of the patch
position from the interparticle vector; the angle j measures the
rotation about the patch position vector; and the angle c is
the rotation of the patch vector around the interparticle vector.
The ranges are thus y A [0,p], j A [0,2p] and c A [0,2p]. The
normalised volume element (Haar measure) for integrating
over x is39,40

dx ¼ 1

8p2
sin ydydj dc: (12)

Fig. 5 Definitions of Euler angles, where the neighbouring particle is
implicitly assumed to be placed as in Fig. 1.
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The dot product r̂A1�r̂AB, which is used in the angular dependence
of the Kern–Frenkel potential (eqn (2)), is unaffected by rotations
about either j or c; this is to say that the projection of the patch
vector onto the interparticle vector remains unchanged by either
rotation. The potential energy in the Boltzmann exponent of
eqn (11) thus does not depend on either of these two angles, and
we can therefore integrate them out; the orientational volume
element is thus given by

dx ¼ 1

2
sin y dy: (13)

There are three possible scenarios to consider. Firstly, when
r o s, e�N = 0, so there is no contribution to the integral.
Secondly, when r 4 ls, the dimer has dissociated, and so this
also does not contribute to the internal partition function. The
r-component of the surviving part of the integral thus satisfies
s r r r ls. In this range, the potential evaluates simply to �e,

qAB ¼
4p
4

ðls
s
r2dr

ðyc
0

sin ydy
� �2

ebe: (14)

The upper limit for y is yc, the patch width; when y4yc, the
particles no longer form a dimer, so we need not consider that
situation.41 The remaining integrals in eqn (14) are readily
evaluated, giving

qAB ¼
p
3
l3 � 1
� �

s3ðcos yc � 1Þ2ebe; (15)

as used in the main text.
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F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis and
J. P. K. Doye, Introducing improved structural properties and salt
dependence into a coarse-grained model of DNA, J. Chem. Phys.,
2015, 142, 234901, DOI: 10.1063/1.4921957.

38 J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. T. da Gama and
F. Sciortino, Re-entrant phase behaviour of network fluids: A
patchy particle model with temperature-dependent valence,
J. Chem. Phys., 2011, 135, 034501, DOI: 10.1063/1.3605703.

39 C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya, Determina-
tion of phase diagrams via computer simulation: Methodol-
ogy and applications to water, electrolytes and proteins,
J. Phys.: Condens. Matter, 2008, 20, 153101, DOI: 10.1088/
0953-8984/20/15/153101.

40 Y. Kosmann-Schwarzbach and S. F. Singer, Groups and
Symmetries: From Finite Groups to Lie Groups, Springer,
New York, 2010, DOI: 10.1007/978-0-387-78866-1.

41 In the simulations reported here, there is a very slight
repulsive energy of p/kB = 100 K present in our model in
order to prevent multiple interpenetrating structures from
forming. While this small correction is not accounted for in
the derivation presented, the simulation results with and
without this additional repulsion are essentially identical
and this is not therefore an essential feature of the potential.

42 L. Di Michele, B. M. Mognetti, T. Yanagishima, P. Varilly,
Z. Ruff, D. Frenkel and E. Eiser, Effect of inert tails on the
thermodynamics of DNA hybridization, J. Am. Chem. Soc.,
2014, 136, 6538–6541, DOI: 10.1021/ja500027v.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
cz

er
w

ca
 2

01
6.

 D
ow

nl
oa

de
d 

on
 2

4.
07

.2
02

5 
18

:1
2:

44
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01031h



