

Journal of Materials Chemistry A

Solar Stills: The Future Enable by Machine Learning

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-REV-09-2024-006316.R1
Article Type:	Review Article
Date Submitted by the Author:	23-Oct-2024
Complete List of Authors:	Li, Rui; Zhejiang A&F University Wang, Chaohai; Henan University of Urban Construction He, Chang; Zhejiang A&F University Nam, Ho Ngoc; Nagoya University - Higashimaya Campus, Materials Process Engineering; Wang, Junning; Henan University of Urban Construction Mao, Yanli; Henan University of Urban Construction, Zhu, Xinfeng; Henan University of Urban Construction Liu, Wei; Zhejiang A and F University, Kim, Minjun; University of Queensland Yamauchi, Yusuke; University of Queensland, Chemical Engineering; Nagoya University,

SCHOLARONE™ Manuscripts

Solar Stills: The Future Enable by Machine Learning

1 2

- 3 Rui Li, Chaohai Wang*, Chang He, Ho Ngoc Nam, Junning Wang, Yanli Mao, Xinfeng Zhu,
- 4 Wei Liu*, Minjun Kim*, Yusuke Yamauchi

5

- 6 R. Li, C. He, W. Liu
- 7 College of Optical, Mechanical and Electrical Engineering, Zhejiang A & F University,
- 8 Hangzhou 311300, China.
- 9 E-mail: liuwei@zafu.edu.cn

10

- 11 R. Li, C. Wang, C. He, J. Wang, Y. Mao, X. Zhu
- Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and
- Water Resources Utilization, School of Municipal and Environmental Engineering, Henan
- 14 University of Urban Construction, Pingdingshan 467036, China.
- 15 E-mail: chaohai@huuc.edu.cn

16

- 17 H. N. Nam, Y. Yamauchi
- 18 Department of Materials Process Engineering, Graduate School of Engineering, Nagoya
- 19 University, Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan.

20

- 21 M. Kim, Y. Yamauchi
- 22 School of Chemical Engineering & Australian Institute for Bioengineering and
- Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- 24 E-mail: minjun.kim@uq.edu.au

25

26 **Keywords:** solar desalination, solar stills, machine learning, data-driven methods, optimization

27

Abstract

Desalination is a highly energy-intensive process often requiring the consumption of costly fossil fuels, inevitably causing various environmental hazards. As a sustainable and renewable energy source, however, solar energy is anticipated to alleviate such environmental concerns associated with the energy-intensive desalination process. Recently, machine learning, a powerful data analysis method, has been employed for modeling and prediction to enhance the productivity of solar stills, an effective solution to water scarcity owing to low cost and simple operation. In this review, machine learning techniques are particularly emphasized, along with exploring distinctions between solar stills and other solar desalination technologies. Machine learning models can achieve further optimization through additional avenues such as model selection, hyperparameter tuning, feature selection, and dataset management. The findings specifically highlight the crucial role of machine learning in enhancing solar desalination through improved prediction and optimization. Furthermore, this paper discussed different machine-learning prediction techniques while offering suggestions for future research in the field.

Nomenclature	;		
SS	solar still	ANFIS	adaptive neuro-fuzzy inference systems
ML	machine learning	DT	decision trees
HDH	humidification- dehumidification	RF	random forests
RO	reverse osmosis	SVM	support vector machines
MD	membrane distillation	RM	regression models
MSF	multi-stage flash	MLP	multilayer perceptron
VC	vapor compression	WNN	wavelet neural networks
MVC	machine vapor compressor	RBF	radial basis function
TVC	thermal vapor compressor	ENN	elman neural network
SLeM	simulating learning	KNN	k-nearest neighbors
	methodology	GPR	gaussian process regression
MED	multi effect distillation	SP	solar pond
ETC	evacuated tube collector	FF	feedforward
PV-T	photovoltaic-thermal	NARX	nonlinear autoregressive
PV	photovoltaic	HBLS	exogenous heat localization bilayered
			structure
SLM	successive linearization method	CSS	conventional solar still
\mathbb{R}^2	R-squared	MSS	modified solar still
MAE	mean absolute error	SVR	support vector regression
RMSE	root mean square error	LVR	linear support vector
	•		regression
		RVFL	random vector functional link

MAPE	mean absolute percentage error	FA DSS	firefly algorithm double slope solar still
DOE	Design of Experiment	BOA	bayesian optimization algorithm
RSM	response surface methodology	%ADD	average absolute deviation
TM	taguchi methodology	ICA	imperialist competitive algorithm
FD	factorial design	GA	genetic algorithm
AGMD	air-gap membrane distillation	PSO	particle swarm optimization
OI	overall index	LM	levenberg-marquardt
EC	efficiency coefficient	CRM	coefficient of residual mass
COV	coefficient of variation	MSSIE	modified solar still
			integrated with earth distillate
		DPSS	developed pyramid solar still
DL	deep learning	IR	solar radiation intensity
		HF	hourly freshwater
		IEE	instantaneous energy efficiency
ANN	artificial neural networks	$V_{\rm w}$	wind speed
DSD	dish solar distiller	T_b	basin slab temperature
PCM	phase change material	T_{sw}^{o}	brine temperature
BP	back-propagation	T_c	cover temperature
RBP	radial basis function	T_{∞}	ambient temperature
RNN	recurrent neural networks	$T_{w,basin}$	basin nanofluid
CNN	conventional neural networks	T_{vapor}	vapor
DRL	deep reinforcement learning	$T_{\text{glass},\text{in}}$	inner glass
LSTM	long-short-term memory neural networks	$T_{glass,out}$	outer glass
RH	relative humidity	T_{\min}	minimum temperature
SR	radiation intensity	T_{min} T_{max}	maximum temperature
SSWESM	solar still with energy	η	thermal efficiency
	storage materials	1	dictinui cilicione y

1 Introduction

Recent economic development and population growth have led to massive global demand for water resources. However, approximately 97% of Earth's water found in the hydrosphere is made up of seawater, while only less than 1% of the freshwater resources are directly usable for humans.¹ Although it is indisputable that the fresh water is vital for the survival and development of human society, its resources are extremely limited.² Moreover, additional manmade factors such as irrational utilization, waste, and water pollution are rapidly exacerbating

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

the state of water scarcity, potentially impacting 4.7 billion people by 2025 according to the reports³. Therefore, an effective way to address the issue of water scarcity is essential and the use of advanced desalination method to gain access to seawater for freshwater has become a core of the research. A modern large-scale desalination plant can produce tens of thousands to a million tons of fresh water daily. ^{4,5} However, in the case of traditional desalination process, it is an energy-intensive industry which requires the consumption of non-renewable fossil energy sources (e.g., coal) to provide heat or power, therefore, increasing environmental risks. ⁶⁻⁹ Hence, the feasible usage of non-polluting energy sources for desalination is a pivotal step to alleviate the earth's condition of water scarcity. ¹⁰ Solar energy, the most abundant renewable resource, accounts for nearly 57% of the renewable energy in desalination market. ¹¹ The ability to operate independently of steam and electricity, along with non-polluting and safe operation, renders it highly valuable in regions with energy scarcity and stringent environmental requirements.

In fact, desalination technologies such as multi-stage flash evaporation, 12,13 reverse osmosis, 14,15 vapor compression, and multi-effect distillation 16,17 in solar desalination often require high maintenance and installation costs. In contrast, solar stills (SS) offer low installation costs, simple design, and easy maintenance, making them an increasingly attractive technology, ¹⁸ particularly suitable for arid and semi-arid regions with low to medium water demand levels. 19-21 Multiple important variables such as weather conditions, sunlight intensity, temperature and system configuration make SS highly complex systems.^{22,23} The use of accurate and convenient auxiliary analytical tools is therefore necessary to improve the desalination system's performance, as well as to save labor and material resources, especially when considering time-consuming and inefficient conventional experimental approaches. Traditional mathematical methods are no longer effective in adapting to and accurately accessing the intricate processes in modern desalination systems.^{24,25} Most of the traditional methods take pre-determined steps in order to approach the possible optimal solution. Mostly, these algorithms start with a random speculation of the solution, and the exploration directions are obtained according to the specified migration rules. Then, only one direction is searched in order to find the possible optimal solution. In desalination and wastewater treatment, these traditional methods do not work.²⁶ Nevertheless, the evaluation and validation of these models require a substantial amount of data, which can limit the applicability of the predicted output and the model's effectiveness. In this regard, the emergence of machine learning (ML) techniques is particularly important (see Fig. 1) because it serves as a powerful data analysis tool that can accurately analyze the various aspects of solar desalination. In contrast to

traditional mathematical analysis methods, these methods do not require extensive professional experience, numerical or control equations, or explicit assumptions describing the underlying engineering processes. The judicious use of ML can create more efficient, environmentally friendly and economically viable solutions and facilitate the tuning of operating parameters to achieve maximum efficiency and minimise energy use. Since the knowledge it provides is valuable in improving the design and functionality of solar stills, researchers have dedicated their efforts to this subject. For example, Xu et al. Proposed a machine learning automation method for the Simulating Learning Methodology (SLeM). Elsheikh et al. Provided an overview of artificial neural networks in solar desalination, while Rashidi et al. Provided an overview of the application of ML methods in solar desalination. ML techniques have begun to show potential benefits in solar desalination systems.

By appropriately selecting training models, input-output pairs, and segmenting the dataset, ML methods can also be optimized to improve further their accuracy in predicting solar seawater desalination systems. The main goal of this study is to provide an overview of solar desalination technologies using ML, a powerful data analytics method for simplifying and accelerating the traditional desalination process. Finally, we discuss optimizing relevant ML algorithms to enhance their accuracy in predictive modeling.

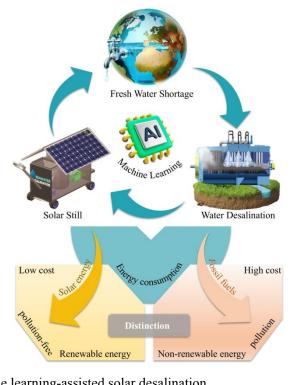


Fig. 1 Schematic of machine learning-assisted solar desalination.

2 Overview of solar desalination

With the continued development of solar seawater desalination technology, there are now many methods applicable for different systems, leading to the diversification of the available solar

desalination methods. Based on their operating principles, we can specifically categorize these methods into two types: direct and indirect methods.³² This section begins with an overview of the indirect method of solar desalination technology, followed by a detailed description of the SS in the direct method.

2.1 Indirect processes

Indirect solar desalination systems use solar energy as an energy source to drive seawater desalination. Unlike the direct use of solar energy to evaporate seawater, an indirect solar desalination system uses solar energy to generate heat, which is then transferred to a still or other heat transfer device in the desalination system.

In humidification-dehumidification (HDH) desalination, brackish and saline water is heated to humidify the air, and freshwater is produced by condensation of the humid air generated at atmospheric pressure, as illustrated in Fig. 2a.³³ According to its circulation form, the HDH process can be divided into four main categories: closed air-open water circulation, closed air-closed water circulation, closed water-open air circulation, and open water-open air circulation. HDH is usually combined with external heaters such as solar collectors, flat plate solar collectors, vacuum tube solar collectors, and parabolic trough solar collectors. So far, very limited work has been done to identify the advantages and disadvantages of different configurations, whose impact on HDH performance is considerable.³⁴

Reverse osmosis (RO) desalination technology utilizes the properties of a reverse osmosis membrane. As seawater passes through the RO membrane, micropores in the membrane allow water molecules to pass through and be collected. Salts and other dissolved substances are trapped on the other side of the RO membrane, forming concentrated water. The salt and other dissolved substances in the seawater are separated from the water molecules, thus realizing the desalination of seawater. The RO modules can also be connected in series or parallel configurations, as presented in Fig. 2b.^{35,36} Currently, water pre-treatment is an obstacle to reverse osmosis systems, as water supplies often require extensive pre-treatment procedures.^{37,38} In addition, improving the anti-fouling ability of the reverse osmosis membrane also has a beneficial effect on its treatment efficiency.

The difference in vapor pressure between the two sides of the membrane is used as the mass transfer driving force and thermally drives in membrane distillation (MD). Water vapor is then sent through the porous, hydrophobic membrane material to remove salt. A typical solar membrane distillation unit is introduced in Fig 2c.^{35,39} There are four main types of membrane distillation processes: air gap membrane distillation, vacuum membrane distillation, sweeping gas membrane distillation, and direct contact membrane distillation.³⁹ Operational parameters

in membrane distillation, such as feed water temperature, flow rate, air gap thickness, membrane thickness, membrane thermal conductivity, porosity, curvature, and long-term operation, have an effect on distillate yield. The heart of the membrane distillation process is considered to be a porous hydrophobic membrane. However, traditional polymer materials and membrane preparation methods are difficult to meet the current conditions. Therefore, developing new membrane materials and devising preparation methods for separation membrane are critical to advancing MD technology. All

Multi-stage flash (MSF) evaporation systems evaporate seawater to produce fresh water by using the method of reduced pressure and expansion flash evaporation. Accordingly, the seawater is first heated to a specific temperature and then introduced into the flash chamber. After multi-stage evaporation, the resulting water vapor enters the condenser and the collected liquid water is fresh water. Fig. 2d illustrates a schematic diagram of a solar MSF desalination system. MSF accounts for about 21% of the worldwide desalination capacity, placing it to the second most common desalination method following reverse osmosis. In particular, solar MSF integrates solar collectors to the conventional MSF desalination systems, making the selection of solar collectors, the correct design of the solar heating cycle, and the design and optimization of the MSF plant crucial for its successful operation.

In desalination by vapor compression (VC), seawater first undergoes heating to evaporation temperature, which then feeds the heated seawater into an evaporator to evaporate the water. A machine vapor compressor (MVC) or a thermal vapor compressor (TVC) then compresses the resulting vapor. A condenser finally cools it, transforming it into fresh water. In Fig. 2e, MVC desalination units are illustrated.^{35,44} Photovoltaic modules, wind turbines, and water storage tanks can also be intergrated into MVC desalination plants, forming a complementary wind and solar system. This hybrid power unit provides the necessary energy, offering a more flexible energy supply. Currently, the vapor compression desalination equipment itself is expensive to manufacture and requires specialist maintenance and operating personnel to manage and maintain, increasing the difficulty and cost of operation.

In Fig. 2f, the principle of multi effect distillation (MED) is introduced.⁴⁵ By arranging several evaporators in parallel, seawater is heated in the previous evaporator, and water molecules begin to evaporate into water vapor. Pipes transfer the water vapor to the bottom of the next group of evaporators, where it enters the condenser. Through multiple uses of steam, MED achieves energy savings. Compared to MSF, a conventional MED desalination system uses about half the energy of an MSF system and produces almost the same amount of heat as MSF if both have the same gain ratio.⁴⁶ Solar MED can be a sustainable alternative option for

medium- to large-scale conventional desalination plants, although large-scale plants have not yet been built.⁴⁵

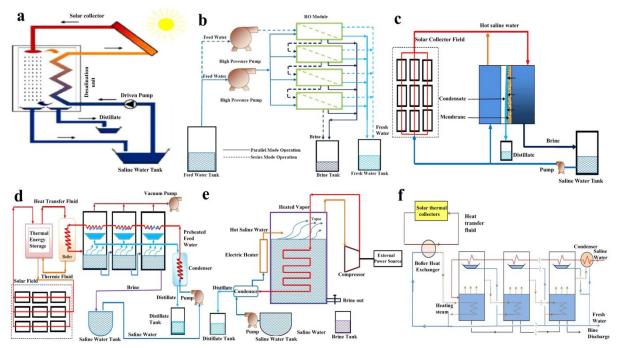


Fig. 2 (a) Humidification and dehumidification desalination unit coupled with a solar collector. (b) Series and parallel arrangement of RO modules. (c) Solar-powered membrane distillation unit. (d) Solar-powered multi-stage flash desalination system. (e) Mechanical vapor compression desalination system. (f) Schematic diagram of solar MED desalination system with feed preheating. (a) Reproduced from ref. 32,33 with permission from Elsevier, copyright 2013. (b) Reproduced from ref. 35,36 with permission from Elsevier, copyright 2015. (c) Reproduced from ref. 35,39 with permission from Elsevier, copyright 2015. (d) Reproduced from ref. 35,42 with permission from Elsevier, copyright 2015. (e) Reproduced from ref. 35,44 with permission from Elsevier, copyright 2015. (f) Reproduced from ref. 45 with permission from Elsevier, copyright 2018.

2.2 Direct processes

Direct solar desalination uses a collector system to harness solar radiation and heat seawater, causing it to evaporate and subsequently condense into fresh water. The most representative technology is the SS. Solar energy is one of the simplest forms of solar desalination that does not consume conventional energy and is simple and easy to operate with a yield of about 4-6 l/m² per day, which is sufficient for households.⁴⁷ Although SS are unsuitable for large-scale desalination systems,⁴⁸ they are simple and affordable in design and very appropriate in some remote coastal areas with plenty of sunlight but a lack of power and electricity. Based on the need for additional components, direct solar desalination could be subdivided into passive SSs and active SSs.

2.2.1 Passive solar stills

A passive SS is a device that uses solar energy to evaporate water and collect pure water. It does not require an external energy supply and relies primarily on solar energy to complete the distillation process. There are various ways to classify passive SSs, such as by the design of the evaporator, different materials⁴⁹, thermal storage options, shape and number of basins.⁵⁰

Researchers have investigated many aspects of conventional SSs to improve their performance, including water depth, the angle of inclination of the glass cover, the type of material used, etc. A comprehensive review has been given by Prakash et al.⁵¹ Hansen et al.⁵² studied new materials suitable for solar desalination applications and selected unused wick materials for analysis. They determined that water coral fleece material is the best hygroscopic material based on four parameters: porosity, absorbency, capillary rise, and heat transfer coefficient. They also compared the performance of different wick materials under different absorber plate configurations, concluding that water coral fleece with weir mesh-stepped absorber plate yielded the best with distilled water up to 4.28 l/day. Mevada et al.⁵³ investigated different energy storage materials such as black glass bulb, black granite, and white marble stone were tried in SS to improve the distillate yield. A comparison was also made between conventional solar still (CSS) and solar still with energy storage materials (SSWESM). The results showed that the daily distillate yield was 1.4 kg/m² and 2.5 kg/m² for CSS and SSWESM, respectively, and the daily efficiency of SSWESM was 72.6% higher than that of CSS.

In the fabrication of SS, temperature and pressure conditions have a significant impact on certain processing techniques, especially when it comes to the selection of materials, processing methods and equipment assembly. Chen et al.⁵⁴ investigated the development of an efficient solar distillation system through the use of thermally expanding materials. By controlling the expansion properties of the materials at elevated temperatures, a porous light-absorbing structure was formed and the rate of water evaporation was increased.

Omara et al.⁵⁵ conducted a comparative performance study of an improved and conventional SS by installing reflectors on both vertical sides of the step SS steps. The results showed that the productivity of the modified step SS with internal reflectors was about 75% higher than that of the conventional still, and the daily efficiencies of the modified step still were 56%, 53%, and 34%, respectively. Panchal et al.⁵⁶ annually investigated the use of MgO and TiO₂ nanofluids at different concentrations to assess the distillate yield of stepped SS, where the nanofluid concentrations investigated ranged from 0.1% to 0.2%. The results showed that the use of MgO nanofluids (0.2% and 0.1% concentrations) and TiO₂ nanofluids (0.2% and 0.1% concentrations) increased the step SS distillate yields by 45.8%, 33.33%, 20.4% and 4.1%.

The distillate yield of MgO nanofluid was higher than TiO₂ due to lower specific heat capacity and higher thermal conductivity.

Conventional single-basin passive SS generally have low distillation efficiency and productivity. Rajaseenivasan et al.⁵⁷ investigated the incorporation of an additional basin in a double-inclined SS and using different materials within the basin. Wick materials such as jute cloth, waste cotton pieces, and black cotton cloth were used to increase the evaporation area. The results showed that double and single basin stills using mild steel sheets had a maximum fire use efficiency of 2.072% and 1.412%, respectively.

Fin is a low cost heat transfer enhancement technique where the fins at the bottom of the solar evaporator improve the performance by increasing the rate of heat transfer from the basin to the water.⁵⁸ However, not much work has been done on fins to improve the distillate yield in many research works. Mevada et al.⁵⁹ reviewed the effect of fin configuration parameters on SS performance. The results mainly found that fins increased the surface area of water and thus increased the heat transfer rate. Fins can also be used to reduce the heat loss at the bottom of the solar evaporator.

Surfaces used for evaporation and condensation phenomena play essential roles in the performance of basin-type SS. Kabeel et al.⁶⁰ devised a concave wick surface that was used for evaporation, while four side pyramidal shapes were still used for condensation, and a jute wick was used to increase the evaporation surface area. The results reveal an average daily distillate productivity of 4.1 l/m², a maximum instantaneous system efficiency of 45%, and an average daily efficiency of 30%.

The glass's inclination angle has an impact on parameters such as yield and instantaneous efficiency. Tiwari et al.⁶¹ designed single slope passive SSs with three different condensations covering inclinations of 15°, 30° and 45°. The results indicated that a condensation cover inclination angle of 15° yielded the highest annual yield and distillation efficiency. Samee et al.⁶² suggested that the optimal glass cover angle for the designed single basin SS was 33.3° in the arid region of South West Pakista n (33.7° N latitude).

2.2.2 Active solar stills

Active SSs typically attach additional components and require an external energy supply system to drive auxiliary equipment such as solar collectors, condensers, pumps, etc. Active SSs typically produce water at a higher rate than passive SSs.

A solar collector is a device that collects and concentrates solar radiation to maximize the conversion of solar radiation into thermal energy to drive water's evaporation and condensation processes. Different heat collection principles can divide solar collectors into flat-plate solar

collectors, concentrating solar collectors, and vacuum tube collectors. Badran et al.⁶³ designed a single-stage basin SS connected to a conventional flat plate collector. The results showed that the integrated single basin distiller increased its yield by 231% after 24 hours of operation. Shiv et al.⁶⁴ designed a single-slope SS integrated with an evacuated tube collector (ETC). The study results demonstrated further improvement, achieving an optimal daily yield of up to 3.9 kg, with energy and fire use efficiencies of 33.8% and 2.6%, respectively. Concentrating collectors include a receiver and a concentrator, which intercept a large area of direct sunlight and focus it into a small absorption area, thereby increasing the radiant flux. Ashraf et al.⁶⁵ designed a parabolic SS consisting of a parabolic disk concentrator as shown in Fig. 3a. Their results showed that the average daily efficiency of the distiller is 34.69% better than different types of solar distillers, and the cost is low enough to be used by rural households.

A condenser is a refrigeration system component that converts a gas or vapor into a liquid. Attaching a condenser to an SS can boost productivity by increasing the condensation rate. Condensers can be divided into external condensers and internal condensers depending on where they are attached. Kumar et al.⁶⁶ improved the single-slope SS by attaching an external condenser and compared it with the conventional single-slope SS as shown in Fig. 3b. The distillation efficiency of the improved still was found to increase by 39.49% over the conventional still at a lower cost. Kabeel et al.⁶⁷ conducted an experiment on SS using an integrated nanofluid and an external condenser. The results showed an increase in distillation yield of about 53.2%. Ahmed⁶⁸ designed a single slope distiller with an integrated dual channel condenser against a distiller without a condenser and found that an additional internal condenser improves the performance of the distiller.

Wind turbines have also been used in SS as rotating shafts to increase distillate production. For example, Mohamed et al.⁶⁹ designed small wind turbines as rotating shafts installed in the main SS to break the boundary layer at the water surface of the basin (see Fig. 3c). For the same flow rate, the productivity was inversely proportional to the water depth, and the vibration induced by the rotating shaft induced the droplets to flow from the lid into the collection channel.

The integration of solar chimneys allows for the production of both electricity and fresh water. For example, in Fig. 3d, Mostafa et al.⁷⁰ attached a solar chimney to a conventional SS where it can absorb heat from solar radiation, generating a chimney effect that induces airflow due to natural convective forces to enhance the desalination process. They established a mathematical model of the airflow inside the solar chimney and put the experimental results of four aspects (i.e., sunny and cloudy weather conditions, the influence of salt concentration conditions, the influence of the water depth in the basin and the unit effect) to simulate and

validate the simulation. The results of solar water stratification experiments of the integrated solar chimney SS under different operating conditions are also compared. It was found that the solar chimney has a higher efficiency than the conventional solar distillers and a 30% higher desalination rate than solar ponds.

Photovoltaic-thermal (PV-T) distillers combine the technology of photovoltaic (PV) panels and solar thermal collectors in a single system that can generate electricity and heat simultaneously. This system can also utilize efficiently solar energy to increase water production. Gajendra et al.⁷¹ conducted an experiment in a double-slope active SS with a solar PV-thermal system, as shown in Fig. 3e. It was found that the productivity of the improved still was 1.4 times higher than that of the one with single-slope PV-thermal technology.

Utilizing solar photovoltaic-operated fan work is reported to be economical and can increase the evaporation rate. For example, Taamneh et al.⁷² investigated the effect of forced convection on the performance of a pyramidal solar evaporator, the experimental system as shown in Fig. 3f. The use of a fan and photovoltaic solar panels proved to be economically viable, resulting in a 25 percent increase in the daily production of freshwater.

Solar Pond (SP) is a remarkable development in renewable energy technology which stores solar energy for many solar thermal applications. SP can provide heat for various applications such as solar heating, cooling and refrigeration. Researchers have utilized salinity gradient and SP with SS to increase the yield. Panchal et al.⁷³ described how SP can be used to increase the yield of SS by providing hot water through its stored thermal energy. The paper states that the optimum salinity value inside the SP is a critical parameter and key to the performance of SP and SS. The paper also reveals the use of shallow and micro SP in combination with SS to improve production.

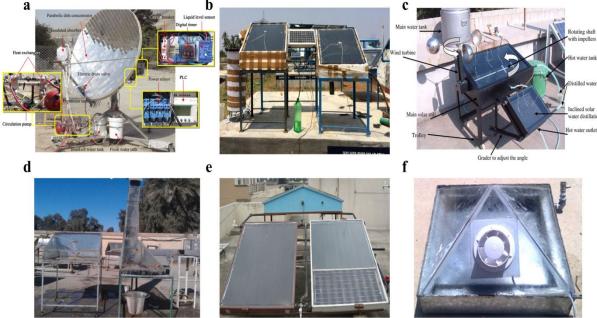


Fig. 3 (a) Photograph of the developed point-focus solar still. (b) Experimental setup of conventional and modified still. (c) Single slope still coupled with wind turbine and inclined solar distiller. (d) Construction of solar basin and solar chimney. (e) Photograph of hybrid photovoltaic thermal (PVT) double slope active solar still. (f) Pyramid solar distiller with fan. (a) Reproduced from ref. 65 with permission from Elsevier, copyright 2014. (b) Reproduced from ref. 66 with permission from Elsevier, copyright 2016. (c) Reproduced from ref. 69 with permission from Elsevier, copyright 2009. (d) Reproduced from ref. 70 with permission from IEEE, copyright 2020. (e) Reproduced from ref. 71 with permission from Elsevier, copyright 2011. (f) Reproduced from ref. 72 with permission from Elsevier, copyright 2012.

3 Comparison of different forecasting models

The previous section has outlined the use of design, fabrication, and integration of additional components to modify conventional SS to improve their performance. A lot of research has been carried out on various solar distillation systems. For example, Sharshir et al.⁷⁴ reviewed the factors affecting the productivity of SS and techniques for improvement. However, various factors influence the performance of SS, and the expensive and time-consuming nature of experimental work can make performance prediction challenging in certain cases. To be able to predict the performance of SS accurately, different models have been developed, mainly consisting of three methods, as stated in Fig. 4. Accordingly, ML is undoubtedly one of the powerful black-box data analysis tools nowadays, which does not require specific expertise and is able to solve complex situations well. Two other approaches are the numerical solutions of differential equations for heat mass transfer^{75,76} and regression modeling.^{77,78} In addition, ML has demonstrated its outstanding performance in terms of other domains. For instance, Tao et al.⁷⁹ employing ML-assisted nanoparticle synthesis, which focuses on ML algorithms to support nanoparticle synthesis and highlights the key methods for collecting large datasets. Batra et al.⁸⁰

review the emerging materials intelligence ecosystems and discusses the use of emerging ML to address the challenges faced to drive their development. With the improvement of solar distillation technology and the development of artificial intelligence, ML approaches are being progressively employed for solar desalinationas (see Fig. 5). This section then focuses on ML models for predicting SS yield.

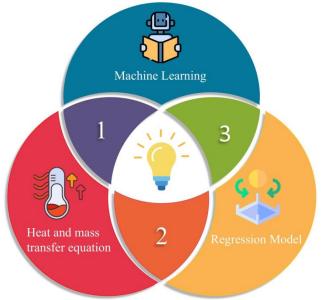


Fig. 4 Three models for predicting the performance of solar stills.

346

347

348

349

350

355

356

357

358

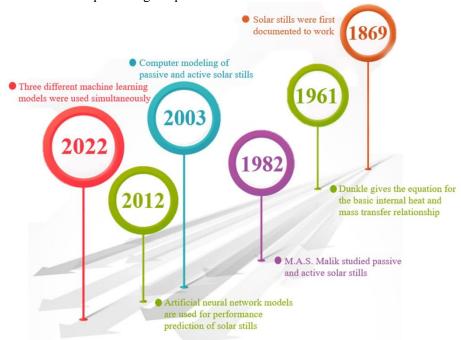


Fig. 5 Evolution of experimental and predictive methods for solar stills.

3.1 Use of conventional methods

Previous scholars have used the principle of internal heat-mass transfer to perform mathematical modeling to predict the output of solar desalination systems and Bhatti et al.⁸¹ numerically studied the flow of hybrid nanofluids in porous media. The similar variables were

used to mathematically model the momentum and energy equations, which were solved numerically using the successive linearization method (SLM). Their results show that the new findings are not only consistent but also ensure the accuracy of the present results for mixed nanofluids. In another study, Bhatti et al.⁸² discussed diamond (C) and silicon dioxide (SiO₂) nanoparticles in a water-based hybrid nanofluid suspended on an exponentially elastic surface to improve the photothermal performance of an energy conversion system, developed nonlinear differential equations, and solved them numerically. The results show that their proposed SLM method is more stable based on numerical comparisons. Shirvan et al.⁸³ studied the numerical solution of the combined surface radiation and natural convection heat transfer in a solar cavity receiver, which was obtained using the SIMPLE algorithm.

Some scholars have also used regression modeling to predict the production performance of SS. Samuel and Chang⁸⁴ designed a prototype SS for use in this area to solve the water problem of the remote islanders, carried out data collection, built a multivariate regression model and used the TMY data of Dongji Islet for quantification of SS. The results showed that the established multivariate linear regression model had R-squared (R^2), adjusted R-squared (R^2), mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) values of 99.5%, 99.4%, 0.144, 0.167, and 9.71%, respectively. This demonstrates that applying multivariate linear regression and optimal subsetting techniques based on TMY data has proven to be a viable approach to modeling the productivity of a prototype SS.

The data-driven approach of Design of Experiments (DOE) has a corresponding application on SS systems. Primarily derived from statistical methods, the DOE approach significantly reduces the cost and time of the data collection process when compared to the traditional one-factor experimental approach. Additionally, the DOE approach considers the interaction of independent variables on system behavior and can be effectively applied for performance prediction and optimization purposes. Response surface methodology (RSM), Taguchi methodology (TM), and analytical factorial design (FD) are three major statistical. SS system involves several operating parameters, such as water flow rate, heat absorption area, inlet temperature, tilt angle, etc. DOE can help optimize these parameters to enhance desalination efficiency. Meanwhile, the operation of SS system depends on environmental conditions, such as sunlight intensity, wind speed, humidity, etc. DOE can help the system to find the best working conditions under various environments and ensure the stability of the system under different climatic conditions. DOE can not only optimize a single objective (e.g., freshwater yield), but also be used for multi-objective optimization. For example, finding the

best balance between freshwater yield, energy consumption and system cost. DOE tools that have been widely used to analyze the performance and optimization of desalination systems. Rejeb⁸⁶ developed a polynomial regression mode for predicting the efficiency of solar power generation using numerical equilibrium energy modeling. The author carried out a statistical RSM model to investigate the interactions between the factors under study and their combined effects on daily distilled water productivity. The results showed that the R^2 and R_a^2 were 0.9906 and 0.9818, respectively. The predictions of the polynomial model were in good agreement with the numerical results of the transient thermal numerical model. Khalifa and Lawal⁸⁷ optimized the air-gap membrane distillation (AGMD) desalination system using Taguchi orthogonal design arrays and the RSM. An analysis of variance was then employed to analyze the model and the significant effect of each operating parameter on flux. Their results suggested the maximum fluxes of the Taguchi method and RSM were 76.046 kg/m² h and 76.998 kg/m²h, respectively, under optimal conditions. Allah et al.88 used a design of experiments approach to analyze the input factors affecting the performance. The effects of nine factors, such as solar radiation, basin area, and brackish water depth, on the performance of the solar evaporator were investigated, and an accurate theoretical model of the thermal behavior of the solar distiller was developed. The results indicate that the established mathematical model can accurately describe the highly complex behavior of SS.

3.2 Use of classical ML models

The ML process applied to predict system performance can be divided into three steps: data processing, model construction, and model validation. The data processing step involves collecting experimental or theoretical results and organizing the data into a training set, a validation set, and a test set. The training set is used for model training and parameter tuning, while the validation set is employed to select the model and fine-tune hyperparameters. Eventually, the test set is used to evaluate the model's performance. Model building is the process of learning and training data to generate mathematical models that can make predictions or decisions on unknown data. The entire model-building process is an iterative one that usually requires several attempts and adjustments to find the best model and parameter combination. Also, as data and tasks change, the model may need to be updated and retrained periodically to maintain its performance and accuracy. Model validation in ML is the process of evaluating the performance of a model on unseen data. The purpose of validating a model is to ensure that the model generalizes well to new data, that the patterns learned by the model during training can be generalized to future data. The most commonly used assessment metrics are the R², RMSE, MRE, MAPE, overall index (OI), efficiency coefficient (EC), and coefficient of variation

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

(COV). 89,90 Moreover, ML techniques can be categorized explicitly into classical ML methods and deep learning (DL) methods. Classical ML methods used for the study of desalination systems include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and Regression Models (RM). 85 This subsection focuses on applying classical ML methods in solar distillers.

In SS desalination systems, most studies use ANNs to predict their performance. ANN is an ML model that mimics the structure and function of the human nervous system, consisting of multiple artificial neurons (or nodes) interconnected through connections (or weights). ANNs typically involve an input layer, a hidden layer (optional), and an output layer, 91 where each layer consists of multiple neurons. 92,93 The structure of four of these models of ANN: Multi-Layer Perceptron (MLP), Wavelet Neural Networks (WNN), Radial Basis Function (RBF), and Elman neural network (ENN), as shown in Fig. 6.30 ANN has the ability to learn and construct nonlinear and complex relational models, which is crucial because many of the relationships between inputs and outputs in desalination systems are nonlinear and complex. Santos et al. 94 used ANN and local weather data to predict yields of two different commercial SS while using ANN to determine the minimum amount of inputs required for accurate SS performance. It was found that 31-78% of the predictions of the ANN model were at 10% of the actual yield depending on the input variables selected. Abdelhafez et al.⁹⁵ predicted the thermal efficiency (n) of triple SS utilizing three ANN models, namely Feedforward (FF), Elman, and Nonlinear Autoregressive Exogenous (NARX). As shown in Fig. 7a, the FF model had the best predictive ability with the highest R² of 0.99838. Abujazar et al.⁹⁶ utilized a Cascaded Forward Neural Network (CFNN) model to predict the yield of an inclined stepped SS system. They compared its predictions with those of regression and linear models, using three statistical error terms for evaluation. As a result, the proposed CFNN has minimum values of 22.48%, 18.51%, and -14.51% for RMSE, MAPE, and MBE respectively. Fig. 7b shows that CFNN predicts the productivity of the system more accurately than other models.

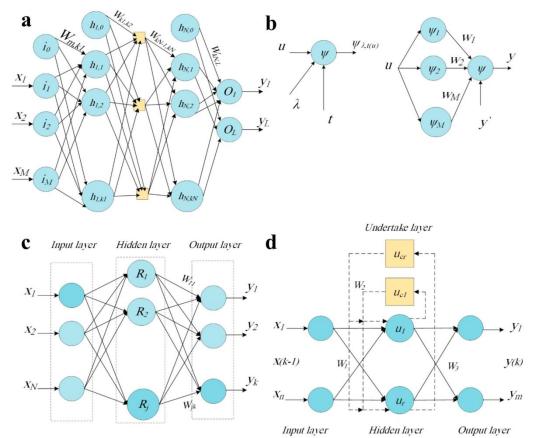
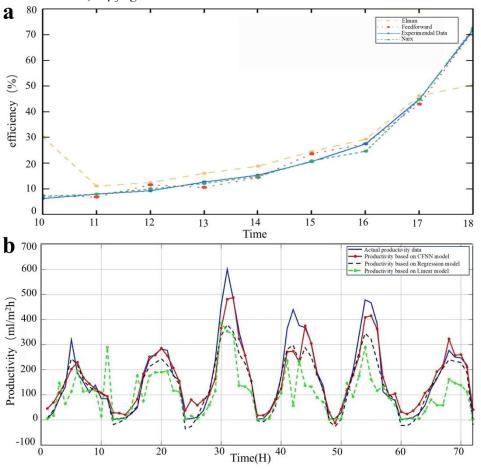


Fig. 6 The structure of (a) MLP, (b) WNN, (c) RBF and (d) ENN. (a-b)Reproduced from ref. 30 with permission from Elsevier, copyright 2019.



459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

Fig. 7 (a) Comparison between experimental and estimated thermal efficiency. (b) Hourly sample of the predicted the solar still productivity by CFNN, regression and linear models. (a) Reproduced from ref. 95 with permission from JOCET, copyright 2013. (b) Reproduced from ref. 96 with permission from Elsevier, copyright 2018.

Although ANN has a wide range of applications in SS systems, the selection of an appropriate No single ML model is universally best for predicting the performance of a specific SS system. Several studies have used SVM, RF, and ANFIS for modeling and prediction. 97 In particular, SVM can be used to model the relationship between process responses (e.g. freshwater yield, evaporation efficiency, etc.) and process descriptors (e.g. environmental conditions, material properties, operating parameters, etc.). First, data on the input characteristics (descriptors) and output responses of the SS apparatus are collected. To ensure data availability and accuracy, appropriate data cleaning and normalisation is then performed. Then, a suitable kernel function such as RBF kernel is selected to capture the complex interactions between the input features. Finally, model training, tuning and evaluation are then performed to accurately predict the performance of the SS system. This binary classification model is used for classification and regression analysis. Its basic principle involves finding the optimal hyperplane that separates different data classes, maximizing the margin between them to classify or regress the data effectively. The schematic diagram of SVM is presented in Fig. 8a. ANFIS, on the other hand, is an intelligent ML method that combines fuzzy inference with ANN. 98 The structure diagram of ANFIS is depicted in Fig. 8b. The ANFIS model demonstrated a higher ability to deal with real-data applications than other traditional ANN methods.^{99,100} It is particularly effective in addressing problems characterized by high uncertainty and ambiguity, owing to its strong adaptive capabilities. Additionally, ANFIS can dynamically adjust system parameters in response to changes in the environment and input data. For example, Elsheikh et al. 101 designed a low-cost heat localization bilayered structure (HLBS) that can efficiently convert the absorbed solar energy into thermal energy to improve conventional SS's performance. They used three machine learning methods (i.e., ANN, SVM, and ANFIS) to predict water production and compared the prediction results between a CSS and an modified solar still (MSS). As shown in Fig. 9a, SVM exhibited a higher accuracy in predicting water production than the other two models. Lastly, RF is an ML classifier that consists of multiple decision trees. The final output category is determined by the majority vote of the individual trees. This method is known for its high accuracy. 102.103 Its main process presented in Fig. 8c could be summarized into three steps: data manipulation, 104 model construction, and model optimization. In a study, Wang et al. 105 designed a tube SS. To accurately predict its performance, they developed an ANN model, an RF model, and a traditional multiple linear

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

regression model based on experimental data. They optimized and compared these models using Bayesian optimization for hyperparameter tuning. The results showed that the determination coefficients of RF, ANN and multiple linear regression were 0.9745, 0.7098, and 0.9267. As shown in Fig. 9b, the superiority of RF was well demonstrated with minimal errors. Similarly, Kandeal et al. 106 utilized four different ML models (i.e., ANN, RF, Support Vector Regression (SVR), and Linear Support Vector Regression (LVR)) to predict the performance of double slope solar still (DSSS). They optimized these models using the Bayesian optimization algorithm (BOA) and conducted training, testing, and validation for each of the models. As a results, RF was found to be the most accurate ML model with the highest R² of 0.983 (see Fig. 9c.)

In addition, there are a number of ML models that have been applied to SS system prediction. Random Vector Functional Link (RVFL) is a fast neural network model widely used for modelling and prediction of various nonlinear systems. 107 RVFL is able to efficiently deal with complex nonlinear problems through randomly generated weights and directly connected input feature layers. Previous studies relying on artificial neural networks only used connections between hidden and output layers without considering connections between input and output layers. This can lead to overfitting problems and also reduces the efficiency of the method. RVFL, through its efficient nonlinear fitting capability, is able to quickly predict the output of the system based on the environmental conditions and system parameters input to the SS system. Sharshir et al. ¹⁰⁸ proposed a novel developed pyramid solar still (DPSS) integrated with copper plate and graphite nanofluid to predict the hourly freshwater (HF) and instantaneous energy efficiency (IEE) of the DPSS using the FA-RVFL model of firefly algorithm (FA) which simulates the behaviour of fireflies, Fig. 8d illustrates the structure of the developed technique. The prediction results are also compared with RVFL, SVM and conventional ANN. The results show that the proposed FA-RVFL model is characterised by coefficients of determination of 0.981 and 0.999 for the total HF and IEE datasets, respectively, and regression values of 0.996 and 0.999, respectively. It proves that the developed FA-RVFL has an excellent performance in predicting the FA and IEE of DPSS. K-Nearest Neighbors (KNN) is a simple but effective supervised learning algorithm widely used in classification and regression tasks. It finds the K closest neighbours to the target point in the feature space by calculating the distance (usually Euclidean distance) between data points and makes predictions based on the labels of these neighbours. KNN can be used to classify different design options for SS, such as classifying different material combinations, different structural designs, etc. By analysing the performance metrics of different designs, KNN can help researchers to quickly identify superior design

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

solutions. Alawee et al. 109 came out with an innovative approach to predict the cumulative distillate yield of a double slope solar still using correlation analysis, ReliefF for feature selection, and the KNN algorithm. The analysis was based on a dataset based on six cases, which included variations in distillate yield relative to different operating environmental conditions. Key features that have a significant impact on the overall performance were identified to manage the productivity of the solar still. The results showed that the best model was evaluated based on the R², RMSE and CVRMSE of the KNN model and the best model obtained scores of 0.995, 0.0033 and 0.1666, respectively, demonstrating the effectiveness of the proposed machine learning approach in predicting distillate output. Gaussian Process Regression (GPR) is a nonparametric Bayesian regression method widely used to model complex nonlinear relationships. In SS research and applications, GPR can provide accurate performance prediction, optimal design, and uncertainty quantification. Kottala et al. 110 demonstrated the performance of a novel trough collector using a natural recirculation open loop and experimentally evaluated it for several types of solar radiation data. Seven different ML models were used to predict the instantaneous thermal efficiency of the developed system for various solar radiation categories. The results show that the GPR model shows a higher predictive performance than the other developed ML models (i.e., RMSE = 0.0049, R² = 0.9977).

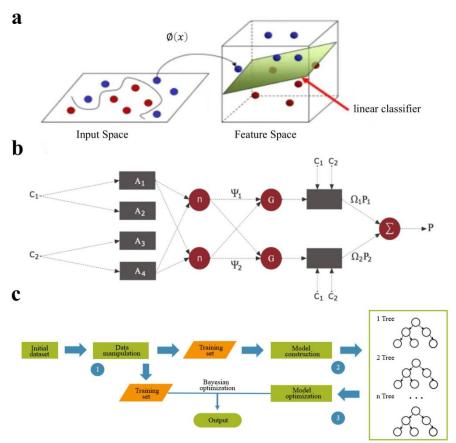


Fig. 8 Structure of (a) SVM and (b) ANFIS (c) Data flow diagram of RF. (b) Reproduced from ref. 111 with permission from Frontiers in Energy Research, copyright 2021. (c) Reproduced from ref. 105 with permission from Elsevier, copyright 2021.

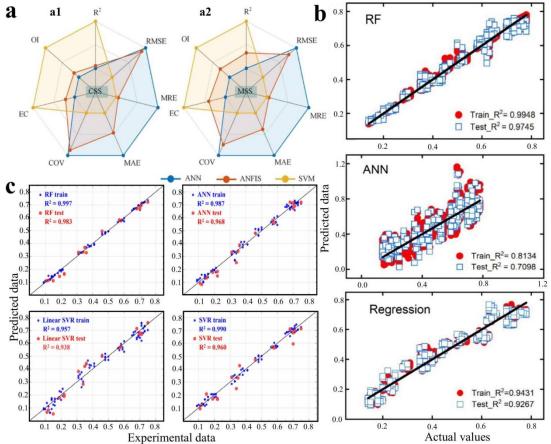


Fig. 9 (a) Spider plot of different statistical measures used to evaluate the performance of the ML models for: a1 CSS; a2 MSS. (b) Prediction results of different models. (c) The linear correlation between the experimental and predicted data for the four ML models. (a) Reproduced from ref. 101 with permission from Elsevier, copyright 2022. (b) Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (c) Reproduced from ref. 106 with permission from Wiley, copyright 2021.

The previous section discussed the integration of solar desalination with other components. In addition, the use of nanomaterials in conjunction with SS can also increase the yield. Micro/nanomaterials hold significant promise for SS due to their high thermal conductivity, extensive surface area, and superior solar energy absorption properties. By leveraging these materials, it is possible to develop highly efficient solar evaporation systems, which are crucial for enhancing solar energy utilization. Additionally, data-driven approaches can be effectively applied to predict the performance of these systems. For example, Bagheri et al. 112 designed an SS incorporating a cylindrical parabolic collector and solar panels to capture additional solar energy. They modeled the system using ANN and compared its performance with mathematical modeling approaches. They found that the ANN model predicts more accurately than the proposed first-principles model and minimum error rate. The best response is obtained for the neural network n=7 with $R^2=0.999820171$, MSE=1.94E-06, %AAD (average absolute

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

deviation) = 0.426716116. Bahiraei et al. 113 developed a novel nanofluidic SS equipped with a thermoelectric cooler and applied Cu₂O-water nanofluid in a solar distillation cell. They then predicted the yield using a MLP neural network, which was optimized with both the Imperialist Competitive Algorithm (ICA) and the Genetic Algorithm (GA). The results stated that the modified SS had a much higher yield than other SS. The R² correlation values of the MLP turned out to be 0.9458 and 0.8883 in the training and testing phases, respectively, which were able to predict the yield accurately. In another study, Bahiraei et al.¹¹⁴ utilized ANFIS and ANN to predict the energy efficiency of a single-slope SS equipped with a thermoelectric module. They also applied Cu₂O nanoparticles to a solar distillation cell with Particle Swarm Optimization (PSO) to augment both ML models. As a result, the training and testing R² values of ANN-ANFIS were 0.95-0.95 and 0.93-0.99, respectively. It means that the yield was predicted more accurately. Bamasag et al. 115 designed a dish solar distiller (DSD) incorporating phase change material (PCM), specifically paraffin wax blended with CuO nanoparticles. They used three machine learning approaches (i.e., ANN, ANFIS, and SVM) to predict the water productivity of the solar still. The results indicate that the average daily distillation rate of the stepped DSD with phase change material is approximately 178% higher than that of the CSS. Among the models, the SVM demonstrates the highest R² of 0.99, the smallest RMSE ranging from 2.19 to 3.17, and the smallest normalization error between $-0.02 \sim 0.08$, as shown in Fig. 10. This suggests that the SVM outperforms both the ANN and ANFIS in accurately predicting the yield. Wang et al. 116 compared RF with pairwise plots and Pearson correlation analysis, to demonstrate that RF is more advanced and accurate in evaluating the importance of factors in materials and systems. This comparison aims to enhance the utilization and design of micro/nanomaterials. They found that RF can obtain reasonable weight values better than traditional methods.

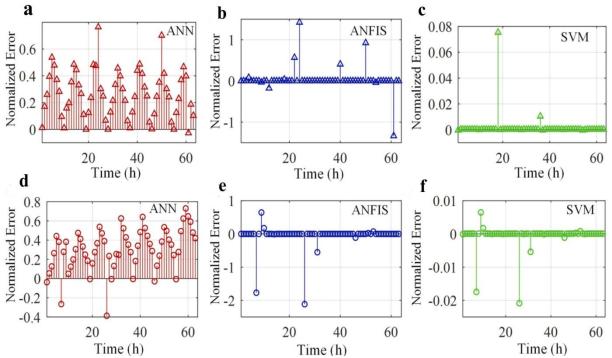


Fig. 10 The normalized error between experimental and predicted data using: (a) ANN for conventional solar distiller; (b) ANFIS for conventional solar distiller; (c) SVM for conventional solar distiller; (d) ANN for modified solar distiller; (e) ANFIS for modified solar distiller; (f) SVM for the modified solar distiller. (a-f) eproduced from ref. 115 with permission from Wiley, copyright 2022.

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

ML approaches can effectively model the dynamic performance of solar desalination systems. Sohani et al.¹¹⁷ developed three different ANN models: back-propagation (BP), FF, and RBF. Their goal was to identify a model that accurately predicts the water temperature and yield of the enhanced SS system. The performance of the three ANN models was assessed using MAE and R². Consequently, FF and RBF were the most accurate models in predicting the water temperature with MAE and R² of 3.56-2.82 and 0.96-0.98, respectively. Given the varying criteria and performance characteristics in SS desalination technology, it is essential to examine multiple types rather than relying on a single structure to achieve the highest possible prediction accuracy. The production rate of SS can also be predicted from conventional weather information using ML methods. Gao et al. 118 used RF optimized by BOA to predict the yield of two kinds of SSs. They compared it with MLR and traditional prediction models to verify the accuracy of the models. They used conventional weather forecast data as inputs to the models while the actual measured data were used to train the models. As a result, the determination coefficients of the two SSs predicted by RF were 0.935 and 0.929, significantly higher than those of the MLR (0.767) and the conventional model (0.829 and 0.847). This indicates that RF is a reliable method for yield prediction.

Each machine learning model has its unique advantages and disadvantages in SS performance prediction, and the selection of an appropriate model depends on the

characteristics of the data, prediction accuracy requirements, and computational resources.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Multi-model integration or hybrid model approaches often lead to better prediction results. Model performance and prediction accuracy can be significantly improved by proper data preprocessing and feature selection. Firstly, linear regression is a simple and effective method suitable for modelling linear relationships, although it is less adaptable to nonlinear data. Secondly, ANN is able to simulate complex nonlinear relationships due to its multilayer structure and is well suited for large-scale datasets, but the training time is long and difficult to interpret. SVM, on the other hand, performs well in small samples and high-dimensional data and is able to deal with complex nonlinear problems, but the tuning of its parameters and the selection of kernel functions are more complicated. In addition, ANFIS combines neural networks and fuzzy logic to deal with uncertainty and ambiguity information, and performs well in performance prediction of complex multivariate systems. ANFIS is able to deal with nonlinear relationships and provide high prediction accuracy, which is particularly suitable for scenarios that require the simultaneous processing of both exact and fuzzy data. DT and RF are also widely used, with the former making decisions through a tree structure and the latter improving prediction accuracy by integrating multiple decision trees, both of which can effectively deal with complex nonlinear relationships and have good noise immunity, but RF may face overfitting problems. RVFL extends the input features by introducing random vectors into the network, which can quickly process large-scale data and give efficient predictions without relying on complex training. In SS, RVFL is suitable for real-time prediction tasks that require fast response by reducing the training time and providing good nonlinear fitting ability. The KNN algorithm is simple to implement and adaptable through distance-based prediction, but has high computational complexity and sensitivity to noise when dealing with highdimensional data. GPR, a non-parametric Bayesian regression method, is particularly suited to small samples and complex data, and is able to provide quantification of the uncertainty in the prediction, however, its computational complexity is high in the presence of large data volumes. 3.3 Use of DL models

DL is a new research direction in the field of ML that has a more complex structure and mainly requires a large amount of data. DL methods applied to desalination systems generally be categorized into three approaches, namely Recurrent Neural Networks (RNN), Conventional Neural Networks (CNN), and Deep Reinforcement Learning (DRL). In SS systems, long-shortterm memory neural networks (LSTM) have been used to predict their performance. The LSTM is a recurrent ANN used with DL. The main advantage of this neural network over conventional FF neural networks is its ability to memorize patterns for long periods of time owing to the advanced structure associated with the feedback connections. Elsheikh et al.¹¹⁹ designed a stepped SS fitted with copper corrugated absorber plates using the LSTM model for prediction and comparison with CSS. The proposed model was validated using field experimental data for training, and time series of freshwater production were used to train the model. The results revealed that the stepped SS had a production rate that was 128% higher than the CSS. Additionally, the model's coefficients of determination were 0.97 and 0.99, and its RMSE values were 0.0067 and 0.0021, respectively. Consequently, the model accurately predicted the production rate of the SS.

4 Optimization

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

4.1 Training models

The used algorithm, the training model, and other factors affect the model's accuracy. No specific general ML model outperforms other models in predicting the desalination system's performance. By optimizing the ML model with an appropriate training model, the accuracy of desalination yield prediction can be further enhanced. Chauhan¹²⁰ used a multilayer perceptron neural network based on a supervised learning mechanism to predict the thermophysical properties of moist air inside the chamber of an SS. Specifically, six distinct training algorithms were used to train the model, namely one-step secant, conjugate gradient Powell-Beale restarts, conjugate gradient Fletcher reeves update, resilient backpropagation, scaled conjugate gradient, and Levenberg-Marquardt (LM). The performance of each algorithm was evaluated using six statistical parameters. In Fig. 11a, the correlation coefficients of the LM algorithm for training, testing, and validation are 1, 0.99988, and 0.99995 for all modeling phases, and the slopes and intercept values of the LM algorithm are approximated to be 1 and -0.003 for all the data. Accordingly, the LM algorithm provides more accurate predictions on the thermophysical properties of moist air in SS systems compared to other algorithms. Mashaly and Alazba¹²¹ utilized three algorithms including the conjugate gradient backpropagation with Fletcher-Reeves restarts, the resilient backpropagation, and LM to predict the productivity of SS in hyper-arid environments. The predictions were evaluated by comparing with experimental results using four standard statistical performance metrics, namely RMSE, efficiency coefficient (E), OI, and coefficient of residual mass (CRM). As a result, the model based on the LM algorithm has the highest overall R² value of 0.99437, as depicted in Fig. 11b. In addition, the LM algorithm has the minimum average RMSE (0.024), the maximum average E (0.989), the maximum average OI (0.981), and the minimum average CRM (-0.003) for all modeling phases. Hence, LM was found to be the most effective algorithm for predicting solar distillers' productivity. Chauhan¹²² also used an ANN model based on the LM algorithm to predict the

fraction yield of CSS and modified solar still integrated with earth distillate (MSSIE) yields. Their results indicated that the ANN model trained by the LM algorithm is accurate in predicting the distillate yield of the distillation unit. In Fig. 11c and 11d, the correlation coefficients of the ANN based on the LM algorithm for the training, testing, and validation of the overall data for CSS and MSSIE were introduced, respectively.

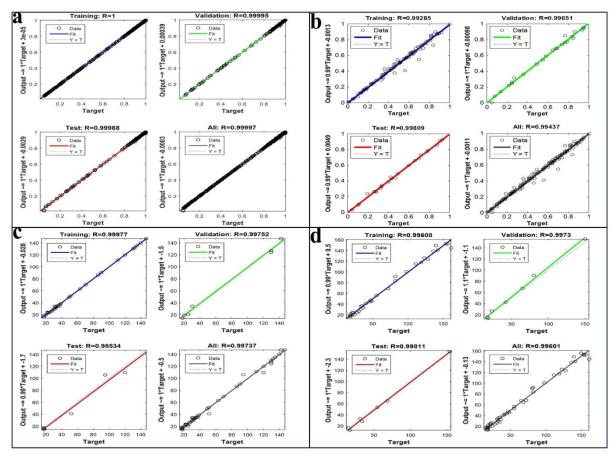


Fig. 11 (a) Regression analysis with training, testing, validation, and all data with the LM algorithm. (b) Regression analysis with training, validation, testing and all data with the LM algorithm. (c) Regression analysis of the LM algorithm in CSS and (d) Regression analysis of the LM algorithm in MSSIE with training, validation, testing, and all data. (a) Reproduced from ref. 120 with permission from Elsevier, copyright 2020. (b) Reproduced from ref. 121 with permission from IWA, copyright 2015. (c,d) Reproduced from ref. 122 with permission from Taylor & Francis, copyright 2022.

4.2 Hyper-parameter tuning

In machine learning, tuning the hyperparameters of a model is an important part of improving the performance of an algorithm. Adjusting the different hyperparameters is one of the important factors affecting the accuracy of the data-driven approach in predicting the output of SS. The optimization of hyperparameters can be achieved by different optimization algorithms. Nazari et al.¹²³ used the ICA algorithm with an optimized ANN model to predict the energy efficiency, exergy efficiency, and water productivity of single-slope SS. Their results indicate that the MAE of the ANN-ICA correspondly reduces the prediction of water productivity,

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

energy efficiency, and fire efficiency by 54.30%, 40.11%, and 53.35% compared to conventional ANN, whereas the RMSE were approximately 15.77, 1.37, and 0.29, respectively. As shown in Fig. 12a, R² with MLP-ICA had an increment of 0.0280, 0.0186, and 0.0450 for water productivity, energy efficiency, and fire use efficiency, respectively. Essa et al. 124 used Harris Hawks Optimizer to improve the conventional ANN and predict the yield of three different distillation systems including passive SS, active SS, and active SS with a condenser. Their results were also compared with those obtained from two other models: a support vector machine and a conventional ANN. It was found that the cumulative yield of the active distiller combined with the condenser increased by 53.21%. Notably, Harris Hawks Optimizer's ANN has the highest R² value of 0.98 and 0.97 for passive and active solar distiller prediction, respectively, and hence the best model of the HHO-ANN type. It should be noted that the choice of hyperparameters is not static. Each optimization algorithm has its own advantages and limitations and needs to be optimized to the specific problem and dataset. Wang et al. 105 built three different models to predict the performance of tubular SSs including classical ANN, RF, and traditional multiple linear regression. All models were optimized using the BOA algorithm. As shown in Fig. 12b, the results show that though the performance of both RF and ANN is improved, the ANN is more sensitive to the response of BOA and the error of ANN is well improved. Bahiraei et al.¹¹³ optimized MLP neural network using ICA¹²⁵ and GA¹²⁶ was used to predict the water production of nanofluidic solar thermoelectric distillers in 48 samples and 38 records (where 8 were used as training data, and the remaining 10 to evaluate the generalization ability of the developed network). The results show that the RMSE of GA-MLP and ICA-MLP is reduced by 40.49% and 62.01% in the testing phase compared to MLP. So, the application of GA and ICA has a significant effect on the accuracy of MLP, while ICA has a better optimization than GA. Bahiraei et al.¹¹⁴ utilized the PSO-enhanced ANFIS and MLP neural network to predict the energy efficiency of a solar distiller with a single slope thermoelectric module, respectively. As a results, the R² values of PSO-ANN and PSO-ANFIS are 0.9225-0.9597 and 0.9471-0.9984, and the RMSE values are 5.7861-3.5158 and 4.0279-1.9956 for PSO-ANN and PSO-ANFIS, respectively, in the training phase compared to the original ones. Therefore, PSO improves the training accuracy of ANFIS more than ANN. It can also be derived from the entire spatial distribution of actual and estimated energy efficiencies, as depicted in the 3D graphs in Fig. 12c. In these graphs, the impact parameters of X8 and X2 are shown on the x- and z-axes, respectively, and the corresponding Y (energy efficiency) is shown on the y-axis.

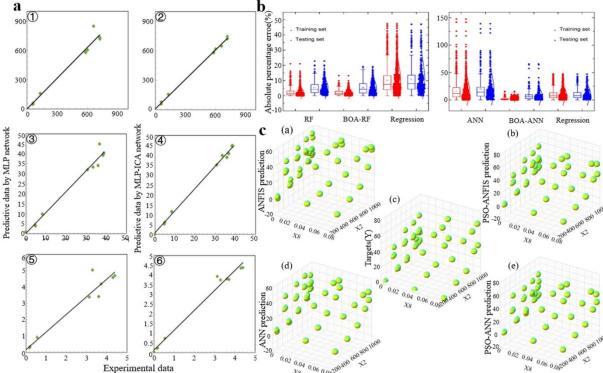


Fig. 12 (a) The correlations of the actual data and predicted data based on the test data for: a1 MLP, water productivity, a2 MLP-ICA, water productivity, a3 MLP, energy efficiency, a4 MLP-ICA, energy efficiency, a5 MLP, exergy efficiency, a6 MLP-ICA, exergy efficiency. (b) The absolute percentage error in different models. (c) The 3D scatter plot of the results of c1 ANFIS, c2 PSO-ANFIS, c3 observed EF, c4 ANN, and c5 PSO-ANN prediction. (a) Reproduced from ref. 123 with permission from Elsevier, copyright 2020. (b) Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (c) Reproduced from ref. 114 with permission from Elsevier, copyright 2021.

4.3 Feature selection

Feature selection is the process of reducing the number of input variables in developing a predictive model. The number of input variables is reduced could ensure an optimal computational cost of modeling. Hence, selecting appropriate features is very important. For the SS system, the inputs are chosen mainly from parameters such as solar radiation, wind speed, water depth, water and glass temperatures, and ambient air. Outputs are mainly selected from parameters such as water productivity. The combination of model inputs and the appropriate training and test data lengths is one of the main factors limiting the accuracy in prediction of nonlinear models. 127 There are various methods used to extract the most correlated variables. Among these, RF128 can be used for feature selection by assessing the importance of individual features. RF calculates the contribution of each feature, allowing for the identification of the most influential factors and providing insights into the relationships between input and output variables. For example, Wang et al. 105 used RF to assess the importance of various performance

parameters, such as solar radiation intensity (IR), wind speed (V_w), basin slab temperature (T_b), brine temperature (T_{sw}) , cover temperature (T_c) , and ambient temperature (T_{∞}) . They investigated how these parameters affect the soil moisture evaporation rate. The results showed that the parameters that had the greatest effect on the rate of water evaporation were T_{sw} and T_b, which accounted for 40.87% and 32.43%, respectively(Fig. 13a). Kandeal et al. 106 utilized RF in basin nanofluid (T_{w.basin}), vapor (T_{vapor}), inner glass (T_{glass,in}), outer glass (T_{glass,out}) temperature, and r radiation intensity (SR) to screen the factors that have the greatest contribution to freshwater productivity. They stated that T_{w.basin} and T_{vapor} are important parameters, accounting for about 66% and 13%. As shown in Fig. 13b, these parameters mainly affect vapor generation and directly impact freshwater productivity. Gao¹¹⁸ used the BOAoptimized RF model to predict the performance of SS under the influence of weather variations and to find the weather parameters closely related to SS. Their results suggested that the maximum temperature (T_{max}), relative humidity (RH), and minimum temperature (T_{min}) are three factors with the highest correlation (i.e., 41%, 20%, and 18%, respectively, see Fig. 13c) with yield. Also, the prediction model is universally applicable so it can be extended to any other type of SS.

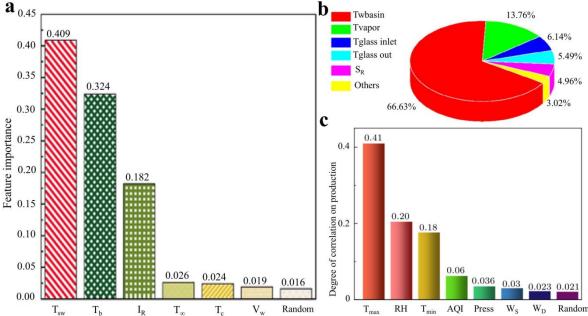


Fig. 13 (a) Results of feature importance. (b) feature importance based on the RF algorithm. (c) Degree of correlation between the production of solar stills and conventional weather forecasting parameters. (a) Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (b) Reproduced from ref. 106 with permission from Wiley, copyright 2021. (c)Reproduced from ref. 118 with permission from Chinese Physics B, copyright 2023.

4.4 Datasets

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773 774

775

776

777

778

779

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

800

Data sets are an essential part of machine learning and serve as its foundation. The size and quality of the data often determine the performance of machine learning. Therefore, it is more crucial to focus on obtaining high-quality data rather than relying on sophisticated algorithms. However, data collection processes are often time-consuming and expensive. So, the time and cost of data collection procedures should be weighed against the appropriate amount of data needed to develop accurate data-driven models. Fig. 14 presents an overview of the data set sizes obtained from various desalination technologies. 85 In Figure 14a, in the SS desalination system, the size of the dataset is less than 500 regardless of the type of data-driven approach based on. In Fig. 14b, ANN model is the most widely used ML method. Dataset segmentation is also an important task for ML, which divides available data into training, validation, and testing sets to support model development, tuning, and evaluation. The dataset is divided according to these principles: the training set is used for model training and parameter tuning; the validation set is used for model selection and hyperparameter tuning; and the test set is used for the final evaluation of the model's performance. The test set should closely reflect the actual application scenarios to ensure accurate assessment. In SS systems, the training set accounts for 70-80% of the total data volume, whereas the validation and test sets each account for 10-20%. A reasonable dataset division method can improve the generalization ability and performance of the model, which can provide suggestions for data set division in future research.

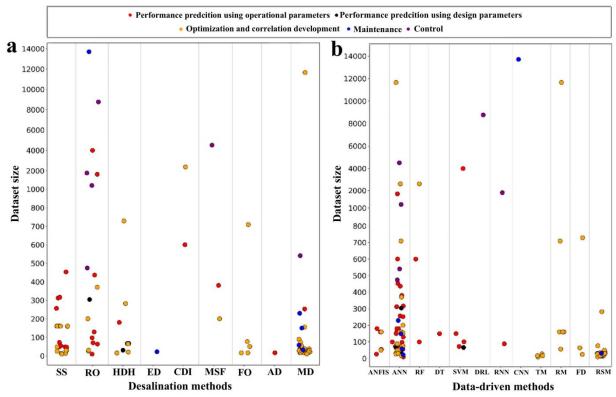


Fig. 14 Size of datasets with respect to (a) desalination systems and (b) data-driven methods for different applications. Reproduced from ref. 85 with permission from Elsevier, copyright 2022.

5 Conclusions

- This paper reviews the use of solar energy as an abundant renewable energy source to drive the desalination process. We focus on describing the main applications of solar distillers in solar desalination and the use of machine learning in aiding the desalination system of solar distillers, as illustrated in Fig. 15. The main reviews synthesized in this paper are listed below:
 - Solar desalination technology does not consume fossil fuels, reduces carbon emissions, and can be operated in remote areas far from the power grid, reducing the dependence on external energy supply and effectively solving the current water and energy shortage problems. Solar desalination systems can also be combined with other renewable energy sources, such as wind power, to form a hybrid energy-driven system, which further improves energy efficiency. Compared with complex mechanical equipment, SS systems are relatively simple in structure and require less maintenance, reducing the cost of repair and replacement during operation.
 - Solar desalination technology is divided into direct and indirect processes. The direct process is represented by solar distillers, while the indirect processes are HDH, MED, MSF, VC, and so on. SS offer advantages such as a simple structure, low installation and maintenance costs, among others. Depending on whether additional components are attached or not, they can be categorized into passive SSs and active SSs.
 - Machine learning is increasingly recognized as a powerful and emerging approach for modeling and predicting solar desalination, complementing traditional methods based on heat and mass transfer differential equations and regression models. By examining historical data, ML can provide valuable insights into efficiency and system behaviour. Through ML modelling analysis, it is possible to make refined predictions of the cost of SS systems, helping companies to optimise system design and operation, reduce costs and improve the feasibility of commercial applications.
 - For SS systems, combining physical models with machine learning models can be considered. This approach can improve prediction accuracy by fusing physical laws (e.g., laws of thermodynamics, water evaporation kinetics, etc.) with data-driven models, especially in data-limited situations. By fusing physics knowledge, ML models are no longer solely dependent on the amount of data, but can be made less data-dependent through the laws of physics, while also ensuring that the model is interpretable.
 - Tuning hyperparameters in machine learning and selecting appropriate inputs-outputs play important roles in improving the accuracy of predictive SS systems. For example, grid search or Bayesian optimization methods can be used to tune the hyperparameters of the

model to find the optimal model configuration. Key features such as evaporation efficiency, heat absorption capacity and water temperature gradient can be extracted from the distillation system and environmental conditions.

• The dataset is crucial for modeling machine learning; the inadequacy of the dataset and quality issues are the main current challenges. It is recommended to collect experimental data including distillers' performance parameters, environmental conditions (e.g., temperature, humidity, sunlight intensity), and material properties, as well as to integrate weather station or satellite data covering historical weather data at the operational site. Considering the utilization of larger datasets, this work contributes to the study of solar evaporation and solar stills.

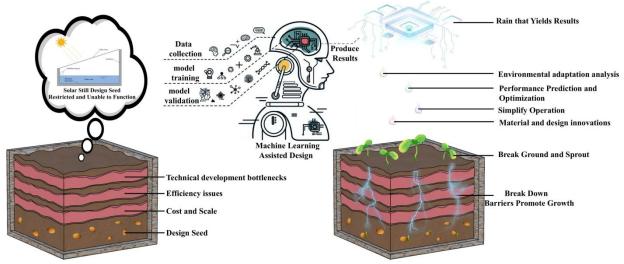


Fig. 15 A look into the future of machine learning- assisted solar stills.

848 Acknowledgements

- This work was financially supported by the National Natural Science Foundation of China (No.
- 22206080) and the Central Plain's Leading Scientific and Technological (244200510007). We
- also acknowledge the support from the ARC Laureate Fellowship (FL230100095) and the JST-
- 852 ERATO Yamauchi Materials Space-Tectonics Project (JPMJER2003).

853 Conflict of Interest

The authors declare no conflict of interest.

855 References

- M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas and A. M.
 Mayes, *Nature*, 2008, **452**, 301-310.
- 858 2. G. N. Tiwari, H. N. Singh and R. Tripathi, *Sol. Energy*, 2003, **75**, 367-373.
- F. Macedonio, E. Drioli, A. A. Gusev, A. Bardow, R. Semiat and M. Kurihara, *Chem. Eng. Process*, 2012, **51**, 2-17.
- 861 4. M. T. Mito, X. Ma, H. Albuflasa and P. A. Davies, *Renew. Sust. Energ. Rev.*, 2019, **112**, 669-685.
- P. Droogers, W. W. Immerzeel, W. Terink, J. Hoogeveen, M. F. P. Bierkens, L. P. H. van Beek and B. Debele, *Hydrol. Earth Syst. Sci.*, 2012, **16**, 3101-3114.
- 865 6. N. Ghaffour, T. M. Missimer and G. L. Amy, *Desalination*, 2013, **309**, 197-207.
- 866 7. R. Borsani and S. Rebagliati, *Desalination*, 2005, **182**, 29-37.
- 867 8. C. Sommariva, H. Hogg and K. Callister, *Desalination*, 2003, **158**, 17-21.
- 868 9. M. A. Darwish and N. M. Al-Najem, *Desalination*, 1987, **64**, 83-96.
- 869 10. A. G. M. Ibrahim and S. E. Elshamarka, Sol. Energy, 2015, 118, 397-409.
- 870 11. M. A. Eltawil, Z. Zhengming and L. Yuan, *Renew. Sust. Energ. Rev.*, 2009, **13**, 2245-871 2262.
- 872 12. A. Al-Othman, M. Tawalbeh, M. El Haj Assad, T. Alkayyali and A. Eisa, *Desalination*,
 873 2018, 443, 237-244.
- 874 13. S. Shaaban, *Energ. Convers. Manage.*, 2019, **198**, 111794.
- J. Y. Choi, T. Lee, A. B. Aleidan, A. Rahardianto, M. Glickfeld, M. E. Kennedy, Y. Chen, P. Haase, C. Chen and Y. Cohen, *J. Environ. Manage.*, 2019, **250**, 109487.
- 15. J. Kim, J. Kim, J. Lim, S. Lee, C. Lee and S. Hong, *Chem. Eng. J.*, 2019, **374**, 49-58.
- 878 16. A. Farsi and I. Dincer, *Desalination*, 2019, **463**, 55-68.
- 879 17. S. Sadri, M. Ameri and R. Haghighi Khoshkhoo, *Desalination*, 2017, **402**, 97-108.
- D. G. Harris Samuel, P. K. Nagarajan, R. Sathyamurthy, S. A. El-Agouz and E. Kannan, *Energ. Convers. Manage.*, 2016, **112**, 125-134.
- 882 19. S. Shoeibi, S. A. A. Mirjalily, H. Kargarsharifabad, M. Khiadani and H. Panchal, 883 Desalination, 2022, **540**, 115983.
- 884 20. S. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Ahmadi and M. R. Safaei, *Sustain. Energy Techn.*, 2022, **49**, 101728.
- 886 21. S. Shoeibi, H. Kargarsharifabad and N. Rahbar, J. Energy Storage, 2021, 42, 103061.
- 887 22. L. D. Jathar and S. Ganesan, *Groundwater for Sustainable Development*, 2021, **12**, 100539.
- 23. L. D. Jathar, S. Ganesan, U. Awasarmol, K. Nikam, K. Shahapurkar, M. E. M. Soudagar,
- H. Fayaz, A. S. El-Shafay, M. A. Kalam, S. Bouadila, S. Baddadi, V. Tirth, A. S. Nizami,
- 891 S. S. Lam and M. Rehan, *Environ. Pollut.*, 2023, **326**, 121474.
- 892 24. S. K. Singh, C. Sharma and A. Maiti, *J. Environ. Chem. Eng.*, 2021, **9**, 105473.
- 893 25. S. Mittal, A. Gupta, S. Srivastava and M. Jain, *Chem. Eng. Process.*, 2021, **164**, 108403.

- 26. L. D. Jathar, K. Nikam, U. V. Awasarmol, R. Gurav, J. D. Patil, K. Shahapurkar, M. E.
- M. Soudagar, T. M. Y. Khan, M. A. Kalam, A. Hnydiuk-Stefan, A. E. Gürel, A. T. Hoang and Ü. Ağbulut, *Helivon*, 2024, **10**, e25407.
- 897 27. Q. He, H. Zheng, X. Ma, L. Wang, H. Kong and Z. Zhu, *Energy and AI*, 2022, **7**, 100123.
- 898 28. S. W. Sharshir, A. Elhelow, A. Kabeel, A. E. Hassanien, A. E. Kabeel and M. Elhosseini,
 899 Environ. Sci. Pollut. R., 2022, 29, 90632-90655.
- 900 29. Z. Xu, J. Shu and D. Meng, Natl. Sci. Rev., 2024, 11.
- 901 30. A. H. Elsheikh, S. W. Sharshir, M. Abd Elaziz, A. E. Kabeel, W. Guilan and Z. Haiou, *Sol. Energy*, 2019, **180**, 622-639.
- 903 31. S. Rashidi, N. Karimi and W.-M. Yan, Eng. Anal. Bound. Elem., 2022, 144, 399-408.
- 904 32. M. Shatat, M. Worall and S. Riffat, Sustain. Cities. Soc., 2013, 9, 67-80.
- 905 33. H. Müller-Holst, M. Engelhardt and W. Schölkopf, *Desalination*, 1999, 122, 255-262.
- 906 34. A. Giwa, N. Akther, A. A. Housani, S. Haris and S. W. Hasan, *Renew. Sust. Energ.* 907 *Rev.*, 2016, **57**, 929-944.
- 908 35. H. Sharon and K. S. Reddy, *Renew. Sust. Energ. Rev.*, 2015, **41**, 1080-1118.
- 909 36. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot and P. Moulin, *Water Res.*, 910 2009, **43**, 2317-2348.
- 911 37. M. A. Darwish and H. K. Abdulrahim, *Desalination*, 2008, **228**, 30-54.
- 912 38. S. R. Osipi, A. R. Secchi and C. P. Borges, *Desalination*, 2018, **430**, 107-119.
- 913 39. M. R. Qtaishat and F. Banat, Desalination, 2013, 308, 186-197.
- 914 40. A. Alkhudhiri, N. Darwish and N. Hilal, Desalination, 2012, 287, 2-18.
- 915 41. S. Zhao, C. Jiang, J. Fan, S. Hong, P. Mei, R. Yao, Y. Liu, S. Zhang, H. Li, H. Zhang,
- 916 C. Sun, Z. Guo, P. Shao, Y. Zhu, J. Zhang, L. Guo, Y. Ma, J. Zhang, X. Feng, F. Wang, 917 H. Wu and B. Wang, *Nat. Mater.*, 2021, **20**, 1551-1558.
- 918 42. S. M. A. Moustafa, D. I. Jarrar and H. I. El-Mansy, Sol. Energy, 1985, 35, 333-340.
- 919 43. S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos, B. Bolto and O. Barron, 920 Desalination, 2015, **364**, 2-16.
- 921 44. A. M. Helal and S. A. Al-Malek, *Desalination*, 2006, **197**, 273-300.
- 922 45. Y. Zhang, M. Sivakumar, S. Yang, K. Enever and M. Ramezanianpour, *Desalination*, 2018, **428**, 116-145.
- 924 46. M. A. Darwish, F. Al-Juwayhel and H. K. Abdulraheim, *Desalination*, 2006, **194**, 22-925 39.
- 926 47. A. Al-Karaghouli, D. Renne and L. L. Kazmerski, *Renew. Sust. Energ. Rev.*, 2009, **13**, 927 2397-2407.
- 928 48. B. Zala, K. Dodia, H. N. Panchal, I. J. o. R. R. i. E. S., 2013, 2, 6-11.
- 929
 49. Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei, Y. Sun, X. Zhang, Z. Liu, N.-T. Suen, H.-C.
 930 Chen and H. Pang, *Adv. Mater.*, 2023, 35, 2307003.
- 931 50. D. Dsilva Winfred Rufuss, S. Iniyan, L. Suganthi and P. A. Davies, *Renew. Sust. Energ.* 932 *Rev.*, 2016, **63**, 464-496.
- 933 51. P. Prakash and V. Velmurugan, *Renew. Sust. Energ. Rev.*, 2015, **49**, 585-609.
- 934 52. R. S. Hansen, C. S. Narayanan and K. K. Murugavel, *Desalination*, 2015, **358**, 1-8.
- 935 53. D. Mevada, H. Panchal, M. Ahmadein, M. E. Zayed, N. A. Alsaleh, J. Djuansjah, E. B.
- 936 Moustafa, A. H. Elsheikh and K. K. Sadasivuni, *Case Stud. Therm. Eng.*, 2022, **29**, 101687.
- 938 54. C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang, E. Hitz, C. Jia, A. Gong, F. Jiang, J. Y. Zhu, B. Yang, J. Xie and L. Hu, *Adv. Mater.*, 2017, **29**, 1701756.
- 940 55. Z. M. Omara, A. E. Kabeel and M. M. Younes, *Desalination*, 2013, **314**, 67-72.
- 941 56. H. Panchal, R. Sathyamurthy, A. E. Kabeel, S. A. El-Agouz, D. Rufus, T. Arunkumar,
- A. Muthu Manokar, D. P. Winston, A. Sharma, N. Thakar and K. K. Sadasivuni, J.
- 943 Therm. Anal. Calorim., 2019, **138**, 3175-3182.

- 944 57. T. Rajaseenivasan, K. Kalidasa Murugavel and T. Elango, *Desalin. Water Treat.*, 2015, 945 55, 1786-1794.
- 946 58. A. A. El-Sebaii, M. R. I. Ramadan, S. Aboul-Enein and M. El-Naggar, *Desalination*, 2015, **365**, 15-24.
- 948 59. D. Mevada, H. Panchal, K. k. Sadasivuni, M. Israr, M. Suresh, S. Dharaskar and H. Thakkar, *Groundwater for Sustainable Development*, 2020, **10**, 100289.
- 950 60. A. E. Kabeel, *Energy*, 2009, **34**, 1504-1509.
- 951 61. A. K. Tiwari and G. N. Tiwari, *Int. J. Energ. Res.*, 2007, **31**, 1358-1382.
- 952 62. M. A. Samee, U. K. Mirza, T. Majeed and N. Ahmad, *Renew. Sust. Energ. Rev.*, 2007,
 953 11, 543-549.
- 954 63. A. A. Badran, I. A. Al-Hallaq, I. A. E. Salman and M. Z. J. D. Odat, *Desalination*, 2005, 955 172, 227-234.
- 956 64. S. Kumar, A. Dubey and G. N. Tiwari, *Desalination*, 2014, **347**, 15-24.
- 957 65. S. Gorjian, B. Ghobadian, T. Tavakkoli Hashjin and A. Banakar, *Desalination*, 2014, 958 352, 1-17.
- 959 66. R. A. Kumar, G. Esakkimuthu and K. K. Murugavel, *Desalination*, 2016, **399**, 198-202.
- 960 67. A. E. Kabeel, Z. M. Omara and F. A. Essa, *Energ. Convers. Manage.*, 2014, **78**, 493-498.
- 962 68. S. J. S. Ahmed and w. technology, *Solar & Wind Technology*, 1988, **5**, 637-643.
- 963 69. M. A. Eltawil and Z. Zhengming, *Desalination*, 2009, **249**, 490-497.
- 964 70. M. Mostafa, H. M. Abdullah and M. A. Mohamed, *IEEE Access*, 2020, **8**, 219457-219472.
- 966 71. G. Singh, S. Kumar and G. N. Tiwari, *Desalination*, 2011, **277**, 399-406.
- 967 72. Y. Taamneh and M. M. Taamneh, *Desalination*, 2012, **291**, 65-68.
- 968 73. H. Panchal, K. K. Sadasivuni, F. A. Essa, S. Shanmugan and R. Sathyamurthy, *Heat Transf.*, 2021, **50**, 1392-1409.
- 970 74. S. W. Sharshir, N. Yang, G. Peng and A. E. Kabeel, *Appl. Therm. Eng.*, 2016, **100**, 267-971 284.
- 972 75. H. B. Bacha, T. Damak, M. Bouzguenda, A. Y. Maalej and H. B. Dhia, *Desalination*, 2003, **156**, 305-313.
- 974 76. Y. Gong, X.-l. Wang and Y. Li-xin, *Desalination*, 2005, **172**, 157-172.
- 975 77. X. Wang and K. C. Ng, *Appl. Therm. Eng.*, 2005, **25**, 2780-2789.
- 976 78. G. Yuan, L. Zhang and H. Zhang, *Desalination*, 2005, **182**, 511-516.
- 977 79. H. Tao, T. Wu, M. Aldeghi, T. C. Wu, A. Aspuru-Guzik and E. Kumacheva, *Nat. Rev. Mater.*, 2021, **6**, 701-716.
- 979 80. R. Batra, L. Song and R. Ramprasad, Nat. Rev. Mater., 2021, 6, 655-678.
- 980 81. M. M. Bhatti, R. Ellahi and M. Hossein Doranehgard, J. Mol. Liq., 2022, **361**, 119655.
- 981 82. M. M. Bhatti, H. F. Öztop, R. Ellahi, I. E. Sarris and M. H. Doranehgard, *J. Mol. Liq.*, 982 2022, **357**, 119134.
- 983 83. K. Milani Shirvan, M. Mamourian, S. Mirzakhanlari, A. B. Rahimi and R. Ellahi, *Int. J. Numer. Method. H.*, 2017, **27**, 2385-2399.
- 985 84. A. Samuel and K.-C. Chang, Water-Sui, 2022, 14.
- 986 85. P. Behnam, M. Faegh and M. Khiadani, *Desalination*, 2022, **532**, 115744.
- 987 86. O. Rejeb, M. S. Yousef, C. Ghenai, H. Hassan and M. Bettayeb, *Case Stud. Therm.* 888 Eng., 2021, **24**, 100816.
- 989 87. A. E. Khalifa and D. U. Lawal, *Desalin. Water Treat.*, 2016, **57**, 28513-28530.
- 990 88. M. Al-Abed Allah, M. Abu Abbas and M. Maqableh, *Desalin. Water Treat.*, 2022, **270**, 991 1-11.
- 992 89. K. Elmaadawy, M. A. Elaziz, A. H. Elsheikh, A. Moawad, B. Liu and S. Lu, *J. Environ.*993 *Manage.*, 2021, **298**, 113520.
- 994 90. A. H. Elsheikh, M. Abd Elaziz and A. Vendan, Weld. World, 2022, 66, 27-44.

- 995 91. M. Caner, E. Gedik and A. Keçebaş, *Expert Syst. Appl.*, 2011, **38**, 1668-1674.
- 996 92. Y. Kashyap, A. Bansal and A. K. Sao, Renew. Sust. Energ. Rev., 2015, 49, 825-835.
- 997 93. D. B. Jani, M. Mishra and P. K. Sahoo, *Renew. Sust. Energ. Rev.*, 2017, **80**, 352-366.
- 998 94. N. I. Santos, A. M. Said, D. E. James and N. H. Venkatesh, *Renew. Energ.*, 2012, **40**, 71-79.
- 1000 95. E. Abdelhafez and R. A. Haj Khalil, *JOCET*, 2013, **1**, 238-242.
- 1001 96. M. S. S. Abujazar, S. Fatihah, I. A. Ibrahim, A. E. Kabeel and S. Sharil, *J. Clean. Prod.*, 2018, **170**, 147-159.
- 1003 97. J. Huang, T. Jin, M. Liang and H. Chen, *Appl. Therm. Eng.*, 2021, **182**, 116053.
- 1004 98. J. S. R. Jang, *IEEE T. Syst. Man. Cy.*, 1993, **23**, 665-685.
- 1005 99. A. A. Aldair, A. A. Obed and A. F. Halihal, *Renew. Sust. Energ. Rev.* 2018, **82**, 2202-1006 2217.
- 1007 100. A. D. Saee, A. Baghban, F. Zarei, Z. Zhang and S. Habibzadeh, *Int. J. Refrig.*, 2018, **96**, 1008 38-49.
- 101. A. H. Elsheikh, S. Shanmugan, R. Sathyamurthy, A. Kumar Thakur, M. Issa, H. Panchal, T. Muthuramalingam, R. Kumar and M. Sharifpur, *Sustain. Energy Techn.*, 2022, **49**, 1011 101783.
- 1012 102. V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan and B. P. Feuston, *J. Chem. Inf. Model.*, 2003, **43**, 1947-1958.
- 1014 103. J. C.-W. Chan and D. Paelinckx, *Remote Sens. Environ.*, 2008, **112**, 2999-3011.
- 104. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
 1016 P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
 1017 Brucher, M. Perrot, E. Duchesnay and G. Louppe, J. Mach. Learn. Res., 2012, 12.
- 1018 105. Y. Wang, A. W. Kandeal, A. Swidan, S. W. Sharshir, G. B. Abdelaziz, M. A. Halim, A. E. Kabeel and N. Yang, *Appl. Therm. Eng.*, 2021, **184**, 116233.
- 1020 106. A. W. Kandeal, M. An, X. Chen, A. M. Algazzar, A. Kumar Thakur, X. Guan, J. Wang, 1021 M. R. Elkadeem, W. Ma and S. W. Sharshir, *Energy Technol-Ger*, 2021, **9**, 2100189.
- 1022 107. C. L. P. Chen and J. Z. Wan, *IEEE T. Syst. Man. Cy. B.*, 1999, **29**, 62-72.
- 1023 108. S. W. Sharshir, M. Abd Elaziz and M. R. Elkadeem, Sol. Energy, 2020, 198, 399-409.
- 1024 109. W. H. Alawee, A. A. Jaber, Z. M. Omara, S. A. Mohammed, H. A. Dhahad, Z. H. Khan and L. A. Al-Haddad, *Desalin. Water Treat.*, 2024, **320**, 100683.
- 1026 110. R. K. Kottala, K. R. Balasubramanian, B. S. Jinshah, S. Divakar and B. K. Chigilipalli, *J. Therm. Anal. Calori.*, 2023, **148**, 7101-7124.
- 1028 111. M. Alhuyi Nazari, M. Salem, I. Mahariq, K. Younes and B. B. Maqableh, *Front. Energy* 1029 *Res.*, 2021, **9**.
- 1030 112. A. Bagheri, N. Esfandiari, B. Honarvar and A. Azdarpour, *Math. Comp. Model. Dyn.*, 1031 2020, **26**, 453-480.
- 1032 113. M. Bahiraei, S. Nazari, H. Moayedi and H. Safarzadeh, *Powder Technol.*, 2020, **366**, 571-586.
- 1034 114. M. Bahiraei, S. Nazari and H. Safarzadeh, *Powder Technol.*, 2021, **385**, 185-198.
- 1035 115. A. Bamasag, F. A. Essa, Z. M. Omara, E. Bahgat, A. O. Alsaiari, H. Abulkhair, R. A. Alsulami and A. H. Elsheikh, *Process Safe. Environ.*, 2022, **162**, 112-123.
- 1037 116. Y. Wang, G. Peng, S. W. Sharshir, A. W. K, e. eal and N. Yang, *ES Materials & Manufacturing*, 2021, **14**, 87-94.
- 1039 117. A. Sohani, S. Hoseinzadeh, S. Samiezadeh and I. Verhaert, *J. Therm. Anal. Calori.*, 1040 2022, **147**, 3919-3930.
- 1041 118. W. Gao, L. Shen, S. Sun, G. Peng, Z. Shen, Y. Wang, A. W. Kandeal, Z. Luo, A. E. Kabeel, J. Zhang, H. Bao and N. Yang, *Chinese Phys. B*, 2023, **32**, 048801.
- 1043 119. A. H. Elsheikh, V. P. Katekar, O. L. Muskens, S. S. Deshmukh, M. A. Elaziz and S. M. Dabour, *Process Safe. Environ.*, 2021, **148**, 273-282.

- 1045 120. R. Chauhan, S. Sharma, R. Pachauri, P. Dumka and D. R. Mishra, *J. Energy Storage*, 2020, **30**, 101408.
- 1047 121. A. F. Mashaly and A. A. Alazba, *J. Water Reuse Desal.*, 2015, **5**, 480-493.
- 1048 122. R. Chauhan, P. Dumka and D. R. Mishra, *Int. J. Ambient Energy*, 2022, **43**, 1389-1396.
- 1049 123. S. Nazari, M. Bahiraei, H. Moayedi and H. Safarzadeh, *J. Clean. Prod.*, 2020, **277**, 1050 123232.
- 1051 124. F. A. Essa, M. Abd Elaziz and A. H. Elsheikh, *Appl. Therm. Eng.*, 2020, **170**, 115020.
- 1052 125. E. Atashpaz-Gargari and C. J. I. C. o. E. C. Lucas, *IEEE CEC*, 2007, 4661-4667.
- 1053 126. D. T. Pham and D. Karaboga, P. I. Mech. Eng., 1997, 211, 157-167.
- 1054 127. B. Choubin and A. Malekian, Environ. Earth Sci., 2017, 76, 538.
- 1055 128. R. Genuer, J.-M. Poggi and C. Tuleau-Malot, *Pattern Recogn. Lett.*, 2010, **31**, 2225-1056 2236.

Data availability statements

Data and figures for this manuscript are available within the main.