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28 Abstract
29 Desalination is a highly energy-intensive process often requiring the consumption of costly 

30 fossil fuels, inevitably causing various environmental hazards. As a sustainable and renewable 

31 energy source, however, solar energy is anticipated to alleviate such environmental concerns 

32 associated with the energy-intensive desalination process. Recently, machine learning, a 

33 powerful data analysis method, has been employed for modeling and prediction to enhance the 

34 productivity of solar stills, an effective solution to water scarcity owing to low cost and simple 

35 operation. In this review, machine learning techniques are particularly emphasized, along with 

36 exploring distinctions between solar stills and other solar desalination technologies. Machine 

37 learning models can achieve further optimization through additional avenues such as model 

38 selection, hyperparameter tuning, feature selection, and dataset management. The findings 

39 specifically highlight the crucial role of machine learning in enhancing solar desalination 

40 through improved prediction and optimization. Furthermore, this paper discussed different 

41 machine-learning prediction techniques while offering suggestions for future research in the 

42 field. 

Nomenclature
SS solar still ANFIS adaptive neuro-fuzzy 

inference systems
ML machine learning DT decision trees
HDH humidification-

dehumidification
RF random forests

RO reverse osmosis SVM support vector machines
MD membrane distillation RM regression models
MSF multi-stage flash MLP multilayer perceptron
VC vapor compression WNN wavelet neural networks
MVC machine vapor compressor RBF radial basis function
TVC
SLeM

thermal vapor compressor
simulating learning 
methodology

ENN
KNN
GPR

elman neural network
k-nearest neighbors 
gaussian process regression

MED multi effect distillation SP solar pond
ETC evacuated tube collector FF feedforward
PV-T photovoltaic-thermal NARX nonlinear autoregressive 

exogenous
PV photovoltaic HBLS heat localization bilayered 

structure
SLM successive linearization 

method
CSS conventional solar still

R2 R-squared MSS modified solar still
MAE mean absolute error SVR support vector regression
RMSE root mean square error LVR

RVFL

linear support vector 
regression
random vector functional 
link
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FA firefly algorithm
MAPE mean absolute percentage 

error
DSS double slope solar still

DOE Design of Experiment BOA bayesian optimization 
algorithm

RSM response surface 
methodology

%ADD average absolute deviation

TM taguchi methodology ICA imperialist competitive 
algorithm

FD factorial design GA genetic algorithm
AGMD air-gap membrane 

distillation
PSO particle swarm optimization

OI overall index LM levenberg-marquardt
EC efficiency coefficient CRM coefficient of residual mass
COV coefficient of variation MSSIE

DPSS

modified solar still 
integrated with earth 
distillate
developed pyramid solar 
still 

DL deep learning IR
HF
IEE

solar radiation intensity
hourly freshwater 
instantaneous energy 
efficiency

ANN artificial neural networks Vw wind speed
DSD dish solar distiller Tb basin slab temperature
PCM phase change material Tsw brine temperature
BP back-propagation Tc cover temperature
RBP radial basis function T∞ ambient temperature
RNN recurrent neural networks Tw,basin basin nanofluid
CNN conventional neural 

networks
Tvapor vapor

DRL deep reinforcement 
learning

Tglass,in inner glass

LSTM long-short-term memory 
neural networks

Tglass,out outer glass

RH relative humidity Tmin minimum temperature
SR
SSWESM

radiation intensity
solar still with energy 
storage materials

Tmax
η

maximum temperature
thermal efficiency

43

44 1 Introduction
45 Recent economic development and population growth have led to massive global demand for 

46 water resources. However, approximately 97% of Earth's water found in the hydrosphere is 

47 made up of seawater, while only less than 1% of the freshwater resources are directly usable 

48 for humans.1 Although it is indisputable that the fresh water is vital for the survival and 

49 development of human society, its resources are extremely limited.2 Moreover, additional man-

50 made factors such as irrational utilization, waste, and water pollution are rapidly exacerbating 
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51 the state of water scarcity, potentially impacting 4.7 billion people by 2025 according to the 

52 reports3. Therefore, an effective way to address the issue of water scarcity is essential and the 

53 use of advanced desalination method to gain access to  seawater for freshwater has become a 

54 core of the research. A modern large-scale desalination plant can produce tens of thousands to 

55 a million tons of fresh water daily.4,5 However, in the case of traditional desalination process, 

56 it is an energy-intensive industry which requires the consumption of non-renewable fossil 

57 energy sources (e.g., coal) to provide heat or power, therefore, increasing environmental risks.6-

58 9 Hence, the feasible usage of non-polluting energy sources for desalination is a pivotal step to 

59 alleviate the earth’s condition of water scarcity.10 Solar energy, the most abundant renewable 

60 resource, accounts for nearly 57% of the renewable energy in desalination market.11 The ability 

61 to operate independently of steam and electricity, along with non-polluting and safe operation, 

62 renders it highly valuable in regions with energy scarcity and stringent environmental 

63 requirements.

64 In fact, desalination technologies such as multi-stage flash evaporation,12,13 reverse 

65 osmosis,14,15 vapor compression, and multi-effect distillation16,17 in solar desalination often 

66 require high maintenance and installation costs. In contrast, solar stills (SS) offer low 

67 installation costs, simple design, and easy maintenance, making them an increasingly attractive 

68 technology,18 particularly suitable for arid and semi-arid regions with low to medium water 

69 demand levels.19-21 Multiple important variables such as weather conditions, sunlight intensity, 

70 temperature and system configuration make SS highly complex systems.22,23 The use of 

71 accurate and convenient auxiliary analytical tools is therefore necessary to improve the 

72 desalination system's performance, as well as to save labor and material resources, especially 

73 when considering time-consuming and inefficient conventional experimental approaches. 

74 Traditional mathematical methods are no longer effective in adapting to and accurately 

75 accessing the intricate processes in modern desalination systems.24,25 Most of the traditional 

76 methods take pre-determined steps in order to approach the possible optimal solution. Mostly, 

77 these algorithms start with a random speculation of the solution, and the exploration directions 

78 are obtained according to the specified migration rules. Then, only one direction is searched in 

79 order to find the possible optimal solution. In desalination and wastewater treatment, these 

80 traditional methods do not work.26 Nevertheless, the evaluation and validation of these models 

81 require a substantial amount of data, which can limit the applicability of the predicted output 

82 and the model’s effectiveness. In this regard, the emergence of machine learning (ML) 

83 techniques is particularly important (see Fig. 1) because it serves as a powerful data analysis 

84 tool that can accurately analyze the various aspects of solar desalination. In contrast to 
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85 traditional mathematical analysis methods, these methods do not require extensive professional 

86 experience, numerical or control equations, or explicit assumptions describing the underlying 

87 engineering processes. The judicious use of ML can create more efficient, environmentally 

88 friendly and economically viable solutions and facilitate the tuning of operating parameters to 

89 achieve maximum efficiency and minimise energy use.27,28 Since the knowledge it provides is 

90 valuable in improving the design and functionality of solar stills, researchers have dedicated 

91 their efforts to this subject. For example, Xu et al.29 proposed a machine learning automation 

92 method for the Simulating Learning Methodology (SLeM). Elsheikh et al.30 reviewed the use 

93 of artificial neural networks in solar desalination, while Rashidi et al.31 provided an overview 

94 of the application of ML methods in solar desalination. ML techniques have begun to show 

95 potential benefits in solar desalination systems. 

96 By appropriately selecting training models, input-output pairs, and segmenting the dataset, 

97 ML methods can also be optimized to improve further their accuracy in predicting solar 

98 seawater desalination systems. The main goal of this study is to provide an overview of solar 

99 desalination technologies using ML, a powerful data analytics method for simplifying and 

100 accelerating the traditional desalination process. Finally, we discuss optimizing relevant ML 

101 algorithms to enhance their accuracy in predictive modeling.

102
103 Fig. 1 Schematic of machine learning-assisted solar desalination.
104 2 Overview of solar desalination
105 With the continued development of solar seawater desalination technology, there are now many 

106 methods applicable for different systems, leading to the diversification of the available solar 
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107 desalination methods. Based on their operating principles, we can specifically categorize these 

108 methods into two types: direct and indirect methods.32 This section begins with an overview of 

109 the indirect method of solar desalination technology, followed by a detailed description of the 

110 SS in the direct method.

111 2.1 Indirect processes

112 Indirect solar desalination systems use solar energy as an energy source to drive seawater 

113 desalination. Unlike the direct use of solar energy to evaporate seawater, an indirect solar 

114 desalination system uses solar energy to generate heat, which is then transferred to a still or 

115 other heat transfer device in the desalination system.

116 In humidification-dehumidification (HDH) desalination, brackish and saline water is 

117 heated to humidify the air, and freshwater is produced by condensation of the humid air 

118 generated at atmospheric pressure, as illustrated in Fig. 2a.33 According to its circulation form, 

119 the HDH process can be divided into four main categories: closed air-open water circulation, 

120 closed air-closed water circulation, closed water-open air circulation, and open water-open air 

121 circulation. HDH is usually combined with external heaters such as solar collectors, flat plate 

122 solar collectors, vacuum tube solar collectors, and parabolic trough solar collectors. So far, very 

123 limited work has been done to identify the advantages and disadvantages of different 

124 configurations, whose impact on HDH performance is considerable.34

125 Reverse osmosis (RO) desalination technology utilizes the properties of a reverse osmosis 

126 membrane. As seawater passes through the RO membrane, micropores in the membrane allow 

127 water molecules to pass through and be collected. Salts and other dissolved substances are 

128 trapped on the other side of the RO membrane, forming concentrated water. The salt and other 

129 dissolved substances in the seawater are separated from the water molecules, thus realizing the 

130 desalination of seawater. The RO modules can also be connected in series or parallel 

131 configurations, as presented in Fig. 2b.35,36 Currently, water pre-treatment is an obstacle to 

132 reverse osmosis systems, as water supplies often require extensive pre-treatment 

133 procedures.37,38 In addition, improving the anti-fouling ability of the reverse osmosis membrane 

134 also has a beneficial effect on its treatment efficiency.

135 The difference in vapor pressure between the two sides of the membrane is used as the 

136 mass transfer driving force and thermally drives in membrane distillation (MD). Water vapor 

137 is then sent through the porous, hydrophobic membrane material to remove salt. A typical solar 

138 membrane distillation unit is introduced in Fig 2c.35,39 There are four main types of membrane 

139 distillation processes: air gap membrane distillation, vacuum membrane distillation, sweeping 

140 gas membrane distillation, and direct contact membrane distillation.39 Operational parameters 

Page 6 of 39Journal of Materials Chemistry A



7

141 in membrane distillation, such as feed water temperature, flow rate, air gap thickness, 

142 membrane thickness, membrane thermal conductivity, porosity, curvature, and long-term 

143 operation, have an effect on distillate yield.40 The heart of the membrane distillation process is 

144 considered to be a porous hydrophobic membrane. However, traditional polymer materials and 

145 membrane preparation methods are difficult to meet the current conditions. Therefore, 

146 developing new membrane materials and devising preparation methods for separation 

147 membrane are critical to advancing MD technology.41

148 Multi-stage flash (MSF) evaporation systems evaporate seawater to produce fresh water 

149 by using the method of reduced pressure and expansion flash evaporation. Accordingly, the 

150 seawater is first heated to a specific temperature and then introduced into the flash chamber. 

151 After multi-stage evaporation, the resulting water vapor enters the condenser and the collected 

152 liquid water is fresh water. Fig. 2d illustrates a schematic diagram of a solar MSF desalination 

153 system.35,42 MSF accounts for about 21% of the worldwide desalination capacity, placing it to 

154 the second most common desalination method following reverse osmosis.43 In particular, solar 

155 MSF integrates solar collectors to the conventional MSF desalination systems, making the 

156 selection of solar collectors, the correct design of the solar heating cycle, and the design and 

157 optimization of the MSF plant crucial for its successful operation.

158 In desalination by vapor compression (VC), seawater first undergoes heating to 

159 evaporation temperature, which then feeds the heated seawater into an evaporator to evaporate 

160 the water. A machine vapor compressor (MVC) or a thermal vapor compressor (TVC) then 

161 compresses the resulting vapor. A condenser finally cools it, transforming it into fresh water. 

162 In Fig. 2e, MVC desalination units are illustrated.35,44 Photovoltaic modules, wind turbines, and 

163 water storage tanks can also be intergrated into MVC desalination plants, forming a 

164 complementary wind and solar system. This hybrid power unit provides the necessary energy, 

165 offering a more flexible energy supply. Currently, the vapor compression desalination 

166 equipment itself is expensive to manufacture and requires specialist maintenance and operating 

167 personnel to manage and maintain, increasing the difficulty and cost of operation.

168 In Fig. 2f, the principle of multi effect distillation (MED) is introduced.45 By arranging 

169 several evaporators in parallel, seawater is heated in the previous evaporator, and water 

170 molecules begin to evaporate into water vapor. Pipes transfer the water vapor to the bottom of 

171 the next group of evaporators, where it enters the condenser. Through multiple uses of steam, 

172 MED achieves energy savings. Compared to MSF, a conventional MED desalination system 

173 uses about half the energy of an MSF system and produces almost the same amount of heat as 

174 MSF if both have the same gain ratio.46 Solar MED can be a sustainable alternative option for 
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175 medium- to large-scale conventional desalination plants, although large-scale plants have not 

176 yet been built.45

177
178 Fig. 2 (a) Humidification and dehumidification desalination unit coupled with a solar collector. (b) Series 

179 and parallel arrangement of RO modules. (c) Solar-powered membrane distillation unit. (d) Solar-powered 

180 multi-stage flash desalination system. (e) Mechanical vapor compression desalination system. (f) Schematic 

181 diagram of solar MED desalination system with feed preheating. (a) Reproduced from ref. 32,33 with 

182 permission from Elsevier, copyright 2013. (b) Reproduced from ref. 35,36 with permission from Elsevier, 

183 copyright 2015. (c) Reproduced from ref. 35,39 with permission from Elsevier, copyright 2015. (d) 

184 Reproduced from ref. 35,42 with permission from Elsevier, copyright 2015. (e) Reproduced from ref. 35,44 

185 with permission from Elsevier, copyright 2015. (f) Reproduced from ref. 45 with permission from Elsevier, 

186 copyright 2018.

187 2.2 Direct processes

188 Direct solar desalination uses a collector system to harness solar radiation and heat seawater, 

189 causing it to evaporate and subsequently condense into fresh water. The most representative 

190 technology is the SS. Solar energy is one of the simplest forms of solar desalination that does 

191 not consume conventional energy and is simple and easy to operate with a yield of about 4-6 

192 l/m2 per day, which is sufficient for households.47 Although SS are unsuitable for large-scale 

193 desalination systems,48 they are simple and affordable in design and very appropriate in some 

194 remote coastal areas with plenty of sunlight but a lack of power and electricity. Based on the 

195 need for additional components, direct solar desalination could be subdivided into passive SSs 

196 and active SSs.

197 2.2.1 Passive solar stills
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198 A passive SS is a device that uses solar energy to evaporate water and collect pure water. 

199 It does not require an external energy supply and relies primarily on solar energy to complete 

200 the distillation process. There are various ways to classify passive SSs, such as by the design of 

201 the evaporator, different materials49, thermal storage options, shape and number of basins.50

202  Researchers have investigated many aspects of conventional SSs to improve their 

203 performance, including water depth, the angle of inclination of the glass cover, the type of 

204 material used, etc. A comprehensive review has been given by Prakash et al.51 Hansen et al.52 

205 studied new materials suitable for solar desalination applications and selected unused wick 

206 materials for analysis. They determined that water coral fleece material is the best hygroscopic 

207 material based on four parameters: porosity, absorbency, capillary rise, and heat transfer 

208 coefficient. They also compared the performance of different wick materials under different 

209 absorber plate configurations, concluding that water coral fleece with weir mesh-stepped 

210 absorber plate yielded the best with distilled water up to 4.28 l/day. Mevada et al.53 investigated 

211 different energy storage materials such as black glass bulb, black granite, and white marble 

212 stone were tried in SS to improve the distillate yield. A comparison was also made between 

213 conventional solar still (CSS) and solar still with energy storage materials (SSWESM). The 

214 results showed that the daily distillate yield was 1.4 kg/m2 and 2.5 kg/m2 for CSS and SSWESM, 

215 respectively, and the daily efficiency of SSWESM was 72.6% higher than that of CSS.

216 In the fabrication of SS, temperature and pressure conditions have a significant impact on 

217 certain processing techniques, especially when it comes to the selection of materials, processing 

218 methods and equipment assembly.  Chen et al.54 investigated the development of an efficient 

219 solar distillation system through the use of thermally expanding materials. By controlling the 

220 expansion properties of the materials at elevated temperatures, a porous light-absorbing 

221 structure was formed and the rate of water evaporation was increased.

222 Omara et al.55 conducted a comparative performance study of an improved and 

223 conventional SS by installing reflectors on both vertical sides of the step SS steps. The results 

224 showed that the productivity of the modified step SS with internal reflectors was about 75% 

225 higher than that of the conventional still, and the daily efficiencies of the modified step still 

226 were 56%, 53%, and 34%, respectively. Panchal et al.56 annually investigated the use of MgO 

227 and TiO2 nanofluids at different concentrations to assess the distillate yield of stepped SS, 

228 where the nanofluid concentrations investigated ranged from 0.1% to 0.2%. The results showed 

229 that the use of MgO nanofluids (0.2% and 0.1% concentrations) and TiO2 nanofluids (0.2% and 

230 0.1% concentrations) increased the step SS distillate yields by 45.8%, 33.33%, 20.4% and 4.1%. 
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231 The distillate yield of MgO nanofluid was higher than TiO2 due to lower specific heat capacity 

232 and higher thermal conductivity.

233 Conventional single-basin passive SS generally have low distillation efficiency and 

234 productivity. Rajaseenivasan et al.57 investigated the incorporation of an additional basin in a 

235 double-inclined SS and using different materials within the basin. Wick materials such as jute 

236 cloth, waste cotton pieces, and black cotton cloth were used to increase the evaporation area. 

237 The results showed that double and single basin stills using mild steel sheets had a maximum 

238 fire use efficiency of 2.072% and 1.412%, respectively.

239 Fin is a low cost heat transfer enhancement technique where the fins at the bottom of the 

240 solar evaporator improve the performance by increasing the rate of heat transfer from the basin 

241 to the water.58 However, not much work has been done on fins to improve the distillate yield in 

242 many research works. Mevada et al.59  reviewed the effect of fin configuration parameters on 

243 SS performance. The results mainly found that fins increased the surface area of water and thus 

244 increased the heat transfer rate. Fins can also be used to reduce the heat loss at the bottom of 

245 the solar evaporator.

246 Surfaces used for evaporation and condensation phenomena play essential roles in the 

247 performance of basin-type SS. Kabeel et al.60 devised a concave wick surface that was used for 

248 evaporation, while four side pyramidal shapes were still used for condensation, and a jute wick 

249 was used to increase the evaporation surface area. The results reveal an average daily distillate 

250 productivity of 4.1 l/m2, a maximum instantaneous system efficiency of 45%, and an average 

251 daily efficiency of 30%.

252 The glass's inclination angle has an impact on parameters such as yield and instantaneous 

253 efficiency. Tiwari et al.61 designed single slope passive SSs with three different condensations 

254 covering inclinations of 15°, 30° and 45°. The results indicated that a condensation cover 

255 inclination angle of 15° yielded the highest annual yield and distillation efficiency. Samee et 

256 al.62 suggested that the optimal glass cover angle for the designed single basin SS was 33.3° in 

257 the arid region of South West Pakista n (33.7° N latitude).

258 2.2.2 Active solar stills

259 Active SSs typically attach additional components and require an external energy supply 

260 system to drive auxiliary equipment such as solar collectors, condensers, pumps, etc. Active 

261 SSs typically produce water at a higher rate than passive SSs.

262 A solar collector is a device that collects and concentrates solar radiation to maximize the 

263 conversion of solar radiation into thermal energy to drive water’s evaporation and condensation 

264 processes. Different heat collection principles can divide solar collectors into flat-plate solar 
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265 collectors, concentrating solar collectors, and vacuum tube collectors. Badran et al.63 designed 

266 a single-stage basin SS connected to a conventional flat plate collector. The results showed that 

267 the integrated single basin distiller increased its yield by 231% after 24 hours of operation. Shiv 

268 et al.64 designed a single-slope SS integrated with an evacuated tube collector (ETC). The study 

269 results demonstrated further improvement, achieving an optimal daily yield of up to 3.9 kg, 

270 with energy and fire use efficiencies of 33.8% and 2.6%, respectively. Concentrating collectors 

271 include a receiver and a concentrator, which intercept a large area of direct sunlight and focus 

272 it into a small absorption area, thereby increasing the radiant flux. Ashraf et al.65 designed a 

273 parabolic SS consisting of a parabolic disk concentrator as shown in Fig. 3a. Their results 

274 showed that the average daily efficiency of the distiller is 34.69% better than different types of 

275 solar distillers, and the cost is low enough to be used by rural households.

276 A condenser is a refrigeration system component that converts a gas or vapor into a liquid. 

277 Attaching a condenser to an SS can boost productivity by increasing the condensation rate. 

278 Condensers can be divided into external condensers and internal condensers depending on 

279 where they are attached. Kumar et al.66 improved the single-slope SS by attaching an external 

280 condenser and compared it with the conventional single-slope SS as shown in Fig. 3b. The 

281 distillation efficiency of the improved still was found to increase by 39.49% over the 

282 conventional still at a lower cost. Kabeel et al.67 conducted an experiment on SS using an 

283 integrated nanofluid and an external condenser. The results showed an increase in distillation 

284 yield of about 53.2%. Ahmed68 designed a single slope distiller with an integrated dual channel 

285 condenser against a distiller without a condenser and found that an additional internal condenser 

286 improves the performance of the distiller.

287 Wind turbines have also been used in SS as rotating shafts to increase distillate production. 

288 For example, Mohamed et al.69 designed small wind turbines as rotating shafts installed in the 

289 main SS to break the boundary layer at the water surface of the basin (see Fig. 3c). For the same 

290 flow rate, the productivity was inversely proportional to the water depth, and the vibration 

291 induced by the rotating shaft induced the droplets to flow from the lid into the collection channel.

292 The integration of solar chimneys allows for the production of both electricity and fresh 

293 water. For example, in Fig. 3d, Mostafa et al.70 attached a solar chimney to a conventional SS 

294 where it can absorb heat from solar radiation, generating a chimney effect that induces airflow 

295 due to natural convective forces to enhance the desalination process. They established a 

296 mathematical model of the airflow inside the solar chimney and put the experimental results of 

297 four aspects (i.e., sunny and cloudy weather conditions, the influence of salt concentration 

298 conditions, the influence of the water depth in the basin and the unit effect) to simulate and 
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299 validate the simulation. The results of solar water stratification experiments of the integrated 

300 solar chimney SS under different operating conditions are also compared. It was found that the 

301 solar chimney has a higher efficiency than the conventional solar distillers and a 30% higher 

302 desalination rate than solar ponds.

303 Photovoltaic-thermal (PV-T) distillers combine the technology of photovoltaic (PV) 

304 panels and solar thermal collectors in a single system that can generate electricity and heat 

305 simultaneously. This system can also utilize efficiently solar energy to increase water 

306 production. Gajendra et al.71 conducted an experiment in a double-slope active SS with a solar 

307 PV-thermal system, as shown in Fig. 3e. It was found that the productivity of the improved still 

308 was 1.4 times higher than that of the one with single-slope PV-thermal technology.

309 Utilizing solar photovoltaic-operated fan work is reported to be economical and can 

310 increase the evaporation rate. For example, Taamneh et al.72 investigated the effect of forced 

311 convection on the performance of a pyramidal solar evaporator, the experimental system as 

312 shown in Fig. 3f. The use of a fan and photovoltaic solar panels proved to be economically 

313 viable, resulting in a 25 percent increase in the daily production of freshwater.

314 Solar Pond (SP) is a remarkable development in renewable energy technology which stores 

315 solar energy for many solar thermal applications. SP can provide heat for various applications 

316 such as solar heating, cooling and refrigeration. Researchers have utilized salinity gradient and 

317 SP with SS to increase the yield. Panchal et al.73 described how SP can be used to increase the 

318 yield of SS by providing hot water through its stored thermal energy. The paper states that the 

319 optimum salinity value inside the SP is a critical parameter and key to the performance of SP 

320 and SS. The paper also reveals the use of shallow and micro SP in combination with SS to 

321 improve production.
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322
323 Fig. 3 (a) Photograph of the developed point-focus solar still. (b) Experimental setup of conventional and 

324 modified still. (c) Single slope still coupled with wind turbine and inclined solar distiller. (d) Construction of 

325 solar basin and solar chimney. (e) Photograph of hybrid photovoltaic thermal (PVT) double slope active solar 

326 still. (f) Pyramid solar distiller with fan. (a) Reproduced from ref. 65 with permission from Elsevier, copyright 

327 2014. (b) Reproduced from ref. 66 with permission from Elsevier, copyright 2016. (c) Reproduced from ref. 

328 69 with permission from Elsevier, copyright 2009. (d) Reproduced from ref. 70 with permission from IEEE, 

329 copyright 2020. (e) Reproduced from ref. 71 with permission from Elsevier, copyright 2011. (f) Reproduced 

330 from ref. 72 with permission from Elsevier, copyright 2012.

331 3 Comparison of different forecasting models
332 The previous section has outlined the use of design, fabrication, and integration of additional 

333 components to modify conventional SS to improve their performance. A lot of research has 

334 been carried out on various solar distillation systems. For example, Sharshir et al.74 reviewed 

335 the factors affecting the productivity of SS and techniques for improvement. However, various 

336 factors influence the performance of SS, and the expensive and time-consuming nature of 

337 experimental work can make performance prediction challenging in certain cases. To be able 

338 to predict the performance of SS accurately, different models have been developed, mainly 

339 consisting of three methods, as stated in Fig. 4. Accordingly, ML is undoubtedly one of the 

340 powerful black-box data analysis tools nowadays, which does not require specific expertise and 

341 is able to solve complex situations well. Two other approaches are the numerical solutions of 

342 differential equations for heat mass transfer75,76 and regression modeling.77,78 In addition, ML 

343 has demonstrated its outstanding performance in terms of other domains. For instance, Tao et 

344 al.79 employing ML-assisted nanoparticle synthesis, which focuses on ML algorithms to support 

345 nanoparticle synthesis and highlights the key methods for collecting large datasets. Batra et al.80 
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346 review the emerging materials intelligence ecosystems and discusses the use of emerging ML 

347 to address the challenges faced to drive their development. With the improvement of solar 

348 distillation technology and the development of artificial intelligence, ML approaches are being 

349 progressively employed for solar desalinationas (see Fig. 5). This section then focuses on ML 

350 models for predicting SS yield.

351
352 Fig. 4 Three models for predicting the performance of solar stills.

353
354 Fig. 5 Evolution of experimental and predictive methods for solar stills.

355 3.1 Use of conventional methods

356 Previous scholars have used the principle of internal heat-mass transfer to perform 

357 mathematical modeling to predict the output of solar desalination systems and Bhatti et al.81 

358 numerically studied the flow of hybrid nanofluids in porous media. The similar variables were 
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359 used to mathematically model the momentum and energy equations, which were solved 

360 numerically using the successive linearization method (SLM). Their results show that the new 

361 findings are not only consistent but also ensure the accuracy of the present results for mixed 

362 nanofluids. In another study, Bhatti et al.82 discussed diamond (C) and silicon dioxide (SiO2) 

363 nanoparticles in a water-based hybrid nanofluid suspended on an exponentially elastic surface 

364 to improve the photothermal performance of an energy conversion system, developed nonlinear 

365 differential equations, and solved them numerically. The results show that their proposed SLM 

366 method is more stable based on numerical comparisons. Shirvan et al.83 studied the numerical 

367 solution of the combined surface radiation and natural convection heat transfer in a solar cavity 

368 receiver, which was obtained using the SIMPLE algorithm.

369 Some scholars have also used regression modeling to predict the production performance 

370 of SS. Samuel and Chang84 designed a prototype SS for use in this area to solve the water 

371 problem of the remote islanders, carried out data collection, built a multivariate regression 

372 model and used the TMY data of Dongji Islet for quantification of SS. The results showed that 

373 the established multivariate linear regression model had R-squared (R2), adjusted R-squared 

374 (𝑅2
𝑎), mean absolute error (MAE), root mean square error (RMSE), and mean absolute 

375 percentage error (MAPE) values of 99.5%, 99.4%, 0.144, 0.167, and 9.71%, respectively. This 

376 demonstrates that applying multivariate linear regression and optimal subsetting techniques 

377 based on TMY data has proven to be a viable approach to modeling the productivity of a 

378 prototype SS. 

379 The data-driven approach of Design of Experiments (DOE) has a corresponding 

380 application on SS systems. Primarily derived from statistical methods, the DOE approach 

381 significantly reduces the cost and time of the data collection process when compared to the 

382 traditional one-factor experimental approach. Additionally, the DOE approach considers the 

383 interaction of independent variables on system behavior and can be effectively applied for 

384 performance prediction and optimization purposes.85 Response surface methodology (RSM), 

385 Taguchi methodology (TM), and analytical factorial design (FD) are three major statistical. SS 

386 system involves several operating parameters, such as water flow rate, heat absorption area, 

387 inlet temperature, tilt angle, etc. DOE can help optimize these parameters to enhance 

388 desalination efficiency. Meanwhile, the operation of SS system depends on environmental 

389 conditions, such as sunlight intensity, wind speed, humidity, etc. DOE can help the system to 

390 find the best working conditions under various environments and ensure the stability of the 

391 system under different climatic conditions. DOE can not only optimize a single objective (e.g., 

392 freshwater yield), but also be used for multi-objective optimization. For example, finding the 
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393 best balance between freshwater yield, energy consumption and system cost. DOE tools that 

394 have been widely used to analyze the performance and optimization of desalination systems. 

395 Rejeb86 developed a polynomial regression mode for predicting the efficiency of solar power 

396 generation using numerical equilibrium energy modeling. The author carried out a statistical 

397 RSM model to investigate the interactions between the factors under study and their combined 

398 effects on daily distilled water productivity. The results showed that the R2 and 𝑅2
𝑎 were 0.9906 

399 and 0.9818, respectively. The predictions of the polynomial model were in good agreement 

400 with the numerical results of the transient thermal numerical model. Khalifa and Lawal87 

401 optimized the air-gap membrane distillation (AGMD) desalination system using Taguchi 

402 orthogonal design arrays and the RSM. An analysis of variance was then employed to analyze 

403 the model and the significant effect of each operating parameter on flux. Their results suggested 

404 the maximum fluxes of the Taguchi method and RSM were 76.046 kg/m2 h and 76.998 kg/m2h, 

405 respectively, under optimal conditions. Allah et al.88 used a design of experiments approach to 

406 analyze the input factors affecting the performance. The effects of nine factors, such as solar 

407 radiation, basin area, and brackish water depth, on the performance of the solar evaporator were 

408 investigated, and an accurate theoretical model of the thermal behavior of the solar distiller was 

409 developed. The results indicate that the established mathematical model can accurately describe 

410 the highly complex behavior of SS.

411 3.2 Use of classical ML models

412 The ML process applied to predict system performance can be divided into three steps: data 

413 processing, model construction, and model validation. The data processing step involves 

414 collecting experimental or theoretical results and organizing the data into a training set, a 

415 validation set, and a test set. The training set is used for model training and parameter tuning, 

416 while the validation set is employed to select the model and fine-tune hyperparameters. 

417 Eventually, the test set is used to evaluate the model’s performance. Model building is the 

418 process of learning and training data to generate mathematical models that can make predictions 

419 or decisions on unknown data. The entire model-building process is an iterative one that usually 

420 requires several attempts and adjustments to find the best model and parameter combination. 

421 Also, as data and tasks change, the model may need to be updated and retrained periodically to 

422 maintain its performance and accuracy. Model validation in ML is the process of evaluating the 

423 performance of a model on unseen data. The purpose of validating a model is to ensure that the 

424 model generalizes well to new data, that the patterns learned by the model during training can 

425 be generalized to future data. The most commonly used assessment metrics are the R2, RMSE, 

426 MRE, MAPE, overall index (OI), efficiency coefficient (EC), and coefficient of variation 
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427 (COV).89,90 Moreover, ML techniques can be categorized explicitly into classical ML methods 

428 and deep learning (DL) methods. Classical ML methods used for the study of desalination 

429 systems include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems 

430 (ANFIS), Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and 

431 Regression Models (RM).85 This subsection focuses on applying classical ML methods in solar 

432 distillers.

433 In SS desalination systems, most studies use ANNs to predict their performance. ANN is 

434 an ML model that mimics the structure and function of the human nervous system, consisting 

435 of multiple artificial neurons (or nodes) interconnected through connections (or weights). 

436 ANNs typically involve an input layer, a hidden layer (optional), and an output layer,91 where 

437 each layer consists of multiple neurons.92,93 The structure of four of these models of ANN: 

438 Multi-Layer Perceptron (MLP), Wavelet Neural Networks (WNN), Radial Basis Function 

439 (RBF), and Elman neural network (ENN), as shown in Fig. 6.30 ANN has the ability to learn 

440 and construct nonlinear and complex relational models, which is crucial because many of the 

441 relationships between inputs and outputs in desalination systems are nonlinear and complex. 

442 Santos et al.94 used ANN and local weather data to predict yields of two different commercial 

443 SS while using ANN to determine the minimum amount of inputs required for accurate SS 

444 performance. It was found that 31-78% of the predictions of the ANN model were at 10% of 

445 the actual yield depending on the input variables selected. Abdelhafez et al.95 predicted the 

446 thermal efficiency (η) of triple SS utilizing three ANN models, namely Feedforward (FF), 

447 Elman, and Nonlinear Autoregressive Exogenous (NARX). As shown in Fig. 7a, the FF model 

448 had the best predictive ability with the highest R2 of 0.99838. Abujazar et al.96 utilized a 

449 Cascaded Forward Neural Network (CFNN) model to predict the yield of an inclined stepped 

450 SS system. They compared its predictions with those of regression and linear models, using 

451 three statistical error terms for evaluation. As a result, the proposed CFNN has minimum values 

452 of 22.48%, 18.51%, and -14.51% for RMSE, MAPE, and MBE respectively. Fig. 7b shows that 

453 CFNN predicts the productivity of the system more accurately than other models.
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454
455 Fig. 6 The structure of (a) MLP, (b) WNN, (c) RBF and (d) ENN.  (a-b)Reproduced from ref. 30 with 
456 permission from Elsevier, copyright 2019.

457
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458 Fig. 7 (a) Comparison between experimental and estimated thermal efficiency. (b) Hourly sample of the 

459 predicted the solar still productivity by CFNN, regression and linear models. (a) Reproduced from ref. 95 

460 with permission from JOCET, copyright 2013. (b) Reproduced from ref. 96 with permission from Elsevier, 

461 copyright 2018.

462 Although ANN has a wide range of applications in SS systems, the selection of an 

463 appropriate No single ML model is universally best for predicting the performance of a specific 

464 SS system. Several studies have used SVM, RF, and ANFIS for modeling and prediction.97 In 

465 particular, SVM can be used to model the relationship between process responses (e.g. 

466 freshwater yield, evaporation efficiency, etc.) and process descriptors (e.g. environmental 

467 conditions, material properties, operating parameters, etc.). First, data on the input 

468 characteristics (descriptors) and output responses of the SS apparatus are collected. To ensure 

469 data availability and accuracy, appropriate data cleaning and normalisation is then performed. 

470 Then, a suitable kernel function such as RBF kernel is selected to capture the complex 

471 interactions between the input features. Finally, model training, tuning and evaluation are then 

472 performed to accurately predict the performance of the SS system. This binary classification 

473 model is used for classification and regression analysis. Its basic principle involves finding the 

474 optimal hyperplane that separates different data classes, maximizing the margin between them 

475 to classify or regress the data effectively. The schematic diagram of SVM is presented in Fig. 

476 8a.  ANFIS, on the other hand, is an intelligent ML method that combines fuzzy inference with 

477 ANN.98 The structure diagram of ANFIS is depicted in Fig. 8b. The ANFIS model demonstrated 

478 a higher ability to deal with real-data applications than other traditional ANN methods.99,100 It 

479 is particularly effective in addressing problems characterized by high uncertainty and ambiguity, 

480 owing to its strong adaptive capabilities. Additionally, ANFIS can dynamically adjust system 

481 parameters in response to changes in the environment and input data. For example, Elsheikh et 

482 al.101 designed a low-cost heat localization bilayered structure (HLBS) that can efficiently 

483 convert the absorbed solar energy into thermal energy to improve conventional SS’s 

484 performance. They used three machine learning methods (i.e., ANN, SVM, and ANFIS) to 

485 predict water production and compared the prediction results between a CSS and an modified 

486 solar still (MSS). As shown in Fig. 9a, SVM exhibited a higher accuracy in predicting water 

487 production than the other two models. Lastly, RF is an ML classifier that consists of multiple 

488 decision trees. The final output category is determined by the majority vote of the individual 

489 trees. This method is known for its high accuracy.102.103 Its main process presented in Fig. 8c 

490 could be summarized into three steps: data manipulation,104 model construction, and model 

491 optimization. In a study, Wang et al.105 designed a tube SS. To accurately predict its 

492 performance, they developed an ANN model, an RF model, and a traditional multiple linear 
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493 regression model based on experimental data. They optimized and compared these models 

494 using Bayesian optimization for hyperparameter tuning. The results showed that the 

495 determination coefficients of RF, ANN and multiple linear regression were 0.9745, 0.7098, and 

496 0.9267. As shown in Fig. 9b, the superiority of RF was well demonstrated with minimal errors. 

497 Similarly, Kandeal et al.106 utilized four different ML models (i.e., ANN, RF, Support Vector 

498 Regression (SVR), and Linear Support Vector Regression (LVR)) to predict the performance 

499 of double slope solar still (DSSS).  They optimized these models using the Bayesian 

500 optimization algorithm (BOA) and conducted training, testing, and validation for each of the 

501 models. As a results, RF was found to be the most accurate ML model with the highest R2 of 

502 0.983 (see Fig. 9c.)

503 In addition, there are a number of ML models that have been applied to SS system 

504 prediction. Random Vector Functional Link (RVFL) is a fast neural network model widely used 

505 for modelling and prediction of various nonlinear systems.107 RVFL is able to efficiently deal 

506 with complex nonlinear problems through randomly generated weights and directly connected 

507 input feature layers. Previous studies relying on artificial neural networks only used connections 

508 between hidden and output layers without considering connections between input and output 

509 layers. This can lead to overfitting problems and also reduces the efficiency of the method. 

510 RVFL, through its efficient nonlinear fitting capability, is able to quickly predict the output of 

511 the system based on the environmental conditions and system parameters input to the SS system. 

512 Sharshir et al.108 proposed a novel developed pyramid solar still (DPSS) integrated with copper 

513 plate and graphite nanofluid to predict the hourly freshwater (HF) and instantaneous energy 

514 efficiency (IEE) of the DPSS using the FA-RVFL model of firefly algorithm (FA) which 

515 simulates the behaviour of fireflies, Fig. 8d illustrates the structure of the developed technique. 

516 The prediction results are also compared with RVFL, SVM and conventional ANN. The results 

517 show that the proposed FA-RVFL model is characterised by coefficients of determination of 

518 0.981 and 0.999 for the total HF and IEE datasets, respectively, and regression values of 0.996 

519 and 0.999, respectively.It proves that the developed FA-RVFL has an excellent performance in 

520 predicting the FA and IEE of DPSS. K-Nearest Neighbors (KNN) is a simple but effective 

521 supervised learning algorithm widely used in classification and regression tasks. It finds the K 

522 closest neighbours to the target point in the feature space by calculating the distance (usually 

523 Euclidean distance) between data points and makes predictions based on the labels of these 

524 neighbours. KNN can be used to classify different design options for SS, such as classifying 

525 different material combinations, different structural designs, etc. By analysing the performance 

526 metrics of different designs, KNN can help researchers to quickly identify superior design 
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527 solutions. Alawee et al.109 came out with an innovative approach to predict the cumulative 

528 distillate yield of a double slope solar still using correlation analysis, ReliefF for feature 

529 selection, and the KNN algorithm. The analysis was based on a dataset based on six cases, 

530 which included variations in distillate yield relative to different operating environmental 

531 conditions. Key features that have a significant impact on the overall performance were 

532 identified to manage the productivity of the solar still. The results showed that the best model 

533 was evaluated based on the R2 , RMSE and CVRMSE of the KNN model and the best model 

534 obtained scores of 0.995, 0.0033 and 0.1666, respectively, demonstrating the effectiveness of 

535 the proposed machine learning approach in predicting distillate output. Gaussian Process 

536 Regression (GPR) is a nonparametric Bayesian regression method widely used to model 

537 complex nonlinear relationships. In SS research and applications, GPR can provide accurate 

538 performance prediction, optimal design, and uncertainty quantification. Kottala et al.110 

539 demonstrated the performance of a novel trough collector  using a natural recirculation open 

540 loop and experimentally evaluated it for several types of solar radiation data. Seven different 

541 ML models were used to predict the instantaneous thermal efficiency of the developed system 

542 for various solar radiation categories. The results show that the GPR model shows a higher 

543 predictive performance than the other developed ML models (i.e., RMSE = 0.0049, R2 = 

544 0.9977).

545

Page 21 of 39 Journal of Materials Chemistry A



22

546 Fig. 8 Structure of (a) SVM and (b) ANFIS (c) Data flow diagram of RF. (b) Reproduced from ref. 111 with 
547 permission from Frontiers in Energy Research, copyright 2021. (c) Reproduced from ref. 105 with permission 
548 from Elsevier, copyright 2021.

549
550 Fig. 9 (a) Spider plot of different statistical measures used to evaluate the performance of the ML models for: 

551 a1 CSS; a2 MSS. (b) Prediction results of different models. (c) The linear correlation between the 

552 experimental and predicted data for the four ML models. (a) Reproduced from ref. 101 with permission from 

553 Elsevier, copyright 2022. (b) Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (c) 

554 Reproduced from ref. 106 with permission from Wiley, copyright 2021.

555 The previous section discussed the integration of solar desalination with other components. 

556 In addition, the use of nanomaterials in conjunction with SS can also increase the yield. 

557 Micro/nanomaterials hold significant promise for SS due to their high thermal conductivity, 

558 extensive surface area, and superior solar energy absorption properties. By leveraging these 

559 materials, it is possible to develop highly efficient solar evaporation systems, which are crucial 

560 for enhancing solar energy utilization. Additionally, data-driven approaches can be effectively 

561 applied to predict the performance of these systems. For example, Bagheri et al.112 designed an 

562 SS incorporating a cylindrical parabolic collector and solar panels to capture additional solar 

563 energy. They modeled the system using ANN and compared its performance with mathematical 

564 modeling approaches. They found that the ANN model predicts more accurately than the 

565 proposed first-principles model and minimum error rate. The best response is obtained for the 

566 neural network n = 7 with R2 = 0.999820171, MSE = 1.94E-06, %AAD (average absolute 
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567 deviation) = 0.426716116. Bahiraei et al.113 developed a novel nanofluidic SS equipped with a 

568 thermoelectric cooler and applied Cu2O-water nanofluid in a solar distillation cell. They then 

569 predicted the yield using a MLP neural network, which was optimized with both the Imperialist 

570 Competitive Algorithm (ICA) and the Genetic Algorithm (GA). The results stated that the 

571 modified SS had a much higher yield than other SS. The R2 correlation values of the MLP 

572 turned out to be 0.9458 and 0.8883 in the training and testing phases, respectively, which were 

573 able to predict the yield accurately. In another study, Bahiraei et al.114 utilized ANFIS and ANN 

574 to predict the energy efficiency of a single-slope SS equipped with a thermoelectric module. 

575 They also applied Cu2O nanoparticles to a solar distillation cell with Particle Swarm 

576 Optimization (PSO) to augment both ML models. As a result, the training and testing R2 values 

577 of ANN-ANFIS were 0.95-0.95 and 0.93-0.99, respectively. It means that the yield was 

578 predicted more accurately. Bamasag et al.115 designed a dish solar distiller (DSD) incorporating 

579 phase change material (PCM), specifically paraffin wax blended with CuO nanoparticles. They 

580 used three machine learning approaches (i.e., ANN, ANFIS, and SVM) to predict the water 

581 productivity of the solar still. The results indicate that the average daily distillation rate of the 

582 stepped DSD with phase change material is approximately 178% higher than that of the CSS. 

583 Among the models, the SVM demonstrates the highest R2 of 0.99, the smallest RMSE ranging 

584 from 2.19 to 3.17, and the smallest normalization error between -0.02 ~ 0.08, as shown in Fig. 

585 10. This suggests that the SVM outperforms both the ANN and ANFIS in accurately predicting 

586 the yield. Wang et al.116 compared RF with pairwise plots and Pearson correlation analysis, to 

587 demonstrate that RF is more advanced and accurate in evaluating the importance of factors in 

588 materials and systems. This comparison aims to enhance the utilization and design of 

589 micro/nanomaterials. They found that RF can obtain reasonable weight values better than 

590 traditional methods.
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591
592 Fig. 10 The normalized error between experimental and predicted data using: (a) ANN for conventional solar 

593 distiller; (b) ANFIS for conventional solar distiller; (c) SVM for conventional solar distiller; (d) ANN for 

594 modified solar distiller; (e) ANFIS for modified solar distiller; (f) SVM for the modified solar distiller. (a-f) 

595 eproduced from ref. 115 with permission from Wiley, copyright 2022.

596 ML approaches can effectively model the dynamic performance of solar desalination 

597 systems. Sohani et al.117 developed three different ANN models: back-propagation (BP), FF, 

598 and RBF. Their goal was to identify a model that accurately predicts the water temperature and 

599 yield of the enhanced SS system. The performance of the three ANN models was assessed using 

600 MAE and R2. Consequently, FF and RBF were the most accurate models in predicting the water 

601 temperature with MAE and R2 of 3.56-2.82 and 0.96-0.98, respectively. Given the varying 

602 criteria and performance characteristics in SS desalination technology, it is essential to examine 

603 multiple types rather than relying on a single structure to achieve the highest possible prediction 

604 accuracy. The production rate of SS can also be predicted from conventional weather 

605 information using ML methods. Gao et al.118 used RF optimized by BOA to predict the yield of 

606 two kinds of SSs. They compared it with MLR and traditional prediction models to verify the 

607 accuracy of the models. They used conventional weather forecast data as inputs to the models 

608 while the actual measured data were used to train the models. As a result, the determination 

609 coefficients of the two SSs predicted by RF were 0.935 and 0.929, significantly higher than 

610 those of the MLR (0.767) and the conventional model (0.829 and 0.847). This indicates that RF 

611 is a reliable method for yield prediction.

612 Each machine learning model has its unique advantages and disadvantages in SS 

613 performance prediction, and the selection of an appropriate model depends on the 
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614 characteristics of the data, prediction accuracy requirements, and computational resources. 

615 Multi-model integration or hybrid model approaches often lead to better prediction results. 

616 Model performance and prediction accuracy can be significantly improved by proper data 

617 preprocessing and feature selection. Firstly, linear regression is a simple and effective method 

618 suitable for modelling linear relationships, although it is less adaptable to nonlinear data. 

619 Secondly, ANN is able to simulate complex nonlinear relationships due to its multilayer 

620 structure and is well suited for large-scale datasets, but the training time is long and difficult to 

621 interpret. SVM, on the other hand, performs well in small samples and high-dimensional data 

622 and is able to deal with complex nonlinear problems, but the tuning of its parameters and the 

623 selection of kernel functions are more complicated. In addition, ANFIS combines neural 

624 networks and fuzzy logic to deal with uncertainty and ambiguity information, and performs 

625 well in performance prediction of complex multivariate systems. ANFIS is able to deal with 

626 nonlinear relationships and provide high prediction accuracy, which is particularly suitable for 

627 scenarios that require the simultaneous processing of both exact and fuzzy data. DT and RF are 

628 also widely used, with the former making decisions through a tree structure and the latter 

629 improving prediction accuracy by integrating multiple decision trees, both of which can 

630 effectively deal with complex nonlinear relationships and have good noise immunity, but RF 

631 may face overfitting problems. RVFL extends the input features by introducing random vectors 

632 into the network, which can quickly process large-scale data and give efficient predictions 

633 without relying on complex training. In SS, RVFL is suitable for real-time prediction tasks that 

634 require fast response by reducing the training time and providing good nonlinear fitting ability. 

635 The KNN algorithm is simple to implement and adaptable through distance-based prediction, 

636 but has high computational complexity and sensitivity to noise when dealing with high-

637 dimensional data. GPR, a non-parametric Bayesian regression method, is particularly suited to 

638 small samples and complex data, and is able to provide quantification of the uncertainty in the 

639 prediction, however, its computational complexity is high in the presence of large data volumes.

640 3.3 Use of DL models

641 DL is a new research direction in the field of ML that has a more complex structure and mainly 

642 requires a large amount of data. DL methods applied to desalination systems generally be 

643 categorized into three approaches, namely Recurrent Neural Networks (RNN), Conventional 

644 Neural Networks (CNN), and Deep Reinforcement Learning (DRL). In SS systems, long-short-

645 term memory neural networks (LSTM) have been used to predict their performance. The LSTM 

646 is a recurrent ANN used with DL. The main advantage of this neural network over conventional 

647 FF neural networks is its ability to memorize patterns for long periods of time owing to the 
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648 advanced structure associated with the feedback connections. Elsheikh et al.119 designed a 

649 stepped SS fitted with copper corrugated absorber plates using the LSTM model for prediction 

650 and comparison with CSS. The proposed model was validated using field experimental data for 

651 training, and time series of freshwater production were used to train the model. The results 

652 revealed that the stepped SS had a production rate that was 128% higher than the CSS. 

653 Additionally, the model's coefficients of determination were 0.97 and 0.99, and its RMSE 

654 values were 0.0067 and 0.0021, respectively. Consequently, the model accurately predicted the 

655 production rate of the SS.

656 4 Optimization
657 4.1 Training models 

658 The used algorithm, the training model, and other factors affect the model's accuracy. No 

659 specific general ML model outperforms other models in predicting the desalination system’s 

660 performance. By optimizing the ML model with an appropriate training model, the accuracy of 

661 desalination yield prediction can be further enhanced. Chauhan120 used a multilayer perceptron 

662 neural network based on a supervised learning mechanism to predict the thermophysical 

663 properties of moist air inside the chamber of an SS. Specifically, six distinct training algorithms 

664 were used to train the model, namely one-step secant, conjugate gradient Powell-Beale restarts, 

665 conjugate gradient Fletcher reeves update, resilient backpropagation, scaled conjugate gradient, 

666 and Levenberg-Marquardt (LM). The performance of each algorithm was evaluated using six 

667 statistical parameters. In  Fig. 11a, the correlation coefficients of the LM algorithm for training, 

668 testing, and validation are 1, 0.99988, and 0.99995 for all modeling phases, and the slopes and 

669 intercept values of the LM algorithm are approximated to be 1 and -0.003 for all the data. 

670 Accordingly, the LM algorithm provides more accurate predictions on the thermophysical 

671 properties of moist air in SS systems compared to other algorithms. Mashaly and Alazba121 

672 utilized three algorithms including the conjugate gradient backpropagation with Fletcher-

673 Reeves restarts, the resilient backpropagation, and LM to predict the productivity of SS in 

674 hyper-arid environments. The predictions were evaluated by comparing with experimental 

675 results using four standard statistical performance metrics, namely RMSE, efficiency 

676 coefficient (E), OI, and coefficient of residual mass (CRM). As a result, the model based on the 

677 LM algorithm has the highest overall R2 value of 0.99437 , as depicted in Fig. 11b. In addition, 

678 the LM algorithm has the minimum average RMSE (0.024), the maximum average E (0.989), 

679 the maximum average OI (0.981), and the minimum average CRM (-0.003) for all modeling 

680 phases. Hence, LM was found to be the most effective algorithm for predicting solar distillers' 

681 productivity. Chauhan122 also used an ANN model based on the LM algorithm to predict the 

Page 26 of 39Journal of Materials Chemistry A



27

682 fraction yield of CSS and modified solar still integrated with earth distillate (MSSIE) yields. 

683 Their results indicated that the ANN model trained by the LM algorithm is accurate in 

684 predicting the distillate yield of the distillation unit. In Fig. 11c and 11d, the correlation 

685 coefficients of the ANN based on the LM algorithm for the training, testing, and validation of 

686 the overall data for CSS and MSSIE were introduced, respectively.

687
688 Fig. 11 (a) Regression analysis with training, testing, validation, and all data with the LM algorithm. (b) 

689 Regression analysis with training, validation, testing and all data with the LM algorithm. (c) Regression 

690 analysis of the LM algorithm in CSS and (d) Regression analysis of the LM algorithm in MSSIE with training, 

691 validation, testing, and all data. (a) Reproduced from ref. 120 with permission from Elsevier, copyright 2020. 

692 (b) Reproduced from ref. 121 with permission from IWA, copyright 2015. (c,d) Reproduced from ref. 122 

693 with permission from Taylor & Francis, copyright 2022.                                                                                                

694 4.2 Hyper-parameter tuning

695 In machine learning, tuning the hyperparameters of a model is an important part of improving 

696 the performance of an algorithm. Adjusting the different hyperparameters is one of the 

697 important factors affecting the accuracy of the data-driven approach in predicting the output of 

698 SS. The optimization of hyperparameters can be achieved by different optimization algorithms. 

699 Nazari et al.123 used the ICA algorithm with an optimized ANN model to predict the energy 

700 efficiency, exergy efficiency, and water productivity of single-slope SS. Their results indicate 

701 that the MAE of the ANN-ICA correspondly reduces the prediction of water productivity, 
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702 energy efficiency, and fire efficiency by 54.30%, 40.11%, and 53.35% compared to 

703 conventional ANN, whereas the RMSE were approximately 15.77, 1.37, and 0.29, respectively. 

704 As shown in Fig. 12a, R2 with MLP-ICA had an increment of 0.0280, 0.0186, and 0.0450 for 

705 water productivity, energy efficiency, and fire use efficiency, respectively. Essa et al.124 used 

706 Harris Hawks Optimizer to improve the conventional ANN and predict the yield of three 

707 different distillation systems including passive SS, active SS, and active SS with a condenser. 

708 Their results were also compared with those obtained from two other models: a support vector 

709 machine and a conventional ANN. It was found that the cumulative yield of the active distiller 

710 combined with the condenser increased by 53.21%. Notably, Harris Hawks Optimizer's ANN 

711 has the highest R2 value of 0.98 and 0.97 for passive and active solar distiller prediction, 

712 respectively, and hence the best model of the HHO-ANN type. It should be noted that the choice 

713 of hyperparameters is not static. Each optimization algorithm has its own advantages and 

714 limitations and needs to be optimized to the specific problem and dataset. Wang et al.105 built 

715 three different models to predict the performance of tubular SSs including classical ANN, RF, 

716 and traditional multiple linear regression. All models were optimized using the BOA algorithm. 

717 As shown in Fig. 12b, the results show that though the performance of both RF and ANN is 

718 improved, the ANN is more sensitive to the response of BOA and the error of ANN is well 

719 improved. Bahiraei et al.113 optimized MLP neural network using ICA125 and GA126 was used 

720 to predict the water production of nanofluidic solar thermoelectric distillers in 48 samples and 

721 38 records (where 8 were used as training data, and the remaining 10 to evaluate the 

722 generalization ability of the developed network). The results show that the RMSE of GA-MLP 

723 and ICA-MLP is reduced by 40.49% and 62.01% in the testing phase compared to MLP. So, 

724 the application of GA and ICA has a significant effect on the accuracy of MLP, while ICA has 

725 a better optimization than GA. Bahiraei et al.114 utilized the PSO-enhanced ANFIS and MLP 

726 neural network to predict the energy efficiency of a solar distiller with a single slope 

727 thermoelectric module, respectively. As a results, the R2 values of PSO-ANN and PSO-ANFIS 

728 are 0.9225-0.9597 and 0.9471-0.9984, and the RMSE values are 5.7861-3.5158 and 4.0279-

729 1.9956 for PSO-ANN and PSO-ANFIS, respectively, in the training phase compared to the 

730 original ones. Therefore, PSO improves the training accuracy of ANFIS more than ANN. It can 

731 also be derived from the entire spatial distribution of actual and estimated energy efficiencies, 

732 as depicted in the 3D graphs in Fig. 12c. In these graphs, the impact parameters of X8 and X2 

733 are shown on the x- and z-axes, respectively, and the corresponding Y (energy efficiency) is 

734 shown on the y-axis.
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735
736 Fig. 12 (a) The correlations of the actual data and predicted data based on the test data for: a1 MLP, water 

737 productivity, a2 MLP-ICA, water productivity, a3 MLP, energy efficiency, a4 MLP-ICA, energy efficiency, 

738 a5 MLP, exergy efficiency, a6 MLP-ICA, exergy efficiency. (b) The absolute percentage error in different 

739 models. (c) The 3D scatter plot of the results of c1 ANFIS, c2 PSO-ANFIS, c3 observed EF, c4 ANN, and 

740 c5 PSO-ANN prediction. (a) Reproduced from ref. 123 with permission from Elsevier, copyright 2020. (b) 

741 Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (c) Reproduced from ref. 114 with 

742 permission from Elsevier, copyright 2021.

743
744 4.3 Feature selection

745 Feature selection is the process of reducing the number of input variables in developing a 

746 predictive model. The number of input variables is reduced could ensure an optimal 

747 computational cost of modeling. Hence, selecting appropriate features is very important. For 

748 the SS system, the inputs are chosen mainly from parameters such as solar radiation, wind speed, 

749 water depth, water and glass temperatures, and ambient air. Outputs are mainly selected from 

750 parameters such as water productivity. The combination of model inputs and the appropriate 

751 training and test data lengths is one of the main factors limiting the accuracy in prediction of 

752 nonlinear models.127 There are various methods used to extract the most correlated variables. 

753 Among these, RF128 can be used for feature selection by assessing the importance of individual 

754 features. RF calculates the contribution of each feature, allowing for the identification of the 

755 most influential factors and providing insights into the relationships between input and output 

756 variables. For example, Wang et al.105 used RF to assess the importance of various performance 
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757 parameters, such as solar radiation intensity (IR), wind speed (Vw), basin slab temperature (Tb), 

758 brine temperature (Tsw), cover temperature (Tc), and ambient temperature (T∞). They 

759 investigated how these parameters affect the soil moisture evaporation rate. The results showed 

760 that the parameters that had the greatest effect on the rate of water evaporation were Tsw and 

761 Tb, which accounted for 40.87% and 32.43%, respectively(Fig. 13a). Kandeal et al.106 utilized 

762 RF in basin nanofluid (Tw,basin), vapor (Tvapor), inner glass (Tglass,in), outer glass (Tglass,out) 

763 temperature, and r radiation intensity (SR) to screen the factors that have the greatest 

764 contribution to freshwater productivity. They stated that Tw,basin and Tvapor are important 

765 parameters, accounting for about 66% and 13%.  As shown in Fig. 13b, these parameters mainly 

766 affect vapor generation and directly impact freshwater productivity. Gao118 used the BOA-

767 optimized RF model to predict the performance of SS under the influence of weather variations 

768 and to find the weather parameters closely related to SS. Their results suggested that the 

769 maximum temperature (Tmax), relative humidity (RH), and minimum temperature (Tmin) are 

770 three factors with the highest correlation (i.e., 41%, 20%, and 18%, respectively, see Fig. 13c) 

771 with yield. Also, the prediction model is universally applicable so it can be extended to any 

772 other type of SS.

773  
774 Fig. 13 (a) Results of feature importance. (b) feature importance based on the RF algorithm. (c) Degree of 

775 correlation between the production of solar stills and conventional weather forecasting parameters. (a) 

776 Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (b) Reproduced from ref. 106 with 

777 permission from Wiley, copyright 2021. (c)Reproduced from ref. 118 with permission from Chinese Physics 

778 B, copyright 2023.

779 4.4 Datasets
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780 Data sets are an essential part of machine learning and serve as its foundation. The size and 

781 quality of the data often determine the performance of machine learning. Therefore, it is more 

782 crucial to focus on obtaining high-quality data rather than relying on sophisticated algorithms. 

783 However, data collection processes are often time-consuming and expensive. So, the time and 

784 cost of data collection procedures should be weighed against the appropriate amount of data 

785 needed to develop accurate data-driven models. Fig. 14 presents an overview of the data set 

786 sizes obtained from various desalination technologies.85 In Figure 14a, in the SS desalination 

787 system, the size of the dataset is less than 500 regardless of the type of data-driven approach 

788 based on. In Fig. 14b, ANN model is the most widely used ML method. Dataset segmentation 

789 is also an important task for ML, which divides available data into training, validation, and 

790 testing sets to support model development, tuning, and evaluation. The dataset is divided 

791 according to these principles: the training set is used for model training and parameter tuning; 

792 the validation set is used for model selection and hyperparameter tuning; and the test set is used 

793 for the final evaluation of the model's performance. The test set should closely reflect the actual 

794 application scenarios to ensure accurate assessment. In SS systems, the training set accounts for 

795 70-80% of the total data volume, whereas the validation and test sets each account for 10-20%. 

796 A reasonable dataset division method can improve the generalization ability and performance 

797 of the model, which can provide suggestions for data set division in future research.

798
799 Fig. 14 Size of datasets with respect to (a) desalination systems and (b) data-driven methods for different 

800 applications. Reproduced from ref. 85 with permission from Elsevier, copyright 2022.
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801 5 Conclusions
802 This paper reviews the use of solar energy as an abundant renewable energy source to drive the 

803 desalination process. We focus on describing the main applications of solar distillers in solar 

804 desalination and the use of machine learning in aiding the desalination system of solar distillers, 

805 as illustrated in Fig. 15. The main reviews synthesized in this paper are listed below:

806  Solar desalination technology does not consume fossil fuels, reduces carbon emissions, 

807 and can be operated in remote areas far from the power grid, reducing the dependence on 

808 external energy supply and effectively solving the current water and energy shortage 

809 problems. Solar desalination systems can also be combined with other renewable energy 

810 sources, such as wind power, to form a hybrid energy-driven system, which further 

811 improves energy efficiency. Compared with complex mechanical equipment, SS systems 

812 are relatively simple in structure and require less maintenance, reducing the cost of repair 

813 and replacement during operation.

814  Solar desalination technology is divided into direct and indirect processes. The direct 

815 process is represented by solar distillers, while the indirect processes are HDH, MED, MSF, 

816 VC, and so on. SS offer advantages such as a simple structure, low installation and 

817 maintenance costs, among others. Depending on whether additional components are 

818 attached or not, they can be categorized into passive SSs and active SSs.

819  Machine learning is increasingly recognized as a powerful and emerging approach for 

820 modeling and predicting solar desalination, complementing traditional methods based on 

821 heat and mass transfer differential equations and regression models. By examining 

822 historical data, ML can provide valuable insights into efficiency and system behaviour. 

823 Through ML modelling analysis, it is possible to make refined predictions of the cost of 

824 SS systems, helping companies to optimise system design and operation, reduce costs and 

825 improve the feasibility of commercial applications.

826  For SS systems, combining physical models with machine learning models can be 

827 considered. This approach can improve prediction accuracy by fusing physical laws (e.g., 

828 laws of thermodynamics, water evaporation kinetics, etc.) with data-driven models, 

829 especially in data-limited situations. By fusing physics knowledge, ML models are no 

830 longer solely dependent on the amount of data, but can be made less data-dependent 

831 through the laws of physics, while also ensuring that the model is interpretable.

832  Tuning hyperparameters in machine learning and selecting appropriate inputs-outputs 

833 play important roles in improving the accuracy of predictive SS systems. For example, grid 

834 search or Bayesian optimization methods can be used to tune the hyperparameters of the 
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835 model to find the optimal model configuration. Key features such as evaporation efficiency, 

836 heat absorption capacity and water temperature gradient can be extracted from the 

837 distillation system and environmental conditions.

838  The dataset is crucial for modeling machine learning; the inadequacy of the dataset and 

839 quality issues are the main current challenges. It is recommended to collect experimental 

840 data including distillers' performance parameters, environmental conditions (e.g., 

841 temperature, humidity, sunlight intensity), and material properties, as well as to integrate 

842 weather station or satellite data covering historical weather data at the operational 

843 site.Considering the utilization of larger datasets, this work contributes to the study of solar 

844 evaporation and solar stills.

845
846 Fig. 15 A look into the future of machine learning- assisted solar stills.
847
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