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Abstract

Desalination is a highly energy-intensive process often requiring the consumption of costly
fossil fuels, inevitably causing various environmental hazards. As a sustainable and renewable
energy source, however, solar energy is anticipated to alleviate such environmental concerns
associated with the energy-intensive desalination process. Recently, machine learning, a
powerful data analysis method, has been employed for modeling and prediction to enhance the
productivity of solar stills, an effective solution to water scarcity owing to low cost and simple
operation. In this review, machine learning techniques are particularly emphasized, along with
exploring distinctions between solar stills and other solar desalination technologies. Machine
learning models can achieve further optimization through additional avenues such as model
selection, hyperparameter tuning, feature selection, and dataset management. The findings
specifically highlight the crucial role of machine learning in enhancing solar desalination
through improved prediction and optimization. Furthermore, this paper discussed different
machine-learning prediction techniques while offering suggestions for future research in the

field.

Nomenclature
SS solar still ANFIS adaptive neuro-fuzzy
inference systems
ML machine learning DT decision trees
HDH humidification- RF random forests
dehumidification
RO reverse osmosis SVM support vector machines
MD membrane distillation RM regression models
MSF multi-stage flash MLP multilayer perceptron
VC vapor compression WNN wavelet neural networks
MVC machine vapor compressor RBF radial basis function
TVC thermal vapor compressor ENN elman neural network
SLeM simulating learning KNN k-nearest neighbors
methodology GPR gaussian process regression
MED multi effect distillation SP solar pond
ETC evacuated tube collector FF feedforward
PV-T photovoltaic-thermal NARX nonlinear autoregressive
exogenous
PV photovoltaic HBLS heat localization bilayered
structure
SLM successive linearization CSS conventional solar still
method
R? R-squared MSS modified solar still
MAE mean absolute error SVR support vector regression
RMSE root mean square error LVR linear support vector
regression
RVFL random vector functional
link
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FA firefly algorithm
MAPE mean absolute percentage  DSS double slope solar still
error
DOE Design of Experiment BOA bayesian optimization
algorithm
RSM response surface %ADD average absolute deviation
methodology
™ taguchi methodology ICA imperialist competitive
algorithm
FD factorial design GA genetic algorithm
AGMD air-gap membrane PSO particle swarm optimization
distillation
Ol overall index LM levenberg-marquardt
EC efficiency coefficient CRM coefficient of residual mass
Cov coefficient of variation MSSIE modified solar still
integrated with earth
distillate
DPSS developed pyramid solar
still
DL deep learning IR solar radiation intensity
HF hourly freshwater
IEE instantaneous energy
efficiency
ANN artificial neural networks  Vy, wind speed
DSD dish solar distiller Ty basin slab temperature
PCM phase change material Tow brine temperature
BP back-propagation T. cover temperature
RBP radial basis function To ambient temperature
RNN recurrent neural networks Ty pasin basin nanofluid
CNN conventional neural Tyapor vapor
networks
DRL deep reinforcement Tylass,in inner glass
learning
LSTM long-short-term memory Tylass,out outer glass
neural networks
RH relative humidity Tmin minimum temperature
SR radiation intensity T max maximum temperature
SSWESM solar still with energy n thermal efficiency
storage materials

1 Introduction

Recent economic development and population growth have led to massive global demand for
water resources. However, approximately 97% of Earth's water found in the hydrosphere is
made up of seawater, while only less than 1% of the freshwater resources are directly usable
for humans.! Although it is indisputable that the fresh water is vital for the survival and
development of human society, its resources are extremely limited.> Moreover, additional man-
made factors such as irrational utilization, waste, and water pollution are rapidly exacerbating
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the state of water scarcity, potentially impacting 4.7 billion people by 2025 according to the
reports3. Therefore, an effective way to address the issue of water scarcity is essential and the
use of advanced desalination method to gain access to seawater for freshwater has become a
core of the research. A modern large-scale desalination plant can produce tens of thousands to
a million tons of fresh water daily.*> However, in the case of traditional desalination process,
it is an energy-intensive industry which requires the consumption of non-renewable fossil
energy sources (e.g., coal) to provide heat or power, therefore, increasing environmental risks.®
? Hence, the feasible usage of non-polluting energy sources for desalination is a pivotal step to
alleviate the earth’s condition of water scarcity.!® Solar energy, the most abundant renewable
resource, accounts for nearly 57% of the renewable energy in desalination market.!! The ability
to operate independently of steam and electricity, along with non-polluting and safe operation,
renders it highly valuable in regions with energy scarcity and stringent environmental
requirements.

In fact, desalination technologies such as multi-stage flash evaporation,'>!? reverse
osmosis,'»!13 vapor compression, and multi-effect distillation'®!” in solar desalination often
require high maintenance and installation costs. In contrast, solar stills (SS) offer low
installation costs, simple design, and easy maintenance, making them an increasingly attractive
technology,'® particularly suitable for arid and semi-arid regions with low to medium water
demand levels.!*-2! Multiple important variables such as weather conditions, sunlight intensity,
temperature and system configuration make SS highly complex systems.?>?> The use of
accurate and convenient auxiliary analytical tools is therefore necessary to improve the
desalination system's performance, as well as to save labor and material resources, especially
when considering time-consuming and inefficient conventional experimental approaches.
Traditional mathematical methods are no longer effective in adapting to and accurately
accessing the intricate processes in modern desalination systems.?*?> Most of the traditional
methods take pre-determined steps in order to approach the possible optimal solution. Mostly,
these algorithms start with a random speculation of the solution, and the exploration directions
are obtained according to the specified migration rules. Then, only one direction is searched in
order to find the possible optimal solution. In desalination and wastewater treatment, these
traditional methods do not work.26 Nevertheless, the evaluation and validation of these models
require a substantial amount of data, which can limit the applicability of the predicted output
and the model’s effectiveness. In this regard, the emergence of machine learning (ML)
techniques is particularly important (see Fig. 1) because it serves as a powerful data analysis

tool that can accurately analyze the various aspects of solar desalination. In contrast to
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traditional mathematical analysis methods, these methods do not require extensive professional
experience, numerical or control equations, or explicit assumptions describing the underlying
engineering processes. The judicious use of ML can create more efficient, environmentally
friendly and economically viable solutions and facilitate the tuning of operating parameters to
achieve maximum efficiency and minimise energy use.?’-?® Since the knowledge it provides is
valuable in improving the design and functionality of solar stills, researchers have dedicated
their efforts to this subject. For example, Xu et al.? proposed a machine learning automation
method for the Simulating Learning Methodology (SLeM). Elsheikh et al.? reviewed the use
of artificial neural networks in solar desalination, while Rashidi et al.3! provided an overview
of the application of ML methods in solar desalination. ML techniques have begun to show
potential benefits in solar desalination systems.

By appropriately selecting training models, input-output pairs, and segmenting the dataset,
ML methods can also be optimized to improve further their accuracy in predicting solar
seawater desalination systems. The main goal of this study is to provide an overview of solar
desalination technologies using ML, a powerful data analytics method for simplifying and
accelerating the traditional desalination process. Finally, we discuss optimizing relevant ML

algorithms to enhance their accuracy in predictive modeling.

Solar Still

7
o {% o

s
)
&
)

Low cost

S\\V}\

Renewable energy Non-renewable energy

Fig. 1 Schematic of machine learning-assisted solar desalination.
2 Overview of solar desalination

With the continued development of solar seawater desalination technology, there are now many

methods applicable for different systems, leading to the diversification of the available solar
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desalination methods. Based on their operating principles, we can specifically categorize these
methods into two types: direct and indirect methods.?? This section begins with an overview of
the indirect method of solar desalination technology, followed by a detailed description of the
SS in the direct method.

2.1 Indirect processes

Indirect solar desalination systems use solar energy as an energy source to drive seawater
desalination. Unlike the direct use of solar energy to evaporate seawater, an indirect solar
desalination system uses solar energy to generate heat, which is then transferred to a still or
other heat transfer device in the desalination system.

In humidification-dehumidification (HDH) desalination, brackish and saline water is
heated to humidify the air, and freshwater is produced by condensation of the humid air
generated at atmospheric pressure, as illustrated in Fig. 2a.33 According to its circulation form,
the HDH process can be divided into four main categories: closed air-open water circulation,
closed air-closed water circulation, closed water-open air circulation, and open water-open air
circulation. HDH is usually combined with external heaters such as solar collectors, flat plate
solar collectors, vacuum tube solar collectors, and parabolic trough solar collectors. So far, very
limited work has been done to identify the advantages and disadvantages of different
configurations, whose impact on HDH performance is considerable.3*

Reverse osmosis (RO) desalination technology utilizes the properties of a reverse osmosis
membrane. As seawater passes through the RO membrane, micropores in the membrane allow
water molecules to pass through and be collected. Salts and other dissolved substances are
trapped on the other side of the RO membrane, forming concentrated water. The salt and other
dissolved substances in the seawater are separated from the water molecules, thus realizing the
desalination of seawater. The RO modules can also be connected in series or parallel
configurations, as presented in Fig. 2b.333¢ Currently, water pre-treatment is an obstacle to
reverse osmosis systems, as water supplies often require extensive pre-treatment
procedures.?”38 In addition, improving the anti-fouling ability of the reverse osmosis membrane
also has a beneficial effect on its treatment efficiency.

The difference in vapor pressure between the two sides of the membrane is used as the
mass transfer driving force and thermally drives in membrane distillation (MD). Water vapor
is then sent through the porous, hydrophobic membrane material to remove salt. A typical solar
membrane distillation unit is introduced in Fig 2¢.333° There are four main types of membrane
distillation processes: air gap membrane distillation, vacuum membrane distillation, sweeping

gas membrane distillation, and direct contact membrane distillation.>® Operational parameters

6
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in membrane distillation, such as feed water temperature, flow rate, air gap thickness,
membrane thickness, membrane thermal conductivity, porosity, curvature, and long-term
operation, have an effect on distillate yield.** The heart of the membrane distillation process is
considered to be a porous hydrophobic membrane. However, traditional polymer materials and
membrane preparation methods are difficult to meet the current conditions. Therefore,
developing new membrane materials and devising preparation methods for separation
membrane are critical to advancing MD technology.*!

Multi-stage flash (MSF) evaporation systems evaporate seawater to produce fresh water
by using the method of reduced pressure and expansion flash evaporation. Accordingly, the
seawater is first heated to a specific temperature and then introduced into the flash chamber.
After multi-stage evaporation, the resulting water vapor enters the condenser and the collected
liquid water is fresh water. Fig. 2d illustrates a schematic diagram of a solar MSF desalination
system.*342 MSF accounts for about 21% of the worldwide desalination capacity, placing it to
the second most common desalination method following reverse osmosis.*® In particular, solar
MSF integrates solar collectors to the conventional MSF desalination systems, making the
selection of solar collectors, the correct design of the solar heating cycle, and the design and
optimization of the MSF plant crucial for its successful operation.

In desalination by vapor compression (VC), seawater first undergoes heating to
evaporation temperature, which then feeds the heated seawater into an evaporator to evaporate
the water. A machine vapor compressor (MVC) or a thermal vapor compressor (TVC) then
compresses the resulting vapor. A condenser finally cools it, transforming it into fresh water.
In Fig. 2e, MVC desalination units are illustrated.>>** Photovoltaic modules, wind turbines, and
water storage tanks can also be intergrated into MVC desalination plants, forming a
complementary wind and solar system. This hybrid power unit provides the necessary energy,
offering a more flexible energy supply. Currently, the vapor compression desalination
equipment itself is expensive to manufacture and requires specialist maintenance and operating
personnel to manage and maintain, increasing the difficulty and cost of operation.

In Fig. 2f, the principle of multi effect distillation (MED) is introduced.® By arranging
several evaporators in parallel, seawater is heated in the previous evaporator, and water
molecules begin to evaporate into water vapor. Pipes transfer the water vapor to the bottom of
the next group of evaporators, where it enters the condenser. Through multiple uses of steam,
MED achieves energy savings. Compared to MSF, a conventional MED desalination system
uses about half the energy of an MSF system and produces almost the same amount of heat as

MSEF if both have the same gain ratio.*® Solar MED can be a sustainable alternative option for
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medium- to large-scale conventional desalination plants, although large-scale plants have not

yet been built.#
a ‘ilar collector b Hot saline water

RO Module c
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Fig. 2 (a) Humidification and dehumidification desalination unit coupled with a solar collector. (b) Series

e - fe—- fe——= Fresh

s vl s
2 Y Brine out
steam [ | < %
[l ‘ E . : A i Water
Pump Saline Water [ S [ I
Brine Tank

Distillate Tank Saline Water Tank Diickisigs

- Saline Water Tank

and parallel arrangement of RO modules. (¢) Solar-powered membrane distillation unit. (d) Solar-powered
multi-stage flash desalination system. (e) Mechanical vapor compression desalination system. (f) Schematic
diagram of solar MED desalination system with feed preheating. (a) Reproduced from ref. 32,33 with
permission from Elsevier, copyright 2013. (b) Reproduced from ref. 35,36 with permission from Elsevier,
copyright 2015. (c) Reproduced from ref. 35,39 with permission from Elsevier, copyright 2015. (d)
Reproduced from ref. 35,42 with permission from Elsevier, copyright 2015. (e) Reproduced from ref. 35,44
with permission from Elsevier, copyright 2015. (f) Reproduced from ref. 45 with permission from Elsevier,
copyright 2018.

2.2 Direct processes

Direct solar desalination uses a collector system to harness solar radiation and heat seawater,
causing it to evaporate and subsequently condense into fresh water. The most representative
technology is the SS. Solar energy is one of the simplest forms of solar desalination that does
not consume conventional energy and is simple and easy to operate with a yield of about 4-6
1/m? per day, which is sufficient for households.*” Although SS are unsuitable for large-scale
desalination systems,* they are simple and affordable in design and very appropriate in some
remote coastal areas with plenty of sunlight but a lack of power and electricity. Based on the
need for additional components, direct solar desalination could be subdivided into passive SSs
and active SSs.

2.2.1 Passive solar stills

Page 8 of 39
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A passive SS is a device that uses solar energy to evaporate water and collect pure water.
It does not require an external energy supply and relies primarily on solar energy to complete
the distillation process. There are various ways to classify passive SSs, such as by the design of
the evaporator, different materials®, thermal storage options, shape and number of basins.>°

Researchers have investigated many aspects of conventional SSs to improve their
performance, including water depth, the angle of inclination of the glass cover, the type of
material used, etc. A comprehensive review has been given by Prakash et al.’>! Hansen et al.>?
studied new materials suitable for solar desalination applications and selected unused wick
materials for analysis. They determined that water coral fleece material is the best hygroscopic
material based on four parameters: porosity, absorbency, capillary rise, and heat transfer
coefficient. They also compared the performance of different wick materials under different
absorber plate configurations, concluding that water coral fleece with weir mesh-stepped
absorber plate yielded the best with distilled water up to 4.28 1/day. Mevada et al.>? investigated
different energy storage materials such as black glass bulb, black granite, and white marble
stone were tried in SS to improve the distillate yield. A comparison was also made between
conventional solar still (CSS) and solar still with energy storage materials (SSWESM). The
results showed that the daily distillate yield was 1.4 kg/m? and 2.5 kg/m? for CSS and SSWESM,
respectively, and the daily efficiency of SSWESM was 72.6% higher than that of CSS.

In the fabrication of SS, temperature and pressure conditions have a significant impact on
certain processing techniques, especially when it comes to the selection of materials, processing
methods and equipment assembly. Chen et al.>* investigated the development of an efficient
solar distillation system through the use of thermally expanding materials. By controlling the
expansion properties of the materials at elevated temperatures, a porous light-absorbing
structure was formed and the rate of water evaporation was increased.

Omara et al.>®> conducted a comparative performance study of an improved and
conventional SS by installing reflectors on both vertical sides of the step SS steps. The results
showed that the productivity of the modified step SS with internal reflectors was about 75%
higher than that of the conventional still, and the daily efficiencies of the modified step still
were 56%, 53%, and 34%, respectively. Panchal et al.’® annually investigated the use of MgO
and TiO; nanofluids at different concentrations to assess the distillate yield of stepped SS,
where the nanofluid concentrations investigated ranged from 0.1% to 0.2%. The results showed
that the use of MgO nanofluids (0.2% and 0.1% concentrations) and TiO, nanofluids (0.2% and
0.1% concentrations) increased the step SS distillate yields by 45.8%, 33.33%, 20.4% and 4.1%.
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The distillate yield of MgO nanofluid was higher than TiO, due to lower specific heat capacity
and higher thermal conductivity.

Conventional single-basin passive SS generally have low distillation efficiency and
productivity. Rajaseenivasan et al.>’ investigated the incorporation of an additional basin in a
double-inclined SS and using different materials within the basin. Wick materials such as jute
cloth, waste cotton pieces, and black cotton cloth were used to increase the evaporation area.
The results showed that double and single basin stills using mild steel sheets had a maximum
fire use efficiency of 2.072% and 1.412%, respectively.

Fin is a low cost heat transfer enhancement technique where the fins at the bottom of the
solar evaporator improve the performance by increasing the rate of heat transfer from the basin
to the water.>® However, not much work has been done on fins to improve the distillate yield in
many research works. Mevada et al.>® reviewed the effect of fin configuration parameters on
SS performance. The results mainly found that fins increased the surface area of water and thus
increased the heat transfer rate. Fins can also be used to reduce the heat loss at the bottom of
the solar evaporator.

Surfaces used for evaporation and condensation phenomena play essential roles in the
performance of basin-type SS. Kabeel et al.®* devised a concave wick surface that was used for
evaporation, while four side pyramidal shapes were still used for condensation, and a jute wick
was used to increase the evaporation surface area. The results reveal an average daily distillate
productivity of 4.1 /m?, a maximum instantaneous system efficiency of 45%, and an average
daily efficiency of 30%.

The glass's inclination angle has an impact on parameters such as yield and instantaneous
efficiency. Tiwari et al.%! designed single slope passive SSs with three different condensations
covering inclinations of 15°, 30° and 45°. The results indicated that a condensation cover
inclination angle of 15° yielded the highest annual yield and distillation efficiency. Samee et
al.®? suggested that the optimal glass cover angle for the designed single basin SS was 33.3° in
the arid region of South West Pakista n (33.7° N latitude).

2.2.2 Active solar stills

Active SSs typically attach additional components and require an external energy supply
system to drive auxiliary equipment such as solar collectors, condensers, pumps, etc. Active
SSs typically produce water at a higher rate than passive SSs.

A solar collector is a device that collects and concentrates solar radiation to maximize the
conversion of solar radiation into thermal energy to drive water’s evaporation and condensation

processes. Different heat collection principles can divide solar collectors into flat-plate solar

10

Page 10 of 39



Page 11 of 39

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

Journal of Materials Chemistry A

collectors, concentrating solar collectors, and vacuum tube collectors. Badran et al.®® designed
a single-stage basin SS connected to a conventional flat plate collector. The results showed that
the integrated single basin distiller increased its yield by 231% after 24 hours of operation. Shiv
et al.% designed a single-slope SS integrated with an evacuated tube collector (ETC). The study
results demonstrated further improvement, achieving an optimal daily yield of up to 3.9 kg,
with energy and fire use efficiencies of 33.8% and 2.6%, respectively. Concentrating collectors
include a receiver and a concentrator, which intercept a large area of direct sunlight and focus
it into a small absorption area, thereby increasing the radiant flux. Ashraf et al.® designed a
parabolic SS consisting of a parabolic disk concentrator as shown in Fig. 3a. Their results
showed that the average daily efficiency of the distiller is 34.69% better than different types of
solar distillers, and the cost is low enough to be used by rural households.

A condenser is a refrigeration system component that converts a gas or vapor into a liquid.
Attaching a condenser to an SS can boost productivity by increasing the condensation rate.
Condensers can be divided into external condensers and internal condensers depending on
where they are attached. Kumar et al.®¢ improved the single-slope SS by attaching an external
condenser and compared it with the conventional single-slope SS as shown in Fig. 3b. The
distillation efficiency of the improved still was found to increase by 39.49% over the
conventional still at a lower cost. Kabeel et al.®” conducted an experiment on SS using an
integrated nanofluid and an external condenser. The results showed an increase in distillation
yield of about 53.2%. Ahmed®® designed a single slope distiller with an integrated dual channel
condenser against a distiller without a condenser and found that an additional internal condenser
improves the performance of the distiller.

Wind turbines have also been used in SS as rotating shafts to increase distillate production.
For example, Mohamed et al.®® designed small wind turbines as rotating shafts installed in the
main SS to break the boundary layer at the water surface of the basin (see Fig. 3c). For the same
flow rate, the productivity was inversely proportional to the water depth, and the vibration
induced by the rotating shaft induced the droplets to flow from the lid into the collection channel.

The integration of solar chimneys allows for the production of both electricity and fresh
water. For example, in Fig. 3d, Mostafa et al.”? attached a solar chimney to a conventional SS
where it can absorb heat from solar radiation, generating a chimney effect that induces airflow
due to natural convective forces to enhance the desalination process. They established a
mathematical model of the airflow inside the solar chimney and put the experimental results of
four aspects (i.e., sunny and cloudy weather conditions, the influence of salt concentration

conditions, the influence of the water depth in the basin and the unit effect) to simulate and

11



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

Journal of Materials Chemistry A

validate the simulation. The results of solar water stratification experiments of the integrated
solar chimney SS under different operating conditions are also compared. It was found that the
solar chimney has a higher efficiency than the conventional solar distillers and a 30% higher
desalination rate than solar ponds.

Photovoltaic-thermal (PV-T) distillers combine the technology of photovoltaic (PV)
panels and solar thermal collectors in a single system that can generate electricity and heat
simultaneously. This system can also utilize efficiently solar energy to increase water
production. Gajendra et al.”! conducted an experiment in a double-slope active SS with a solar
PV-thermal system, as shown in Fig. 3e. It was found that the productivity of the improved still
was 1.4 times higher than that of the one with single-slope PV-thermal technology.

Utilizing solar photovoltaic-operated fan work is reported to be economical and can
increase the evaporation rate. For example, Taamneh et al.”? investigated the effect of forced
convection on the performance of a pyramidal solar evaporator, the experimental system as
shown in Fig. 3f. The use of a fan and photovoltaic solar panels proved to be economically
viable, resulting in a 25 percent increase in the daily production of freshwater.

Solar Pond (SP) is a remarkable development in renewable energy technology which stores
solar energy for many solar thermal applications. SP can provide heat for various applications
such as solar heating, cooling and refrigeration. Researchers have utilized salinity gradient and
SP with SS to increase the yield. Panchal et al.”*> described how SP can be used to increase the
yield of SS by providing hot water through its stored thermal energy. The paper states that the
optimum salinity value inside the SP is a critical parameter and key to the performance of SP
and SS. The paper also reveals the use of shallow and micro SP in combination with SS to

improve production.
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[
W Rotating shaft
with impellers

Fig. 3 (a) Photograph of the developed point-focus solar still. (b) Experimental setup of conventional and
modified still. (c) Single slope still coupled with wind turbine and inclined solar distiller. (d) Construction of
solar basin and solar chimney. (¢) Photograph of hybrid photovoltaic thermal (PVT) double slope active solar
still. (f) Pyramid solar distiller with fan. (a) Reproduced from ref. 65 with permission from Elsevier, copyright
2014. (b) Reproduced from ref. 66 with permission from Elsevier, copyright 2016. (¢) Reproduced from ref.
69 with permission from Elsevier, copyright 2009. (d) Reproduced from ref. 70 with permission from IEEE,
copyright 2020. (e) Reproduced from ref. 71 with permission from Elsevier, copyright 2011. (f) Reproduced

from ref. 72 with permission from Elsevier, copyright 2012.

3 Comparison of different forecasting models

The previous section has outlined the use of design, fabrication, and integration of additional
components to modify conventional SS to improve their performance. A lot of research has
been carried out on various solar distillation systems. For example, Sharshir et al.”* reviewed
the factors affecting the productivity of SS and techniques for improvement. However, various
factors influence the performance of SS, and the expensive and time-consuming nature of
experimental work can make performance prediction challenging in certain cases. To be able
to predict the performance of SS accurately, different models have been developed, mainly
consisting of three methods, as stated in Fig. 4. Accordingly, ML is undoubtedly one of the
powerful black-box data analysis tools nowadays, which does not require specific expertise and
is able to solve complex situations well. Two other approaches are the numerical solutions of
differential equations for heat mass transfer’>7¢ and regression modeling.””-’® In addition, ML
has demonstrated its outstanding performance in terms of other domains. For instance, Tao et
al.” employing ML-assisted nanoparticle synthesis, which focuses on ML algorithms to support

nanoparticle synthesis and highlights the key methods for collecting large datasets. Batra et al.’°
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review the emerging materials intelligence ecosystems and discusses the use of emerging ML
to address the challenges faced to drive their development. With the improvement of solar
distillation technology and the development of artificial intelligence, ML approaches are being
progressively employed for solar desalinationas (see Fig. 5). This section then focuses on ML

models for predicting SS yield.

Heat and mass
transfer equation

Fig. 4 Three models for predicting the performance of solar stills.

@ Solar stills were first
documented to work

@ Computer modeling of
passive and active solar stills
@ Three different machine learning
models were used simultaneously,

&

@ Dunkle gives the equation for
the basic internal heat and

mass transfer relationship

@ M.A.S. Malik studied passive
and active solar stills

B

@ Artificial neural network models
are used for performance

prediction of solar stills

Fig. 5 Evolution of experimental and predictive methods for solar stills.

3.1 Use of conventional methods
Previous scholars have used the principle of internal heat-mass transfer to perform
mathematical modeling to predict the output of solar desalination systems and Bhatti et al.®!

numerically studied the flow of hybrid nanofluids in porous media. The similar variables were
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used to mathematically model the momentum and energy equations, which were solved
numerically using the successive linearization method (SLM). Their results show that the new
findings are not only consistent but also ensure the accuracy of the present results for mixed
nanofluids. In another study, Bhatti et al.®? discussed diamond (C) and silicon dioxide (SiO,)
nanoparticles in a water-based hybrid nanofluid suspended on an exponentially elastic surface
to improve the photothermal performance of an energy conversion system, developed nonlinear
differential equations, and solved them numerically. The results show that their proposed SLM
method is more stable based on numerical comparisons. Shirvan et al.®? studied the numerical
solution of the combined surface radiation and natural convection heat transfer in a solar cavity
receiver, which was obtained using the SIMPLE algorithm.

Some scholars have also used regression modeling to predict the production performance
of SS. Samuel and Chang® designed a prototype SS for use in this area to solve the water
problem of the remote islanders, carried out data collection, built a multivariate regression
model and used the TMY data of Dongji Islet for quantification of SS. The results showed that
the established multivariate linear regression model had R-squared (R?), adjusted R-squared
(R?), mean absolute error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE) values of 99.5%, 99.4%, 0.144, 0.167, and 9.71%, respectively. This
demonstrates that applying multivariate linear regression and optimal subsetting techniques
based on TMY data has proven to be a viable approach to modeling the productivity of a
prototype SS.

The data-driven approach of Design of Experiments (DOE) has a corresponding
application on SS systems. Primarily derived from statistical methods, the DOE approach
significantly reduces the cost and time of the data collection process when compared to the
traditional one-factor experimental approach. Additionally, the DOE approach considers the
interaction of independent variables on system behavior and can be effectively applied for
performance prediction and optimization purposes.®> Response surface methodology (RSM),
Taguchi methodology (TM), and analytical factorial design (FD) are three major statistical. SS
system involves several operating parameters, such as water flow rate, heat absorption area,
inlet temperature, tilt angle, etc. DOE can help optimize these parameters to enhance
desalination efficiency. Meanwhile, the operation of SS system depends on environmental
conditions, such as sunlight intensity, wind speed, humidity, etc. DOE can help the system to
find the best working conditions under various environments and ensure the stability of the
system under different climatic conditions. DOE can not only optimize a single objective (e.g.,

freshwater yield), but also be used for multi-objective optimization. For example, finding the
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best balance between freshwater yield, energy consumption and system cost. DOE tools that
have been widely used to analyze the performance and optimization of desalination systems.
Rejeb® developed a polynomial regression mode for predicting the efficiency of solar power
generation using numerical equilibrium energy modeling. The author carried out a statistical
RSM model to investigate the interactions between the factors under study and their combined
effects on daily distilled water productivity. The results showed that the R? and R were 0.9906
and 0.9818, respectively. The predictions of the polynomial model were in good agreement
with the numerical results of the transient thermal numerical model. Khalifa and Lawal®’
optimized the air-gap membrane distillation (AGMD) desalination system using Taguchi
orthogonal design arrays and the RSM. An analysis of variance was then employed to analyze
the model and the significant effect of each operating parameter on flux. Their results suggested
the maximum fluxes of the Taguchi method and RSM were 76.046 kg/m? h and 76.998 kg/m?h,
respectively, under optimal conditions. Allah et al.® used a design of experiments approach to
analyze the input factors affecting the performance. The effects of nine factors, such as solar
radiation, basin area, and brackish water depth, on the performance of the solar evaporator were
investigated, and an accurate theoretical model of the thermal behavior of the solar distiller was
developed. The results indicate that the established mathematical model can accurately describe
the highly complex behavior of SS.

3.2 Use of classical ML models

The ML process applied to predict system performance can be divided into three steps: data
processing, model construction, and model validation. The data processing step involves
collecting experimental or theoretical results and organizing the data into a training set, a
validation set, and a test set. The training set is used for model training and parameter tuning,
while the validation set is employed to select the model and fine-tune hyperparameters.
Eventually, the test set is used to evaluate the model’s performance. Model building is the
process of learning and training data to generate mathematical models that can make predictions
or decisions on unknown data. The entire model-building process is an iterative one that usually
requires several attempts and adjustments to find the best model and parameter combination.
Also, as data and tasks change, the model may need to be updated and retrained periodically to
maintain its performance and accuracy. Model validation in ML is the process of evaluating the
performance of a model on unseen data. The purpose of validating a model is to ensure that the
model generalizes well to new data, that the patterns learned by the model during training can
be generalized to future data. The most commonly used assessment metrics are the R?, RMSE,

MRE, MAPE, overall index (OI), efficiency coefficient (EC), and coefficient of variation
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(COV).8% Moreover, ML techniques can be categorized explicitly into classical ML methods
and deep learning (DL) methods. Classical ML methods used for the study of desalination
systems include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems
(ANFIS), Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and
Regression Models (RM).8 This subsection focuses on applying classical ML methods in solar
distillers.

In SS desalination systems, most studies use ANNs to predict their performance. ANN is
an ML model that mimics the structure and function of the human nervous system, consisting
of multiple artificial neurons (or nodes) interconnected through connections (or weights).
ANN:Ss typically involve an input layer, a hidden layer (optional), and an output layer,’! where
each layer consists of multiple neurons.>?? The structure of four of these models of ANN:
Multi-Layer Perceptron (MLP), Wavelet Neural Networks (WNN), Radial Basis Function
(RBF), and Elman neural network (ENN), as shown in Fig. 6.3 ANN has the ability to learn
and construct nonlinear and complex relational models, which is crucial because many of the
relationships between inputs and outputs in desalination systems are nonlinear and complex.
Santos et al.”* used ANN and local weather data to predict yields of two different commercial
SS while using ANN to determine the minimum amount of inputs required for accurate SS
performance. It was found that 31-78% of the predictions of the ANN model were at 10% of
the actual yield depending on the input variables selected. Abdelhafez et al.>> predicted the
thermal efficiency (n) of triple SS utilizing three ANN models, namely Feedforward (FF),
Elman, and Nonlinear Autoregressive Exogenous (NARX). As shown in Fig. 7a, the FF model
had the best predictive ability with the highest R? of 0.99838. Abujazar et al.”® utilized a
Cascaded Forward Neural Network (CFNN) model to predict the yield of an inclined stepped
SS system. They compared its predictions with those of regression and linear models, using
three statistical error terms for evaluation. As a result, the proposed CFNN has minimum values
0f 22.48%, 18.51%, and -14.51% for RMSE, MAPE, and MBE respectively. Fig. 7b shows that
CFNN predicts the productivity of the system more accurately than other models.
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Fig. 7 (a) Comparison between experimental and estimated thermal efficiency. (b) Hourly sample of the
predicted the solar still productivity by CFNN, regression and linear models. (a) Reproduced from ref. 95
with permission from JOCET, copyright 2013. (b) Reproduced from ref. 96 with permission from Elsevier,
copyright 2018.

Although ANN has a wide range of applications in SS systems, the selection of an
appropriate No single ML model is universally best for predicting the performance of a specific
SS system. Several studies have used SVM, RF, and ANFIS for modeling and prediction.’ In
particular, SVM can be used to model the relationship between process responses (e.g.
freshwater yield, evaporation efficiency, etc.) and process descriptors (e.g. environmental
conditions, material properties, operating parameters, etc.). First, data on the input
characteristics (descriptors) and output responses of the SS apparatus are collected. To ensure
data availability and accuracy, appropriate data cleaning and normalisation is then performed.
Then, a suitable kernel function such as RBF kernel is selected to capture the complex
interactions between the input features. Finally, model training, tuning and evaluation are then
performed to accurately predict the performance of the SS system. This binary classification
model is used for classification and regression analysis. Its basic principle involves finding the
optimal hyperplane that separates different data classes, maximizing the margin between them
to classify or regress the data effectively. The schematic diagram of SVM is presented in Fig.
8a. ANFIS, on the other hand, is an intelligent ML method that combines fuzzy inference with
ANN.? The structure diagram of ANFIS is depicted in Fig. 8b. The ANFIS model demonstrated
a higher ability to deal with real-data applications than other traditional ANN methods.?-100 It
is particularly effective in addressing problems characterized by high uncertainty and ambiguity,
owing to its strong adaptive capabilities. Additionally, ANFIS can dynamically adjust system
parameters in response to changes in the environment and input data. For example, Elsheikh et
al.!%! designed a low-cost heat localization bilayered structure (HLBS) that can efficiently
convert the absorbed solar energy into thermal energy to improve conventional SS’s
performance. They used three machine learning methods (i.e., ANN, SVM, and ANFIS) to
predict water production and compared the prediction results between a CSS and an modified
solar still (MSS). As shown in Fig. 9a, SVM exhibited a higher accuracy in predicting water
production than the other two models. Lastly, RF is an ML classifier that consists of multiple
decision trees. The final output category is determined by the majority vote of the individual
trees. This method is known for its high accuracy.!92193 Its main process presented in Fig. 8¢
could be summarized into three steps: data manipulation,'® model construction, and model
optimization. In a study, Wang et al.'® designed a tube SS. To accurately predict its

performance, they developed an ANN model, an RF model, and a traditional multiple linear
19
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regression model based on experimental data. They optimized and compared these models
using Bayesian optimization for hyperparameter tuning. The results showed that the
determination coefficients of RF, ANN and multiple linear regression were 0.9745, 0.7098, and
0.9267. As shown in Fig. 9b, the superiority of RF was well demonstrated with minimal errors.
Similarly, Kandeal et al.!% utilized four different ML models (i.e., ANN, RF, Support Vector
Regression (SVR), and Linear Support Vector Regression (LVR)) to predict the performance
of double slope solar still (DSSS). They optimized these models using the Bayesian
optimization algorithm (BOA) and conducted training, testing, and validation for each of the
models. As a results, RF was found to be the most accurate ML model with the highest R? of
0.983 (see Fig. 9¢.)

In addition, there are a number of ML models that have been applied to SS system
prediction. Random Vector Functional Link (RVFL) is a fast neural network model widely used
for modelling and prediction of various nonlinear systems.!®” RVFL is able to efficiently deal
with complex nonlinear problems through randomly generated weights and directly connected
input feature layers. Previous studies relying on artificial neural networks only used connections
between hidden and output layers without considering connections between input and output
layers. This can lead to overfitting problems and also reduces the efficiency of the method.

RVFL, through its efficient nonlinear fitting capability, is able to quickly predict the output of

the system based on the environmental conditions and system parameters input to the SS system.

Sharshir et al.'% proposed a novel developed pyramid solar still (DPSS) integrated with copper
plate and graphite nanofluid to predict the hourly freshwater (HF) and instantaneous energy
efficiency (IEE) of the DPSS using the FA-RVFL model of firefly algorithm (FA) which
simulates the behaviour of fireflies, Fig. 8d illustrates the structure of the developed technique.
The prediction results are also compared with RVFL, SVM and conventional ANN. The results
show that the proposed FA-RVFL model is characterised by coefficients of determination of
0.981 and 0.999 for the total HF and IEE datasets, respectively, and regression values of 0.996
and 0.999, respectively.It proves that the developed FA-RVFL has an excellent performance in
predicting the FA and IEE of DPSS. K-Nearest Neighbors (KNN) is a simple but effective
supervised learning algorithm widely used in classification and regression tasks. It finds the K
closest neighbours to the target point in the feature space by calculating the distance (usually
Euclidean distance) between data points and makes predictions based on the labels of these
neighbours. KNN can be used to classify different design options for SS, such as classifying
different material combinations, different structural designs, etc. By analysing the performance

metrics of different designs, KNN can help researchers to quickly identify superior design
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solutions. Alawee et al.'% came out with an innovative approach to predict the cumulative
distillate yield of a double slope solar still using correlation analysis, ReliefF for feature
selection, and the KNN algorithm. The analysis was based on a dataset based on six cases,
which included variations in distillate yield relative to different operating environmental
conditions. Key features that have a significant impact on the overall performance were
identified to manage the productivity of the solar still. The results showed that the best model
was evaluated based on the R? , RMSE and CVRMSE of the KNN model and the best model
obtained scores of 0.995, 0.0033 and 0.1666, respectively, demonstrating the effectiveness of
the proposed machine learning approach in predicting distillate output. Gaussian Process
Regression (GPR) is a nonparametric Bayesian regression method widely used to model
complex nonlinear relationships. In SS research and applications, GPR can provide accurate
performance prediction, optimal design, and uncertainty quantification. Kottala et al.!l?
demonstrated the performance of a novel trough collector using a natural recirculation open
loop and experimentally evaluated it for several types of solar radiation data. Seven different
ML models were used to predict the instantaneous thermal efficiency of the developed system
for various solar radiation categories. The results show that the GPR model shows a higher
predictive performance than the other developed ML models (i.e., RMSE = 0.0049, R? =
0.9977).
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Fig. 8 Structure of (a) SVM and (b) ANFIS (c) Data flow diagram of RF. (b) Reproduced from ref. 111 with
permission from Frontiers in Energy Research, copyright 2021. (¢) Reproduced from ref. 105 with permission
from Elsevier, copyright 2021.
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The previous section discussed the integration of solar desalination with other components.

In addition, the use of nanomaterials in conjunction with SS can also increase the yield.
Micro/nanomaterials hold significant promise for SS due to their high thermal conductivity,
extensive surface area, and superior solar energy absorption properties. By leveraging these
materials, it is possible to develop highly efficient solar evaporation systems, which are crucial
for enhancing solar energy utilization. Additionally, data-driven approaches can be effectively
applied to predict the performance of these systems. For example, Bagheri et al.!'> designed an
SS incorporating a cylindrical parabolic collector and solar panels to capture additional solar
energy. They modeled the system using ANN and compared its performance with mathematical
modeling approaches. They found that the ANN model predicts more accurately than the
proposed first-principles model and minimum error rate. The best response is obtained for the

neural network n = 7 with R? = 0.999820171, MSE = 1.94E-06, %AAD (average absolute
22
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deviation) = 0.426716116. Bahiraei et al.!'* developed a novel nanofluidic SS equipped with a
thermoelectric cooler and applied Cu,O-water nanofluid in a solar distillation cell. They then
predicted the yield using a MLP neural network, which was optimized with both the Imperialist
Competitive Algorithm (ICA) and the Genetic Algorithm (GA). The results stated that the
modified SS had a much higher yield than other SS. The R? correlation values of the MLP
turned out to be 0.9458 and 0.8883 in the training and testing phases, respectively, which were
able to predict the yield accurately. In another study, Bahiraei et al.!'# utilized ANFIS and ANN
to predict the energy efficiency of a single-slope SS equipped with a thermoelectric module.
They also applied Cu,O nanoparticles to a solar distillation cell with Particle Swarm
Optimization (PSO) to augment both ML models. As a result, the training and testing R? values
of ANN-ANFIS were 0.95-0.95 and 0.93-0.99, respectively. It means that the yield was
predicted more accurately. Bamasag et al.!'> designed a dish solar distiller (DSD) incorporating
phase change material (PCM), specifically paraffin wax blended with CuO nanoparticles. They
used three machine learning approaches (i.e., ANN, ANFIS, and SVM) to predict the water
productivity of the solar still. The results indicate that the average daily distillation rate of the
stepped DSD with phase change material is approximately 178% higher than that of the CSS.
Among the models, the SVM demonstrates the highest R? of 0.99, the smallest RMSE ranging
from 2.19 to 3.17, and the smallest normalization error between -0.02 ~ 0.08, as shown in Fig.
10. This suggests that the SVM outperforms both the ANN and ANFIS in accurately predicting
the yield. Wang et al.!'® compared RF with pairwise plots and Pearson correlation analysis, to
demonstrate that RF is more advanced and accurate in evaluating the importance of factors in
materials and systems. This comparison aims to enhance the utilization and design of
micro/nanomaterials. They found that RF can obtain reasonable weight values better than

traditional methods.
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592 Fig. 10 The normalized error between experimental and predicted data using: (a) ANN for conventional solar
593 distiller; (b) ANFIS for conventional solar distiller; (c¢) SVM for conventional solar distiller; (d) ANN for
594  modified solar distiller; (€) ANFIS for modified solar distiller; (f) SVM for the modified solar distiller. (a-f)
595  eproduced from ref. 115 with permission from Wiley, copyright 2022.

596 ML approaches can effectively model the dynamic performance of solar desalination
597  systems. Sohani et al.''” developed three different ANN models: back-propagation (BP), FF,
598 and RBF. Their goal was to identify a model that accurately predicts the water temperature and
599  yield of the enhanced SS system. The performance of the three ANN models was assessed using
600  MAE and R?. Consequently, FF and RBF were the most accurate models in predicting the water
601  temperature with MAE and R? of 3.56-2.82 and 0.96-0.98, respectively. Given the varying
602  criteria and performance characteristics in SS desalination technologys, it is essential to examine
603  multiple types rather than relying on a single structure to achieve the highest possible prediction
604  accuracy. The production rate of SS can also be predicted from conventional weather
605  information using ML methods. Gao et al.!!® used RF optimized by BOA to predict the yield of
606  two kinds of SSs. They compared it with MLR and traditional prediction models to verify the
607  accuracy of the models. They used conventional weather forecast data as inputs to the models
608  while the actual measured data were used to train the models. As a result, the determination
609  coefficients of the two SSs predicted by RF were 0.935 and 0.929, significantly higher than
610  those of the MLR (0.767) and the conventional model (0.829 and 0.847). This indicates that RF
611  is areliable method for yield prediction.

612 Each machine learning model has its unique advantages and disadvantages in SS

613  performance prediction, and the selection of an appropriate model depends on the
24
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characteristics of the data, prediction accuracy requirements, and computational resources.
Multi-model integration or hybrid model approaches often lead to better prediction results.
Model performance and prediction accuracy can be significantly improved by proper data
preprocessing and feature selection. Firstly, linear regression is a simple and effective method
suitable for modelling linear relationships, although it is less adaptable to nonlinear data.
Secondly, ANN is able to simulate complex nonlinear relationships due to its multilayer
structure and is well suited for large-scale datasets, but the training time is long and difficult to
interpret. SVM, on the other hand, performs well in small samples and high-dimensional data
and is able to deal with complex nonlinear problems, but the tuning of its parameters and the
selection of kernel functions are more complicated. In addition, ANFIS combines neural
networks and fuzzy logic to deal with uncertainty and ambiguity information, and performs
well in performance prediction of complex multivariate systems. ANFIS is able to deal with
nonlinear relationships and provide high prediction accuracy, which is particularly suitable for
scenarios that require the simultaneous processing of both exact and fuzzy data. DT and RF are
also widely used, with the former making decisions through a tree structure and the latter
improving prediction accuracy by integrating multiple decision trees, both of which can
effectively deal with complex nonlinear relationships and have good noise immunity, but RF
may face overfitting problems. RVFL extends the input features by introducing random vectors
into the network, which can quickly process large-scale data and give efficient predictions
without relying on complex training. In SS, RVFL is suitable for real-time prediction tasks that
require fast response by reducing the training time and providing good nonlinear fitting ability.
The KNN algorithm is simple to implement and adaptable through distance-based prediction,
but has high computational complexity and sensitivity to noise when dealing with high-
dimensional data. GPR, a non-parametric Bayesian regression method, is particularly suited to
small samples and complex data, and is able to provide quantification of the uncertainty in the
prediction, however, its computational complexity is high in the presence of large data volumes.
3.3 Use of DL models

DL is a new research direction in the field of ML that has a more complex structure and mainly
requires a large amount of data. DL methods applied to desalination systems generally be
categorized into three approaches, namely Recurrent Neural Networks (RNN), Conventional
Neural Networks (CNN), and Deep Reinforcement Learning (DRL). In SS systems, long-short-
term memory neural networks (LSTM) have been used to predict their performance. The LSTM
is a recurrent ANN used with DL. The main advantage of this neural network over conventional

FF neural networks is its ability to memorize patterns for long periods of time owing to the
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advanced structure associated with the feedback connections. Elsheikh et al.''® designed a
stepped SS fitted with copper corrugated absorber plates using the LSTM model for prediction
and comparison with CSS. The proposed model was validated using field experimental data for
training, and time series of freshwater production were used to train the model. The results
revealed that the stepped SS had a production rate that was 128% higher than the CSS.
Additionally, the model's coefficients of determination were 0.97 and 0.99, and its RMSE
values were 0.0067 and 0.0021, respectively. Consequently, the model accurately predicted the
production rate of the SS.
4 Optimization
4.1 Training models
The used algorithm, the training model, and other factors affect the model's accuracy. No
specific general ML model outperforms other models in predicting the desalination system’s
performance. By optimizing the ML model with an appropriate training model, the accuracy of
desalination yield prediction can be further enhanced. Chauhan'?° used a multilayer perceptron
neural network based on a supervised learning mechanism to predict the thermophysical
properties of moist air inside the chamber of an SS. Specifically, six distinct training algorithms
were used to train the model, namely one-step secant, conjugate gradient Powell-Beale restarts,
conjugate gradient Fletcher reeves update, resilient backpropagation, scaled conjugate gradient,
and Levenberg-Marquardt (LM). The performance of each algorithm was evaluated using six
statistical parameters. In Fig. 11a, the correlation coefficients of the LM algorithm for training,
testing, and validation are 1, 0.99988, and 0.99995 for all modeling phases, and the slopes and
intercept values of the LM algorithm are approximated to be 1 and -0.003 for all the data.
Accordingly, the LM algorithm provides more accurate predictions on the thermophysical
properties of moist air in SS systems compared to other algorithms. Mashaly and Alazba!?!
utilized three algorithms including the conjugate gradient backpropagation with Fletcher-
Reeves restarts, the resilient backpropagation, and LM to predict the productivity of SS in
hyper-arid environments. The predictions were evaluated by comparing with experimental
results using four standard statistical performance metrics, namely RMSE, efficiency
coefficient (E), OI, and coefficient of residual mass (CRM). As a result, the model based on the
LM algorithm has the highest overall R? value of 0.99437 , as depicted in Fig. 11b. In addition,
the LM algorithm has the minimum average RMSE (0.024), the maximum average E (0.989),
the maximum average OI (0.981), and the minimum average CRM (-0.003) for all modeling
phases. Hence, LM was found to be the most effective algorithm for predicting solar distillers'
productivity. Chauhan'?? also used an ANN model based on the LM algorithm to predict the
26
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fraction yield of CSS and modified solar still integrated with earth distillate (MSSIE) yields.
Their results indicated that the ANN model trained by the LM algorithm is accurate in
predicting the distillate yield of the distillation unit. In Fig. 11c and 11d, the correlation
coefficients of the ANN based on the LM algorithm for the training, testing, and validation of
the overall data for CSS and MSSIE were introduced, respectively.
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Fig. 11 (a) Regression analysis with training, testing, validation, and all data with the LM algorithm. (b)
Regression analysis with training, validation, testing and all data with the LM algorithm. (¢) Regression
analysis of the LM algorithm in CSS and (d) Regression analysis of the LM algorithm in MSSIE with training,
validation, testing, and all data. (a) Reproduced from ref. 120 with permission from Elsevier, copyright 2020.
(b) Reproduced from ref. 121 with permission from IWA, copyright 2015. (c,d) Reproduced from ref. 122
with permission from Taylor & Francis, copyright 2022.

4.2 Hyper-parameter tuning

In machine learning, tuning the hyperparameters of a model is an important part of improving
the performance of an algorithm. Adjusting the different hyperparameters is one of the
important factors affecting the accuracy of the data-driven approach in predicting the output of
SS. The optimization of hyperparameters can be achieved by different optimization algorithms.
Nazari et al.'?? used the ICA algorithm with an optimized ANN model to predict the energy
efficiency, exergy efficiency, and water productivity of single-slope SS. Their results indicate

that the MAE of the ANN-ICA correspondly reduces the prediction of water productivity,
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energy efficiency, and fire efficiency by 54.30%, 40.11%, and 53.35% compared to
conventional ANN, whereas the RMSE were approximately 15.77, 1.37, and 0.29, respectively.
As shown in Fig. 12a, R? with MLP-ICA had an increment of 0.0280, 0.0186, and 0.0450 for
water productivity, energy efficiency, and fire use efficiency, respectively. Essa et al.!?* used
Harris Hawks Optimizer to improve the conventional ANN and predict the yield of three
different distillation systems including passive SS, active SS, and active SS with a condenser.
Their results were also compared with those obtained from two other models: a support vector
machine and a conventional ANN. It was found that the cumulative yield of the active distiller
combined with the condenser increased by 53.21%. Notably, Harris Hawks Optimizer's ANN
has the highest R? value of 0.98 and 0.97 for passive and active solar distiller prediction,
respectively, and hence the best model of the HHO-ANN type. It should be noted that the choice
of hyperparameters is not static. Each optimization algorithm has its own advantages and
limitations and needs to be optimized to the specific problem and dataset. Wang et al.!% built
three different models to predict the performance of tubular SSs including classical ANN, RF,
and traditional multiple linear regression. All models were optimized using the BOA algorithm.
As shown in Fig. 12b, the results show that though the performance of both RF and ANN is
improved, the ANN is more sensitive to the response of BOA and the error of ANN is well
improved. Bahiraei et al.'!3 optimized MLP neural network using ICA!> and GA!%6 was used
to predict the water production of nanofluidic solar thermoelectric distillers in 48 samples and
38 records (where 8 were used as training data, and the remaining 10 to evaluate the
generalization ability of the developed network). The results show that the RMSE of GA-MLP
and ICA-MLP is reduced by 40.49% and 62.01% in the testing phase compared to MLP. So,
the application of GA and ICA has a significant effect on the accuracy of MLP, while ICA has
a better optimization than GA. Bahiraei et al.''# utilized the PSO-enhanced ANFIS and MLP
neural network to predict the energy efficiency of a solar distiller with a single slope
thermoelectric module, respectively. As a results, the R? values of PSO-ANN and PSO-ANFIS
are 0.9225-0.9597 and 0.9471-0.9984, and the RMSE values are 5.7861-3.5158 and 4.0279-
1.9956 for PSO-ANN and PSO-ANFIS, respectively, in the training phase compared to the
original ones. Therefore, PSO improves the training accuracy of ANFIS more than ANN. It can
also be derived from the entire spatial distribution of actual and estimated energy efficiencies,
as depicted in the 3D graphs in Fig. 12c. In these graphs, the impact parameters of X8 and X2
are shown on the x- and z-axes, respectively, and the corresponding Y (energy efficiency) is

shown on the y-axis.
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c5 PSO-ANN prediction. (a) Reproduced from ref. 123 with permission from Elsevier, copyright 2020. (b)
Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (¢) Reproduced from ref. 114 with

permission from Elsevier, copyright 2021.

4.3 Feature selection

Feature selection is the process of reducing the number of input variables in developing a
predictive model. The number of input variables is reduced could ensure an optimal
computational cost of modeling. Hence, selecting appropriate features is very important. For
the SS system, the inputs are chosen mainly from parameters such as solar radiation, wind speed,
water depth, water and glass temperatures, and ambient air. Outputs are mainly selected from
parameters such as water productivity. The combination of model inputs and the appropriate
training and test data lengths is one of the main factors limiting the accuracy in prediction of
nonlinear models.!?” There are various methods used to extract the most correlated variables.
Among these, RF!?® can be used for feature selection by assessing the importance of individual
features. RF calculates the contribution of each feature, allowing for the identification of the
most influential factors and providing insights into the relationships between input and output

variables. For example, Wang et al.!% used RF to assess the importance of various performance
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parameters, such as solar radiation intensity (IR), wind speed (Vy,), basin slab temperature (Ty),
brine temperature (Tg,), cover temperature (T.), and ambient temperature (T.). They
investigated how these parameters affect the soil moisture evaporation rate. The results showed
that the parameters that had the greatest effect on the rate of water evaporation were T, and
Ty, which accounted for 40.87% and 32.43%, respectively(Fig. 13a). Kandeal et al.!% utilized
RF in basin nanofluid (T pasin), vapor (Tyapor), inner glass (Tgassin), outer glass (Tgass,out)
temperature, and r radiation intensity (SR) to screen the factors that have the greatest
contribution to freshwater productivity. They stated that Ty pasin and Tyupor are important
parameters, accounting for about 66% and 13%. As shown in Fig. 13b, these parameters mainly
affect vapor generation and directly impact freshwater productivity. Gao!'® used the BOA-
optimized RF model to predict the performance of SS under the influence of weather variations
and to find the weather parameters closely related to SS. Their results suggested that the
maximum temperature (Tp,y), relative humidity (RH), and minimum temperature (T.,;,) are
three factors with the highest correlation (i.e., 41%, 20%, and 18%, respectively, see Fig. 13¢)

with yield. Also, the prediction model is universally applicable so it can be extended to any

other type of SS.
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Fig. 13 (a) Results of feature importance. (b) feature importance based on the RF algorithm. (c¢) Degree of
correlation between the production of solar stills and conventional weather forecasting parameters. (a)
Reproduced from ref. 105 with permission from Elsevier, copyright 2021. (b) Reproduced from ref. 106 with
permission from Wiley, copyright 2021. (c)Reproduced from ref. 118 with permission from Chinese Physics
B, copyright 2023.

4.4 Datasets

30

Page 30 of 39



Page 31 of 39

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798
799

800

Journal of Materials Chemistry A

Data sets are an essential part of machine learning and serve as its foundation. The size and
quality of the data often determine the performance of machine learning. Therefore, it is more
crucial to focus on obtaining high-quality data rather than relying on sophisticated algorithms.
However, data collection processes are often time-consuming and expensive. So, the time and
cost of data collection procedures should be weighed against the appropriate amount of data
needed to develop accurate data-driven models. Fig. 14 presents an overview of the data set
sizes obtained from various desalination technologies.®® In Figure 14a, in the SS desalination
system, the size of the dataset is less than 500 regardless of the type of data-driven approach
based on. In Fig. 14b, ANN model is the most widely used ML method. Dataset segmentation
is also an important task for ML, which divides available data into training, validation, and
testing sets to support model development, tuning, and evaluation. The dataset is divided
according to these principles: the training set is used for model training and parameter tuning;
the validation set is used for model selection and hyperparameter tuning; and the test set is used
for the final evaluation of the model's performance. The test set should closely reflect the actual
application scenarios to ensure accurate assessment. In SS systems, the training set accounts for
70-80% of the total data volume, whereas the validation and test sets each account for 10-20%.
A reasonable dataset division method can improve the generalization ability and performance

of the model, which can provide suggestions for data set division in future research.
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Fig. 14 Size of datasets with respect to (a) desalination systems and (b) data-driven methods for different

applications. Reproduced from ref. 85 with permission from Elsevier, copyright 2022.
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5 Conclusions

This paper reviews the use of solar energy as an abundant renewable energy source to drive the

desalination process. We focus on describing the main applications of solar distillers in solar

desalination and the use of machine learning in aiding the desalination system of solar distillers,

as illustrated in Fig. 15. The main reviews synthesized in this paper are listed below:
® Solar desalination technology does not consume fossil fuels, reduces carbon emissions,
and can be operated in remote areas far from the power grid, reducing the dependence on
external energy supply and effectively solving the current water and energy shortage
problems. Solar desalination systems can also be combined with other renewable energy
sources, such as wind power, to form a hybrid energy-driven system, which further
improves energy efficiency. Compared with complex mechanical equipment, SS systems
are relatively simple in structure and require less maintenance, reducing the cost of repair
and replacement during operation.
® Solar desalination technology is divided into direct and indirect processes. The direct
process is represented by solar distillers, while the indirect processes are HDH, MED, MSF,
VC, and so on. SS offer advantages such as a simple structure, low installation and
maintenance costs, among others. Depending on whether additional components are
attached or not, they can be categorized into passive SSs and active SSs.
® Machine learning is increasingly recognized as a powerful and emerging approach for
modeling and predicting solar desalination, complementing traditional methods based on
heat and mass transfer differential equations and regression models. By examining
historical data, ML can provide valuable insights into efficiency and system behaviour.
Through ML modelling analysis, it is possible to make refined predictions of the cost of
SS systems, helping companies to optimise system design and operation, reduce costs and
improve the feasibility of commercial applications.
® For SS systems, combining physical models with machine learning models can be
considered. This approach can improve prediction accuracy by fusing physical laws (e.g.,
laws of thermodynamics, water evaporation kinetics, etc.) with data-driven models,
especially in data-limited situations. By fusing physics knowledge, ML models are no
longer solely dependent on the amount of data, but can be made less data-dependent
through the laws of physics, while also ensuring that the model is interpretable.
® Tuning hyperparameters in machine learning and selecting appropriate inputs-outputs
play important roles in improving the accuracy of predictive SS systems. For example, grid
search or Bayesian optimization methods can be used to tune the hyperparameters of the
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model to find the optimal model configuration. Key features such as evaporation efficiency,
heat absorption capacity and water temperature gradient can be extracted from the
distillation system and environmental conditions.

® The dataset is crucial for modeling machine learning; the inadequacy of the dataset and
quality issues are the main current challenges. It is recommended to collect experimental
data including distillers' performance parameters, environmental conditions (e.g.,
temperature, humidity, sunlight intensity), and material properties, as well as to integrate
weather station or satellite data covering historical weather data at the operational
site.Considering the utilization of larger datasets, this work contributes to the study of solar

evaporation and solar stills.
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Fig. 15 A look into the future of machine learning- assisted solar stills.
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