
 

 

 

 

 

 

Numerical study of acoustophoretic motion of particles in a 

PDMS microchannel driven by surface acoustic waves 
 

 

Journal: Lab on a Chip 

Manuscript ID: LC-ART-02-2015-000231.R1 

Article Type: Paper 

Date Submitted by the Author: 29-Apr-2015 

Complete List of Authors: Nama, Nitesh; The Pennsylvania State University, Department of 
Engineering Science and Mechanics 
Barnkob, Rune; Bundeswehr University Munich, Institute of Fluid Mechanics 
and Aerodynamics 
Mao, Zhangming; The Pennsylvania State University, Department of 
Engineering Science and Mechanics 

Kaehler, Christian; Universitaet der Bundeswehr, Institut fuer 
Ssteoemungsmechanik und Aerodynamik 
Costanzo, Francesco; The Pennsylvania State University, Department of 
Engineering Science and Mechanics 
Huang, Tony Jun; The Pennsylvania State University, Department of 
Engineering Science and Mechanics 

  

 

 

Lab on a Chip



Numerical study of acoustophoretic motion of particles
in a PDMS microchannel driven by surface acoustic waves

Nitesh Nama,a Rune Barnkob,b Zhangming Mao,a Christian J. Kähler,b Francesco Costanzo,∗ac and
Tony Jun Huang∗ad

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on
a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow
variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchan-
nel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of
piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that
travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic
wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting
on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation
force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis
to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability
to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming
surface acoustic waves.

1 Introduction

The emergence of lab-on-a-chip technologies has sparked a
renewed interest in microfluidics. One of the requirements for
the success of lab-on-a-chip systems is to precisely manipu-
late fluids and particles immersed in them at microscales.1,2

Here, surface acoustic wave (SAW) based systems, recently
reviewed in Refs.,3–5 have shown great potential in recent
years.

SAW based systems rely on piezoelectric actuation of sur-
face acoustic waves in a solid substrate. These waves propa-
gate along the substrate surface and, as they encounter a fluid
interface, they radiate acoustic energy into the fluid. This
drives acoustic streaming in the fluid itself as well as the mo-
tion of the immersed particles. The particles experience pri-
marily two forces, the acoustic radiation force arising from the
scattering of sound waves on the particles and the Stokes drag
force from the induced acoustic streaming. However, while
bulk acoustic wave (BAW) based systems have been heavily
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studied,6–9 the theoretical and numerical work on SAW-driven
systems is rather limited and so is the full understanding of
the underlying physics. For example, little investigation has
been made on the mechanisms underlying the vertical focus-
ing of particles in poly-dimethylsiloxane (PDMS) channels,10

the mechanism of cell-cell interactions in a SAW device,11 the
effect of using PDMS channels as opposed to silicon walls, the
precise bulk acoustic fields and associated acoustic stream-
ing, and the critical particle size for the transition between
radiation-dominated and streaming-dominated acoustophore-
sis. The latter has been extensively studied within BAW-
driven systems,9,12,13 but it is yet to be examined in SAW-
driven systems.

One of the primary reasons for the lack of a detailed theoret-
ical understanding of the physical processes involved in SAW
devices is the difficulty in the identification of precise bound-
ary conditions. From a numerical viewpoint, the difference
between BAW systems and SAW systems is limited to the dif-
ferences in actuation and wall conditions, while the governing
equations remain the same. While SAW-based systems with
free boundaries in form of droplets have been heavily stud-
ied numerically,14–16 SAW-driven systems with closed bound-
aries have received less attention. Using hard-wall bound-
ary conditions, few studies have been reported for the acous-
tic streaming in a closed SAW-driven system.17,18 However,
while BAW systems utilize walls that are often made of hard
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material like glass or silicon making hard-wall boundary con-
ditions appropiate, SAW-based systems often utilize soft ma-
terials such as PDMS leading to significant radiative energy
losses.

In this work, we employ impedance boundary conditions to
model the PDMS walls of a typical SAW-based device to setup
a numerical model for investigating the acoustophoretic mo-
tion in SAW devices. In line with the work by Muller et al.9

we employ perturbation theory and use the solution of the first-
order equations to calculate the time-averaged solutions, such
as the acoustic streaming induced in the liquid and the acous-
tic radiation force acting on suspended particles. These are
then used to determine the particle trajectories and to study the
transition of dominance on particles’ motion between the two
forces. The numerical method and the results presented in this
work will be helpful in providing a better understanding of the
physics in SAW-driven devices as well as to allow for future
optimization and reliable control of SAW-based microfluidic
devices, such as those employed in Refs.19–21

2 Governing Equations

The mass and momentum balance laws governing the motion
of a linear viscous compressible fluid are22,23

∂ρ

∂ t
+∇∇∇·(ρvvv) = 0,andρ

∂vvv
∂ t

+ρ(vvv·∇∇∇)vvv =−∇∇∇p+µ∇
2vvv+(µb +

1
3 µ)∇∇∇(∇∇∇·vvv),

(1)

where ρ is the mass density, vvv is the fluid velocity, p is the
fluid pressure, and µ and µb are the shear viscosity and bulk
viscosity, respectively. Here, the fields ρ , p, and vvv are under-
stood to be in Eulerian form,23 i.e., functions of time t and
spatial position rrr within a fixed volume. Furthermore, in or-
der to describe the fluid motion, we need a constitutive relation
linking the pressure and density. We assume a linear relation
between p and ρ:

p = c2
0 ρ, (2)

where c0 is the speed of sound in the fluid at rest. Combining
Eqs (??)–(2) with appropriate boundary conditions, the sys-
tem is fully determined. Nonetheless, the above-mentioned
nonlinear system of equations is numerically challenging to
solve via a direct numerical simulation due to the widely sep-
arated time scales (characteristic oscillation periods vs. char-
acteristic times dictated by the streaming speed).24 For exam-
ple, a typical SAW device is operated at frequencies in the
range of 1− 100 MHz, while the streaming fields are char-
acterized by time scales of the order of tenth of seconds to
several minutes. Therefore we neglect the transient build-up
of the acoustic fields and in this work we only consider time-
harmonic forcing. However, because of viscous dissipation,

the response of the fluid to a harmonic forcing is, in gen-
eral, not harmonic. The fluid response can be understood to
be comprised of two components: (i) a periodic component
with period equal to the forcing period, and (ii) a remainder
that can be viewed as being steady. It is this second compo-
nent which is generally referred to as the streaming motion.4

Following our recent model,25 we employ Nyborg’s perturba-
tion technique26 in which fluid velocity, density, and pressure
are assumed to have the following form

vvv = vvv0 + ε ṽvv1 + ε
2ṽvv2 +O(ε3)+ · · · , (3a)

p = p0 + ε p̃1 + ε
2 p̃2 +O(ε3)+ · · · , (3b)

ρ = ρ0 + ερ̃1 + ε
2
ρ̃2 +O(ε3)+ · · · , (3c)

where ε is a non-dimensional small parameter. Following
Köster,17,27 we define ε as the ratio between the amplitude
of the displacement of the boundary in contact with the piezo-
electrically driven substrate (i.e., the amplitude of the bound-
ary excitation) and a characteristic length. We take the ze-
roth order velocity field vvv0 to be equal to zero thus assuming
the absence of an underlying net flow along the microchannel.
Letting

vvv1 = ε ṽvv1, p1 = ε p̃1, ρ1 = ερ̃1,

vvv2 = ε
2ṽvv2, p2 = ε

2 p̃2, ρ2 = ε
2
ρ̃2,

(4)

substituting Eqs. (3) into Eqs. (??) and (1), and setting the
sum of all the terms of order one in ε to zero, the following
problem, referred to as the first-order problem, is obtained

∂ρ1

∂ t
+ρ0(∇∇∇·vvv1) = 0, (5)

ρ0
∂vvv1

∂ t
=−∇∇∇p1 +µ∇

2vvv1 +(µb +
1
3 µ)∇∇∇(∇∇∇·vvv1). (6)

Repeating the above procedure for the terms of order two in ε ,
and averaging the resulting equations over a period of oscilla-
tion, the following set of equations, referred to as the second-
order problem, is obtained

(9)〈
∂ρ2

∂ t

〉
+ρ0∇∇∇·〈vvv2〉=−∇∇∇·〈ρ1vvv1〉, [b]ρ0

〈
∂vvv2

∂ t

〉
+

〈
ρ1

∂vvv1

∂ t

〉
+ρ0 〈vvv1·∇∇∇vvv1〉 =−∇∇∇〈p2〉+µ∇

2 〈vvv2〉+(µb +
1
3 µ)∇∇∇(∇∇∇·〈vvv2〉),

where 〈A〉 denotes the time average of the quantity A over a
full oscillation time period. As pointed out by Stuart,28 iner-
tial terms in Eq. (2) can be significant and must be retained in
the formulation. Also, to fully account for viscous attenuation
of the acoustic wave, both within and without the boundary
layer, the last term in Eq. (2) associated with the bulk viscos-
ity must also be retained.
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Fig. 1 (a) Cross-sectional sketch of the SAW-driven device
consisting of a lithium niobate substrate and liquid-filled PDMS
channel (width w = 600µm and height h = 125µm). The substrate
is acoustically actuated via two sets of interdigitated transducers
(IDTs). Note, the figure is not drawn to scale and that the PDMS
channel walls are considered to be of thickness 2 mm or greater. (b)
Sketch of the computational domain Ω with impedance boundaries
Γi and Dirichlet actuation boundary Γd.

3 Numerical Model

3.1 Model system and computational domain

A typical standing SAW (SSAW) device for particle manipu-
lation consists of a PDMS channel bonded on a piezoelectric
substrate (Fig. 1(a)) . The device employs a pair of metal-
lic interdigitated transducers (IDTs) sitting on the surface of
the piezoelectric substrate. A standing SAW is produced via
the superposition of two counter-propagating traveling SAWs
generated on the surface of the piezoelectric substrate by ap-
plying a harmonic electric signal to the IDTs. The full physi-
cal system is governed by coupling of elastic, electromagnetic,
and hydrodynamic effects, which makes numerical modeling
challenging.17,27 Thus, we simplify the system by modeling
the PDMS walls of the channel using impedance boundary
conditions limiting this study to cases with PDMS walls of
thickness 2 mm or greater, while the effect of piezoelectric
substrate is modeled using a displacement function at the sub-
strate boundary. As a result our computational domain Ω

shown in Fig. 1(b) consists of a rectangular microchannel of
width w = 600µm and height h = 125µm, where the bound-
aries subject to the impedance condition are denoted by Γi,
while the actuated boundary is denoted by Γd. The bound-
ary conditions are discussed in detail in Section 3.2. In this
work we analyse the case where the piezoelectric substrate is
made of lithium niobate actuated with a surface wave of wave-
length λ = 600µm and frequency f = 6.65 MHz, and where
the channel is filled with water. The values for all the rel-
evant properties of the piezoelectric substrate and water, as

Table 1 Material parameters at T = 25 ◦C.

Water
Density29 ρ0 997 kg m−3

Speed of sound29 c0 1497 ms−1

Shear viscosity29 µ 0.890 mPa s
Bulk viscosity30 µb 2.47 mPa s
Compressibility∗ κ0 448 TPa−1

Lithium niobate (LiNbO3)
Speed of sound31 csub 3994 ms−1

Poly-dimethylsiloxane (PDMS, 10:1)
Density32 ρwall 920 kg m−3

Speed of sound33 cwall 1076.5 ms−1

Attenuation coeff. (6.65 MHz) † 33 31 dB/cm

Polystyrene
Density29 ρp 1050 kg m−3

Speed of sound34 (at 20 ◦C) cp 2350 ms−1

Poisson’s ratio35 σp 0.35
Compressibility‡ κp 249 TPa−1

Acoustic actuation parameters
Wavelength (set by IDTs) λ 600µm
Forcing frequency f 6.65 MHz
Displacement amplitude u0 0.1 nm
Displacement decay coefficient Cd 116 m−1

∗Calculated as κ0 = 1/(ρ0c2
0)

†Calculated via power law fit to data by Tsou et al. 33

‡Calculated as κp =
3(1−σp)

1+σp
1

(ρpc2
p)

from Landau and Lifshitz. 36

well as the typical operational parameters used in our numeri-
cal model, are listed in Table 1.

3.2 Boundary Conditions

As the objective of this work is to study the fluid and parti-
cle motion inside the microfluidic channel shown in Fig. 1,
we simplify the system considerably by modeling the effect of
piezoelectric substrate via a displacement boundary condition
while the PDMS walls are modeled using impedance bound-
ary conditions.

The type of waves usually considered in SAW devices are
the so-called Rayleigh waves. The amplitude of these waves
decay exponentially with the depth into the substrate, thereby
confining most of the energy to the surface.37 The two wave
motions in the y and z direction are known to be 90◦ out of
phase in time, thereby resulting in elliptical displacements.
Based on these considerations, it is possible to find displace-
ment functions for waves which propagate along the y direc-
tion and decay exponentially in both y and z direction. Taking
these considerations into account, Gantner et al.38,39 analyzed
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numerically the Rayleigh waves in piezoelectric substrates in
great detail. We use the displacement results from his analysis,
also used by Köster,17,27 to describe the displacement profile
due to a traveling SAW which takes the form

uy(t,y) = 0.6u0 e−Cdy sin
(
−2π(y−w/2)

λ
+ωt

)
,

uz(t,y) =−u0 e−Cdy cos
(
−2π(y−w/2)

λ
+ωt

)
,

(10)

where uy and uz are the displacements along the y and z di-
rection, respectively, Cd is the decay coefficient, and ω =
2π f is the angular frequency. The value of Cd employed
by Köster17,27 (8060 m−1) is appropriate for a SAW device
loaded with an infinite layer of water at frequencies in the
range of 100 MHz. Recently, Vanneste and Bühler40 inves-
tigated streaming patterns using an attenuation coefficient of
2800 m−1 for a frequency of approximately 150 MHz. Using
the leaky SAW dispersion relation employed by Vanneste and
Bühler40 for a frequency of 6.65 MHz, we get an attenuation
coefficient of 116 m−1. However, we note that the disper-
sion relation employed by Vanneste and Bühler40 is valid for
a SAW propagating under an infinitely thick layer of water.
A finite thickness might further reduce the attenuation coeffi-
cient. Noting this, for comparison purposes we considered a
case with Cd = 0 (see ESI fig. 1). We observed that decreas-
ing the value of Cd from 116 m−1 to zero does not change the
solution significantly. With this in mind, we have used an at-
tenuation coefficient of 116 m−1 for all the results presented
in this article.

Using Eq.(10), we construct the standing SAW displace-
ment profile over Γd by superimposing the displacement pro-
file of two SAWs traveling in opposite directions with a phase
difference of ∆φ :

uy(t,y) = 0.6u0 e−Cdy

[
sin
(
−2π(y−w/2)

λ
+ωt−∆φ

)

+ sin
(
−2π(w/2− y)

λ
+ωt

)]
,

uz(t,y) =−u0 e−Cdy

[
cos
(
−2π(y−w/2)

λ
+ωt−∆φ

)

+ cos
(
−2π(w/2− y)

λ
+ωt

)]
.

(11)
This displacement function is then differentiated with respect
to time to obtain the first-order velocity that we impose over
Γd
(
Fig. 1(b)

)
:

vvv1(t,y) =
∂uuu(t,y)

∂ t
, on Γd. (12)

Fig. 2 Plot of standing SAW displacement vectors along the
interface of the channel and the piezoelectric substrate at z = 0 at (a)
t = 0, (b) t = π/6ω , (c) t = π/3ω , (d) t = π/2ω , (e) t = 2π/3ω ,
and (f) t = 5π/6ω . The displacement function is obtained by
superimposing two incoming traveling SAWs from the left and the
right direction, see Eq. (11).

For the boundary condition on the channel walls, marked as
Γi in Fig. 1(b), we use the so-called impedance or lossy-wall
boundary condition given as41

nnn ·∇∇∇p1 = i
ωρ0

ρmcm
p1, on Γi, (13)

where i is the imaginary unit, and ρm and cm are the mass
density and the speed of sound of the wall material, respec-
tively. Note that this boundary condition is very different from
the hard-wall condition, nnn · vvv1 = 0, used to model silicon or
glass walls in BAW systems as the impedance boundary con-
dition allows a non-zero first-order wall velocity. Futhermore,
with this boundary condition, the model assumes all transmit-
ted wave energy to be absorbed in the PDMS, i.e. no reflected
waves, from a potential PDMS/air interface, are allowed to
re-enter the water channel. The model therefore only applies
to cases, where the PDMS walls are thick enough to attenu-
ate waves transmitted from the channel. In commonly-used
PDMS (10:1), the attenuation coefficient for frequencies of
5 MHz and 7 MHz are 21.30 dB/cm to 33.57 dB/cm, respec-
tively, which translate to decay coefficients of 490 m−1 and
773 m−1.33 For the specific frequency of 6.65 MHz used in
this work, the attenuation coefficient is close to 31 dB/cm cor-
responding to a decay coefficient of 714 m−1. Therefore, if the
channel walls are thicker than 2 mm, only a exp(−714 m−1×
2× 0.002 m) = 0.058 fraction of the transmitted waves at
the water/PDMS interface will reach the PDMS/air interface
and come back again. This corresponds to an absorption of
more than 94 % and thus the assumption of total absorption
of acoustic waves in the PDMS walls is reasonable for chan-
nel walls thicker than 2 mm. For higher actuation frequencies
commonly used in SAW devices (tens of MHz) the attenuation
coefficient increases further (more than double at 11 MHz)
thus making the assumption of total absorption even more rea-
sonable.

For the second-order problem, Bradley42 offered a care-
ful analysis of the boundary conditions to be satisfied on the
moving surfaces. Specifically, the no-slip boundary condition
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needs to be satisfied on the deformed positions of the mov-
ing surfaces, and not on the initial rest positions. However,
the displacement amplitude in SAW devices is usually in sub-
nanometer range, thus it is possible to neglect the minute dif-
ference between the initial and the deformed positions. Not-
ing this, we employ the zero-velocity boundary condition on
all the boundaries, similar to those used by Muller et al.:9

vvv2 = 000, on Γi∪Γd. (14)

3.3 Single-particle acoustophoretic trajectories

In order to be able to predict acoustophoretic particle trajec-
tories of a typical microfluidic experiment using polystyrene
tracer particles, we implement a particle tracking strategy.
Such trajectories will also establish the foundation for exper-
imental verification of our numerical model by using three-
dimensional particle tracking velocimetry.9,43 We consider
particles suspended in a suspension dilute enough to neglect
particle-particle interactions, hydrodynamic as well as acous-
tic. The tracking strategy is predicated on the determination
of the acoustic radiation force due to the scattering of waves
on the particle as described by Settnes and Bruus.44 Consid-
ering a particle of radius a much smaller than the wavelength
λ , mass density ρp, and compressibility κp, the radiation force
takes the form:44

FFF rad =−πa3
[

2κ0
3

Re[ f ∗1 p∗1∇p1]−ρ0Re[ f ∗2 vvv∗1 ·∇vvv1]

]
, (15)

where κ0 = 1/(ρ0c2
0) is the compressibility of the fluid, Re(A)

denotes the real part of quantity A, the asterisk denotes the
complex conjugate of the quantity, and the coefficients f1 and
f2 are given by

f1 = 1−
κp

κ0
and f2 =

2(1− γ)(ρp−ρ0)

2ρp +ρ0(1−3γ)
, (16)

with

γ =− 3
2 [1+ i(1+ δ̃ )]δ̃ , δ̃ =

δ

a
, δ =

√
2µ

ωρ0
. (17)

Note that we use the general expression for the radiation force
without a priori assumption of whether we deal with traveling
or standing waves.

In addition to the radiation force, a bead is assumed to be
subject to a drag force proportional to vvvp−〈vvv2〉, which is the
velocity of the bead relative to the streaming velocity. When
wall effects are negligible, the drag force is estimated via the
simple formula FFFdrag = 6πµa

(
〈vvv2〉− vvvp

)
. The motion of the

bead is then predicted via the application of Newton’s second
law

mp
dvvvp

dt
= FFF rad +FFFdrag, (18)

where mp is the mass of the bead. In many acoustofluidics
problems the inertia of the bead can be neglected since the
characterstic time of acceleration is small in comparison to the
time scale of the motion of the particles.45 Doing so, Eq. (18)
can be solved for vvvp

vvvp = 〈vvv2〉+
FFF rad

6πµa
. (19)

For steady flows, we can identify the bead trajectories with the
streamlines of the velocity field vvvp in Eq. (19).

3.4 Numerical Scheme

For the first-order problem we seek solutions of the following
form

vvv(rrr, t) = vvv(rrr)exp(−iωt), (20a)
p(rrr, t) = p(rrr)exp(−iωt), (20b)

where vvv(rrr) is a vector-valued function of space while p(rrr)
is a scalar function of space. For the second-order problem,
we seek steady solutions. We also note that the second-order
problem has pure Dirichlet boundary conditions on all sides
and hence does not admit a unique solution unless we assign
an additional pressure constraint. However, since the radiation
force used here is completely dependent only on the first-order
fields, we do not use the second-order pressure in any of our
calculations. Combining information from the first- and the
second-order solutions, it is then possible to estimate the mean
trajectory of particles in the flow.

All the solutions discussed later are for two-dimensional
problems. The numerical solution was obtained via the finite
element software COMSOL Multiphysics 4.4.46 For both the
first- and second-order problems we used Q2-Q1 elements for
velocity and pressure, respectively, where Q1 and Q2 denote
triangular elements supporting Lagrange polynomials of order
one and two, respectively.

4 Results and Discussions

4.1 Mesh convergence analysis

To capture the physics inside the boundary layers near the
walls, we use a computational mesh with a maximum element
size near the boundary, db while the maximum element size
in the bulk of the domain was set to 2µm. Fig. 3(a) shows an
illustrative mesh with db = 30δ , where δ is the viscous bound-
ary layer thickness given by Eq. (17). To check for mesh con-
vergence, we investigate the behavior of the variables solved
for on a series of meshes generated by progressively decreas-
ing the mesh element size, db. We define a relative conver-
gence function C(g) for a solution g with respect to a reference
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Fig. 3 Mesh convergence analysis. (a) An illustrative
computational mesh with 2478 triangular elements obtained with
maximum element size near the boundary, db = 30δ , while the
maximum element size in the bulk of the domain was set to 20µm.
(b) Semi-logarithmic plot of the relative convergence parameter C,
as given in Eq. (21), for decreasing mesh element size near the
boundaries, db.

solution gref obtained on the finest mesh as

C(g) =

√∫
(g−gref)2 dydz∫
(gref)2 dydz

, (21)

where we use a reference solution g obtained for db = 0.2δ

with approximately 5.6× 105 elements. The results of the
mesh convergence analysis are shown in Fig. 3(b) where the
convergence function C is plotted as a function of δ/db. As
the value of db reaches 0.3δ all the variables have reached suf-
ficient convergence and throughout the rest of the work we use
a mesh with db = 0.3δ .

4.2 Wall impedance sweep

To study the effect of the wall material of the microfluidic
channel, we perform a series of simulations with increasing
value of wall impedance while the fluid impedance is kept
constant. For each value of increasing impedance we com-
pare the solution g to the solution gref obtained using hard-wall
boundaries (i.e. nnn · vvv1 = 0 at Γi) by calculating the conver-
gence function C(g) in Eq. (21). The first-order pressure field
from the hard-wall solution is shown in Fig. 4(a) and features
a resonance with no traveling waves as typically observed in

Fig. 4 Impedance convergence analysis. (a) First-order pressure
field p1 when using hard-wall conditions nnn · vvv1 = 0 at Γi boundaries
[color plot ranging from -70.5 kPa (blue) to 70.5 kPa (red)]. (b)
Semi-logarithmic plot of the relative convergence parameter C, as
given in Eq. (21), as a function of the wall impedance zwall. The
solution with hard-wall boundary conditions in panel (a) was chosen
as the reference solution. As the impedance of the walls increases,
the solution with impedance boundary conditions converges to the
solution with the hard-wall boundary conditions.

BAW systems. The convergence function C(g) for the first-
order pressure and velocity fields is plotted in Fig. 4(b) and
it is seen that as the wall impedance increases, the solutions
converge to the hard-wall solution. The values of the conver-
gence function C for impedance values for those of glass (zgl =
1.3×107 kg m−2 s−1) and silicon (zsi = 2.0×107 kg m−2 s−1)
were around 0.45 and 0.3, respectively, while C for PDMS
is around 1. Thus, to a reasonable approximation, hard-wall
boundary conditions can be used for BAW systems using typ-
ically silicon or glass walls, while it is an inaccurate condition
for SAW systems using PDMS walls. This is in good agree-
ment with the fact that PDMS, having an acoustic impedance
similar to water, absorbs most of the incident waves with lit-
tle reflections while silicon and glass, having very different
acoustic impedances from water, reflect most of the incident
waves leading to the building up of resonances inside the mi-
crochannel.

4.3 Acoustic fields

Having identified the proper mesh refinement level in Sec-
tion 4.1 and that impedance boundary conditions are appro-
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Fig. 5 Color plots of the first-order pressure p1 and velocity vvv1
fields as well as the time-averaged second-order velocity 〈vvv2〉. The
first-order fields oscillate in time with a standing wave along y and a
travelling wave along z indicated by the upwards-pointing magenta
arrows. (a) Oscillating first-order pressure field p1 [colors ranging
from -12.9 kPa (blue) to 12.9 kPa (red)]. (b) Oscillating first-order
velocity field vvv1 [magnitude shown as colors ranging from zero
(blue) to 5.3 mms−1 (red), vectors shown as black arrows]. (c)
Time-averaged second-order velocity field 〈vvv2〉 [magnitude shown
as colors ranging from zero (blue) to 1.47µm s−1 (red), vectors
shown as black arrows]. (d) Zoom of the time-averaged
second-order velocity field 〈vvv2〉 in (c) in a slab of 0.3µm height
from the bottom wall [magnitude shown as colors ranging from zero
(blue) to 1.72µm s−1 (red), vectors shown as black arrows].

priate for modeling PDMS walls in Section 4.2, we investigate
the acoustic fields that are set up inside the channel. In Fig. 5
we show the first-order pressure field p1, first-order velocity
field vvv1, and the second-order velocity field 〈vvv2〉, where the
plotted colors indicate the field magnitude (from blue mini-
mum to red maximum) and the black arrows indicate the field
vectors. For the first-order pressure field p1 and first-order ve-
locity field vvv1 in Fig. 5(a) and (b), respectively, we observe a
clear horizontal standing wave along y, but as indicated by the
upwards-pointing magenta arrows, we observe that the first-
order fields are traveling waves moving from the bottom wall
towards the top wall along the z direction. The first-order pres-
sure amplitude pa is observed to be 12.9 kPa as opposed to
70.5 kPa observed when using the hard-wall boundary condi-
tions as shown in Fig. 4(a). This difference in pressure am-
plitude can be attributed to the fact that a resonance is set up
in the channel when using the hard-wall boundary condition,
leading to an increased pressure amplitude. Furthermore, we

notice that the first-order velocity amplitude |vvva| is observed to
be 5.3 mm/s. This amplitude is greater than the actual velocity
amplitude |vvva|= ωu0 = 4.17 mm/s imposed via the actuation
function described in Eq. (11), which indicates that the trav-
eling wave is not completely transmitted through the PDMS
walls and thus reflections occur from the channel walls due
to the small but non-zero impedance mismatch between the
PDMS and water.

Fig. 5(c) shows the second-order velocity field 〈vvv2〉, in
which four streaming vortices are observed along the y di-
rection with a maximum velocity of 1.47µm s−1 close to the
bottom wall. Fig. 5(d) shows a zoomed version of the second-
order velocity near the bottom boundary and we note that no
streaming rolls are observed within the viscous boundary layer
of width δ =

√
2µ/(ρ0ω) ≈ 0.21µm, which were observed

numerically by Muller et al.9 for a BAW system. The differ-
ence between the model by Muller et al. and our model, is
that we use impedance boundary conditions instead of hard-
wall conditions, which allow the first-order velocity to have a
slip-velocity thus minimizing the velocity gradients near the
walls. Furthermore, in contrast to the work by Muller and co-
workers, we actuate the bottom wall from where the streaming
is driven.

4.4 Particle trajectories

Based on the acoustic fields described in the former section
and the theory described in Section 3.3 (see the radiation force
field in ESI Fig.2), we calculate the velocities and trajecto-
ries of polystyrene particles of diameters ranging from 1µm
to 20µm. The trajectories are plotted in Fig. 6 for 243 par-
ticles with uniformly-distributed initial positions as shown in
Fig. 6(a). The panels (b)-(f) show the trajectories of (b) 1µm
particles during 100 s, (c) 5µm particles during 100 s, (d)
10µm particles during 60 s, (e) 15µm particles during 60 s,
and (f) 20µm particles during 40 s. For each particle trajec-
tory the colors denote the particle velocity ranging from zero
(blue) to its maximum (red), while the colored disks show the
particles’ final positions and velocities. For the 1µm and 5µm
particles in panel (b) and (c), respectively, we clearly see that
their motion is governed by the viscous drag from the acous-
tic streaming as plotted in Fig. 5(c). The particles are carried
around in the four horizontal streaming rolls and the maxi-
mum velocities of around 1.5 µm s−1 are very close to the
maximum streaming velocity of 1.47µm s−1. As the particle
size increases, the acoustic radiation force becomes influential
and for the motion of the 10µm particles in panel (d) we ob-
serve that far from the strong streaming at the bottom wall, the
acoustic radiation force pushes the particles out of the stream-
ing vortices towards the top wall. This is even more evident
for the 15µm particles in panel (e), where the radiation force
contribution is (15/10)2 ≈ 2.25 times larger, which is seen by
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Fig. 6 Particle trajectories with particle velocities as colors from
blue minimum to red maximum and colored disks denoting the final
positions within the observation time. (a) Starting position of 243
particles distributed uniformly within the microchannel. The panels
(b)-(f) show the trajectories of (b) 1µm particles during 100 s, (c)
5µm particles during 100 s, (d) 10µm particles during 60 s, (e)
15µm particles during 60 s, and (f) 20µm particles during 40 s. The
motion of the smaller particles is dominated by the viscous drag
force from the acoustic streaming, while the larger particles are
pushed to the pressure nodes by the acoustic radiation force.

an almost complete vanishing of the vortex motion as well as a
maximum particle velocity of 2.43 µm s−1. In panel (f) for the
20µm particles, the acoustic streaming pattern has completely
vanished and the acoustic radiation is fully dominating the
motion. We note that the radiation force carries the particles
outwards from (±w/4,h/2) towards the channel walls conse-
quently bringing the particles to the standing pressure nodes at
y equal to −w/2, 0, and w/2. Furthermore, we notice that the
20µm particles obtain velocities 4.05/2.43≈ 1.7 times larger

Fig. 7 Color plots of the first-order pressure field for different
values of phase difference ∆φ , as in Eq. (11), between the two
incoming traveling waves. The position of the pressure node along
the y direction can be tuned by changing the value of ∆φ . The
pressure node moves by a distance of λ/8 for each phase difference
of π/2.

than those of the 15µm particles, which is close to the ex-
pected ratio of (20/15)2 = 1.8 if both the particles were fully
dominated by the radiation force, see Eqs. (15) and (19). For
the investigated system, the critical particle size for the tran-
sition between streaming-dominated and radiation-dominated
motion is around 10µm depending on the particle z-position
as the acoustic streaming is strongest at the bottom wall. If we
compare this to the BAW system studied by Muller et al.9,47

and Barnkob et al.12 where they found a transition diameter
around 1− 2µm, it is clear that the acoustic streaming has a
larger influence in the system studied in this work. However,
typically SAW systems are driven at higher frequencies, which
will increase the effect from the radiation force due to its linear
dependence on the actuation frequency, Eq. (15). Finally, note
that we have not taken into account the enhanced viscous drag
force due to the presence of the channel walls, which would
decrease the radiation force contribution for the large particles
and for particles close to the channel walls.48

4.5 Phase sweeping

As an application of our numerical model, we investigate the
effect of the phase difference between the two incoming SAWs
by changing their relative phase ∆φ in Eq. (11). Fig. 7 shows
the plots of the first-order pressure fields p1 for varying phase
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difference ∆φ . We see that the position of the pressure node
along the y direction can be tuned by changing the phase dif-
ference between the two incoming SAWs. For a phase differ-
ence of π/2, the shift in the phase difference is λ/8. In other
words, a phase difference of π results in an interchange in the
position of the nodes and the antinodes. This is in agreement
with the results obtained by Meng et al.,49 where they used the
tuning of the pressure node to transport single cells or multiple
bubbles. This principle has recently been utilized by Li et al.50

to study heterotypic cell-cell interaction by sequentially pat-
terning different types of cells at different positions inside the
microfluidic channel. Figure 7 also points to the fact that a mi-
nor shift in actuation does not affect the solution in a drastic
manner, indicating the robustness of the solution with respect
to minor perturbations in the applied actuation.

5 Conclusions

We have successfully used a finite element scheme to model
the acoustophoretic motion of particles inside an isentropic
compressible liquid surrounded by PDMS walls. The system
is acoustically actuated via two counter-propagating surface
acoustic waves that form a standing wave in a piezoelectric
material interfacing the liquid channel. Our model employs
an actuation condition from the literature based on piezo-
electric simulations as well as impedance boundary conditions
to model the PDMS channel walls. Our model results in sig-
nificantly different acoustic fields as those observed in bulk
acoustic wave devices. Firstly, the first-order acoustic fields
are travelling in the vertical direction away from the actuated
boundary, while the horizontal standing wave feature remains.
This results in a time-averaged second-order velocity field (the
so-called acoustic streaming) driven by products of first-order
fields with the characteristics of four horizontal streaming rolls
per wavelength, each of which decay vertically from the ac-
tuated boundary. In contrast to reported bulk acoustic wave
cases, we do not observe any acoustic streaming rolls inside
the viscous boundary, which we attribute to the differences in
actuation condition as well as differences in the established
first-order fields.

The motion of the particles is governed by the viscous drag
force from the acoustic streaming as well as the direct acoustic
radiation force due to scattering of sound waves on the parti-
cles. For our specific model parameters (600µm wavelength,
6.65-MHz actuation frequency, and polystyrene particles sus-
pended in water), we obtain an approximate critical particle
size of 4−8µm for which the particle motion goes from being
streaming-drag dominated to being radiation dominated. The
critical particle size is only approximate due to the acoustic
streaming decaying strongly along the height of the channel.

The next important step is to obtain direct experimen-
tal verification of our numerical results by use of 3D astig-

matism particle tracking velocimetry capable of determining
the three-dimensional three-component particle trajectories.43

Such experimental verification would pave the road for fur-
ther enhancements of our numerical model to include wall-
enhancement effects of the viscous drag force as well as the
inclusion of the heat-transfer equation in the governing equa-
tions in order to account for temperature effects as recently
studied by Muller and Bruus.51
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