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Towards chromate-free corrosion inhibitors: 

structure-property models for organic alternatives 

D.A. Winkler,a,d M. Breedon,b,c A.E. Hughes,c F. Burden, A.S. Barnard,b T.G. 
Harvey,c and I. Colec   

Progressive restrictions on the use of toxic chromate-based corrosion inhibitors present serious 

technical challenges. The most critical of these is the lack of non-toxic ‘green’ alternatives that 

offer comparable performance, particularly on corrosion-prone aluminium alloys such as the 

2000 and 7000 series. In this study we used computational modelling methods to investigate 

the properties of a range of small organic, potentially safer inhibitors and their interactions 

with technologically relevant alloy surfaces. We have generated robust and predictive 

computational models of corrosion inhibition for a structurally related data set of organic 

compounds from the literature. Our studies have correlated molecular features of the inhibitor 

molecules with inhibition and identified those features that have the greatest impact on 

experimentally determined corrosion inhibition. This information can be used to drive guided 

decision making for in silico or experimental screening of molecules for their corrosion 

inhibition efficiency, while considering more carefully their environmental consequences. 

 

1. Introduction 

Traditionally, many metallic structures in corrosive 

environments have been protected by the use of chromates, as 

corrosion inhibitors in paint films, or as conversion coatings on 

the surface of metals or alloys 1. Chromates are very effective 

inhibitors but recent studies have shown that they can be 

occupational ‘hot spot’ pollutants posing significant risk to 

workers involved in their production, or as by-products from 

operations such as paint removal and metal preparation. Recent 

epidemiology data from a large study of chrome chemical 

production workers found the excess lifetime risk of dying from 

lung cancer from occupational exposures to be 255 per 1000 2 

or 255,000 per million, massively larger than the acceptable 

risk of 1 death per million. Consequently, chromates are 

considered to present an unacceptable health risk 3 and are 

progressively being limited or withdrawn from service by 

national legislation.  Considerable effort has been expended in 

looking for non toxic alternatives to chromates 4. Increasingly, 
5-8 experimental approaches are being combined with molecular 

modelling in an effort to find new, more benign inhibitors. 

Modelling studies have predominantly utilised quantum 

chemical methods based on density functional theory (DFT) 

together with statistical or machine learning modelling 

techniques embodied in the quantitative structure-property 

relationships (QSPR) method 9. There is a recent history of 

successful application of both electronic structure simulations 

10, 11 and QSAR 9, 12-17 to the prediction of toxicity in functional 

materials and coatings.  

DFT methods can derive a range of molecular properties 

such as HOMO and LUMO energies, fundamental gap ∆E, 

chemical potential µ, electronegativity χ, and chemical hardness 

η, generally in vacuo. A number of published reports have 

claimed to identify trends or statistical correlations between 

these types of electronic properties and experimentally 

measured corrosion inhibition values. However, a 2008 review 

by Gece 18 concerning the application of DFT methods 

concluded that, "calculations performed with inaccurate 

methods or with an insufficient dataset can easily lead to 

erroneous results". Indeed many of the published studies have 

been undertaken on very small data sets and without adequate 

consideration of solvent, ions, or other aspects of the complex 

chemical environment in which corrosion and inhibition occur.  

One of the most interesting classes of inhibitors is the 

substituted heterocyclic class of organic compounds.  We 

undertook the research outlined in this paper to determine 

whether or not correlations between quantum chemical 

properties and corrosion inhibition were valid for this 

promising class of ‘green’ corrosion inhibitors, or whether they 

indeed they exist.  We also investigated alternative ways of 

modelling the relationships between the molecular properties of 

small organic corrosion inhibitors and performance under ‘real 

world’ experimental conditions. Relative to other published 

corrosion inhibition modelling studies this work makes two 
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significant contributions to the search for more benign, small 

molecule replacements for toxic chromates:  

• it uses a well-designed and relatively large (for a corrosion 

study) experimental data set. We used the experimental data 

published by Harvey et al.19 comprising 28 organic 

inhibitors, many based on substituted heterocyclic structures 

of different types (‘the Harvey data set’). The inhibition 

efficiencies within the Harvey data set varied from -175% 

(enhanced corrosion) to 98% (almost complete inhibition of 

corrosion) and were measured from mass loss data over 28 

day immersion tests in saline solution at an inhibitor 

concentration of 1mM.  

• it uses an extensive pool of molecular properties related to 

atom types, functional groups, and molecular connectivity 

calculated from structural features of the inhibitor 

molecules. Molecular level properties are commonly called 

molecular descriptors. 

We chose these data to minimize false or chance 

correlations due to limited numbers of experimental data and 

limited range of inhibition measurements. The sparse feature 

selection methods we adopted also minimize the likelihood of 

chance correlations due to choosing subsets of parameters 

incorrectly from larger pools of possibilities. An important 

overall aim of these experiments was to establish whether 

predictive models of corrosion inhibition could be generated 

that could help accelerate the search for safe and effective 

alternatives to chromates. 

  

2 Materials and Methods 

2.1 Corrosion data 

The data on percent inhibition (or acceleration) of corrosion 

were taken from Harvey et al.19 and was based on mass loss 

over 28 days immersion in saline. The aluminium alloys used in 

this study were AA2024 and AA7075. The compositions were 

determined by ICP as AA2024 (Cu 5.3%, Mg 1.6%, Mn 0.6%, 

Fe 0.2%, Zn <0.1%) and AA7075 (Cu 1.4%, Mg 2.4%, Mn 

<0.1%, Fe 0.2%, Zn 5.4%).19 AA2024 was much higher in 

copper than 7075, while 7075 was much higher in zinc. Iron 

and magnesium levels were comparable in both alloys. 

Additional immersion tests on 1000 series Al (nearly pure 

Al) and pure Cu with some of the small molecule inhibitors 

used in our study found very little interaction with Al (which 

has a low affinity for S and N).20 Cu by contrast was affected 

by several of the organic tested, forming coloured solutions 

and/or precipitates of corrosion products. Although the 

behaviour of an intermetallic may be different to that of bulk 

Cu, these experiments show that Cu is interacting strongly with 

some of the inhibitor molecules. 

2.2 Speciation 

The identities of the 28 small organic molecules from 

Harvey et al.19 are summarized in Table 1, and their chemical 

structures shown in Figure 1. The speciation of the inhibitors 

was calculated using the SPARC method.21 SPARC uses 

relatively simple computational algorithms to estimate pKas of 

organic molecules from their structures. Structures are broken 

at each essential single bond into functional units that have  

intrinsic properties. Acidic and basic reaction centres are 

identified, and the impact of attached structural features on pKa 

is estimated using perturbation theory. Structures of the 

inhibitors were input as SMILES strings to the SPARC 

program, and the relative populations of ionized and neutral 

species were calculated at pH 7. Molecular and DFT-based 

descriptors were calculated for neutral and ionized states where 

relevant. 

 

Table 1. Identities, corrosion performance (% inhibition), and 

speciation at initial pH 7 of the inhibitors 

 
Inhibitor AA-

2024 

AA-

7075 

Species† 

2-Mercaptobenzimidazole 90 84 N+ S- 

2-Mercaptobenzothiazole 95 91 S- 

2-Mercaptopyrimidine 89 50 S-, N+S- 
2,5-Dimercapto-1,3,4-
thiadiazole 

26 -32 2xS- 

4,5-Diamino-2,6-
dimercaptopyrimidine  

87 80 N+S-S- 

4,5-Diaminopyrimidine  47 84 neutral 

6-Amino-2-
mercaptobenzothiazole 

89 94 S- 

Benzotriazole 98 92 neutral 

2,3-Mercaptosuccinate 82 48 2xCOO- 

4-Phenylbenzoate -72 -143 COO- 
6-Mercaptonicotinate 94 86 N+S-,COO- 

2-Mercaptobenzoate 88 80 COO- 

2-Mercaptonicotinate 83 70 N+S-,COO- 

3-Mercaptobenzoate 16 -22 S-,COO- 
4-Hydroxybenzoate -34 -56 COO- 

4-Mercaptobenzoate 97 76 S-,COO- 

Acetate -12 15 COO- 

Diethyldithiocarbamate 97 96 S- 
Isonicotinate -12 -45 COO- 

Mercaptoacetate 96 83 COO- 

Mercaptopropionate 100 31 COO- 

Nicotinate -107 -91 COO- 
Picolinate 58 14 COO- 

Salicylate -175 -89 COO- 

Pyridine -139 -150 neutral 

Pyrimidine -153 -220 neutral 
Benzoate  -80 -62 COO- 

Thiophenol 93 87 S- 

† S-, COO- means ionized thiol or carboxylate; N+ means protonated nitrogen 
atom; N+S- is a zwitterionic form. Sodium salts of anions were used where 
relevant. 
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Figure 1.  Structures of inhibitors in the data set 

 

The small organic molecules in the Harvey data set exhibit 

significant chemical diversity and a wide range of speciation 

behaviour, depending on the number and nature of their 

ionisable groups. In some cases the identity of the organic 

species was clear at the neutral pH. However, some of the 

heteroaromatic compounds, and indeed, some inhibitors that 

contained both COOH and SH acidic moieties, exhibited quite 

complex speciation.  In some instances there were as many as 

5-6 coexisting species at the experimental pH. Given that these 

may have different affinities for metal surfaces and clearly 

different molecular properties as calculated by DFT and other 

methods, it was useful to identify the main species that exist at 

the experimental pH.  The dominant speciation, and the 

corrosion performance for the two aerospace alloys for the 

Harvey data set are also summarized in Table 1. 

The speciation of some of the inhibitors was quite complex. 

Harvey at al. 19 assumed that some molecules contained a single 

acidic moiety when they generated sodium salts by adding the 

relevant number of moles of sodium carbonate. We have 

assumed that the effects of incomplete neutralization and salt 

formation were minimal. 

2.3 DFT calculated molecular properties 

The DFT derived molecular descriptors generated were: 

 

Ionization potential (IP) = EN-1 – EN            (1) 

Electron affinity (EA) = EN – EN+1                (2) 

Absolute hardness (η) = (IP – EA) / 2           (3) 

Chemical potential (µ) = – (IP + EA) / 2           (4) 

Mulliken electronegativity (χ) = (IP + EA) / 2           (5) 

 

where EN is the ground-state energy of a system containing N 

electrons, which in this instance is the corrosion inhibitor 

molecule in vacuo. The -1 and +1 notations refer to the energies 

of species with one electron removed or one added. 

 These molecular identifiers were obtained for each of the 28 

inhibitors calculated by DFT using the Spanish Initiative for 

Electronic Simulations with Thousands of Atoms (SIESTA) 22 

and Gaussian packages23. The exchange correlation functional 

of Perdew-Burke-Ernzerhof (PBE)24 with a double zeta plus 

polarization (DZP) basis set and cut off energy of 500 Ry was 

employed for all SIESTA calculations. All norm-conserving 

pseudopotentials were used as supplied with the SIESTA code 

without further modification. Structures were converged in a 30 

x 30 x 30 Å supercell, until the residual forces on atoms was 

less than 0.01 eV/Å and the total energy difference between 

SCF steps was less than 10-4 eV. For comparison, Gaussian09 

calculations were performed as all electron calculations 

utilising the 6-311++G** basis set; also utilising the PBE 

exchange correlation functional. 

2.4 Quantitative structure-inhibition relationship studies 

The molecules in the Harvey data set were constructed 

using Sybyl x2.0 (Certera Limited). The structures were energy 

minimized using the Tripos force field. They were used to 

calculate a range of molecular descriptors such as the log of the 

octanol-water partition coefficient (a measure of molecular 

lipid solubility), molecular surface area, volume, molar 

refractivity (size and polarizability), polar surface area, 

numbers of hydrogen bond donors and acceptors. The 

structures were also used to generate a large variety of 

computed molecular descriptors using the DRAGON program 
25 and our in-house modelling package, BioModeller 26-28. We 

selected relevant descriptors from a pool of 173 in-house, and 

194 Dragon descriptors. We also generated functional group 

descriptors that describe or quantify chemical moieties or 

fragments in molecules.  These were: the number of sulfur 

atoms, number of ionized sulfur atoms, number of ionized 

COOH groups, number of rings, number of heteroaromatic 

nitrogen groups, and total molecular charge. Descriptors were 

calculated for neutral and ionized states at pH7 where relevant. 
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Models relating molecular properties to corrosion inhibition 

were constructed using the BioModeller software. The 

Bayesian modelling methods embodied in the BioModeller 

package have been described in detail elsewhere.27, 29-35 Both 

linear and nonlinear models were generated. Linear models 

used sparse linear regression methods. The nonlinear models 

used a Bayesian regularized neural network 26, 29, 31, 32, 35, 36 that 

automatically controls model complexity to optimize the 

predictive performance of the models. The neural network 

training was stopped when the Bayesian evidence for the 

models was maximal. Generally two or three hidden layer 

nodes were employed in a three layer feed forward neural 

network; these types of models are relatively insensitive to the 

neural network architecture. The input and output layers nodes 

contained linear transfer functions, and the hidden layer nodes 

(where the computation is carried out) employed sigmoidal 

transfer functions.  

Although models derived from Bayesian regularized neural 

networks do not strictly require a test or validation set, the 

predictive power of the models was assessed37, 38, nonetheless, 

by partitioning the data set into a training set (80% of the 

compounds) and test set (20% of the compounds). The 

performance of the models was assessed using the standard 

error of the prediction of the training and test sets.  Other 

statistical measures of merit were also calculated although these 

are not as robust (more influenced by the size of the data set 

and number of descriptors) as the standard error. 

 

3. Results and discussion 

3.1 Relationship between corrosion inhibitors for the two 

aluminium alloys 

The inhibition results over 28 days immersion in saline, for 

the two alloys AA2024 and AA705, correlate strongly with 

each other (r2=0.84, Figure 2). The corrosion inhibition 

exhibited by the 28 compounds was 10% lower on average for 

the AA7075 alloy than for the AA2024 alloy. 
 

 
Figure 2. Correlation between corrosion inhibition on AA7075 

and on AA2024 for 28 small organic inhibitors. 

 

Inspection of the inhibition results for the two alloys reveals 

that sulfur-containing ligands are almost uniformly more 

effective inhibitors of corrosion on the AA2024 alloy than the 

AA7075 alloy (e.g. 2-mercaptopyrimidine, 3-mercapto-

benzoate, 2-mercaptonicotinate, 2,3-dimercapto-succinate, 

mercaptoacetate, mercaptopropionate, 2,5-dimercapto-1,3,4-

thiadiazole).  This may be due to the higher Cu content of this 

alloy compared to AA7075. Conversely, compounds that do not 

contain sulfur are often more corrosive on the AA7075 alloy 

than on the AA2024 alloy (e.g. pyridine, pyrimidine, 4-

phenoxybenzoate, 4-hydroxybenzoate), which may be 

reflective of the high Zn content found in AA7075 alloy, 

compared with the AA2024 alloy (richer in Cu).39 

 

3.2 Relationship between corrosion inhibition and DFT 

properties 

 

We calculated DFT-based and other molecular descriptors 

described below for two scenarios: assuming the molecules 

were neutral; assuming they were speciated at pH 7 according 

to Table 1. Initial modelling investigations aimed at 

determining the best sets of descriptors for generating robust 

and predictive inhibition models indicated, somewhat 

surprisingly, that speciation has relatively little effect on model 

quality. This is consistent with experimental corrosion testing 

carried out in CSIRO laboratories.40 

Other work has shown that, whether or not speciation was 

included, there was essentially no correlation between 

ionization potential, HOMO or LUMO energies, or any other 

quantum chemically-derived descriptors and corrosion 

efficiency.41 A significant number of literature reports 5, 42-50 

claim that the frontier orbital energies and molecular properties 

derived from such energies are related to the corrosion 

inhibition. However, many of these studies used a very small 

number of inhibitors, in some cases as few as four, making the 

probability of chance correlations high. They also ignore the 

effects of solvent, ions and salts, speciation, and the presence of 

a metal surfaces, as the calculations would not be tractable if 

these were included. As discussed in section 3.4, molecular 

descriptors derived from the in vacuo DFT calculations on the 

Harvey data set were identified to be among the least relevant 

descriptors for generating predictive models of corrosion 

inhibition. The correlations between the DFT and molecular 

descriptors, and the corrosion inhibition for the two alloys are 

listed in Supplementary Information. 

 

3.3 Machine learning-based quantitative structure-

inhibition modelling. 

 

We used the sparse feature selection capabilities of 

BioModeller to select the most relevant subset of descriptors 

from a large pool in a context dependent manner. As the data 

set was of moderate size we used all of the data in the feature 

selection process. They have been shown to generate robust 

models on small to moderate sized data sets without the need 

for a test set, 29 although we chose to use a test set in this study. 
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We generated statistically significant models that could 

predict the corrosion inhibition of compounds in an external 

test set using DRAGON descriptors and in-house chemically 

intuitive descriptors. We found a set of between 7 and 9 

descriptors in each descriptor family could generate linear and 

nonlinear models that could make good, quantitative 

predictions of the degree of inhibition of molecules in the data 

set.  As mentioned above, descriptors based on the speciated 

form of the inhibitors at pH7 generated models of similar 

quality to those assuming neutral inhibitors, so the results for 

the neutral form of the molecules are reported here. 

3.3.1 Corrosion inhibition models for the AA7075 alloy 

We found that nonlinear models provided modest but 

significant improvements in the quality of corrosion inhibition 

structure-property models compared to linear models. The 

results of modelling of corrosion inhibition for AA7075 using 

DRAGON and in-house descriptor families are summarized in 

Tables 2 and 3. The r2 values reflect the fraction of variance in 

the training and test set data that is explained by the model, and 

the SEE and SEP represent the standard errors of 

estimation/prediction for inhibitors in the training and test sets. 

Ndesc is the number of molecular descriptors (including the 

MLR intercept) used in the model, and the Neff is the number of 

effective weights used in the neural network models (the sparse 

Bayesian regularization algorithm is self-pruning so that fewer 

network weights are used in the models than in a fully 

connected backpropagation network). 
 

Table 2. Structure-inhibition models for AA7075 employing 

DRAGON descriptors 

 

Model r2
train SEE % r2

test SEP % Ndesc Neff 

MLREM 0.87 39   8 9 

MLREM 

20% test 
0.86 43 0.91 36 8 9 

BRANNGP 

2 nodes 
0.83 24   8 11 

BRANNGP 

2 nodes 

20% test 

0.77 24 0.88 32 8 11 

Descriptors used were: nR09 nBnz C-027 BEHm7 HOMT C-

044 O-057 S-106. 

 

 The nonlinear models were sparse, using only 10-11 

effective weights in the model and employing 7-8 descriptors, 

and gave superior prediction to the linear models. The standard 

error of prediction for the test set was 23% for the nonlinear 

model compared to 31% for the linear model using atomistic 

and functional group descriptors.  

 

 

 

 

Table 3. Structure-inhibition models for AA7075 employing 

in-house intuitive descriptors 

 

Model r2
train SEE % r2

test SEP % Ndesc Neff 

MLREM 0.61 64   7 8 

MLREM 

15% test 
0.60 71 0.79 31 7 8 

BRANNGP 

2 nodes 
0.79 31   7 11 

BRANNGP 

2 nodes 

15% test 

0.74 35 0.99 23 7 10 

Descriptors used were: SH S BCGM~2 BCGM~4 BCGM~5 

A~11 A~31 

 

The Dragon descriptors also generated predictive models of 

corrosion inhibition. The linear and nonlinear models could 

predict the inhibition of compounds in the training set with a 

standard error of 43% and 24% and 36% and 32% for the test 

set The quality of the prediction of the training and test set for 

the best models employing Dragon and in-house descriptors is 

illustrated in Figures 3 and 4. 
 

  

 
Figure 3.  Observed versus predicted corrosion inhibition for 

7075 alloy for the nonlinear model using DRAGON 

descriptors. Top panel: model for entire data set. Bottom panel: 

data set split into training (circles) and test (triangles) sets. 
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Figure 4.  Observed versus predicted corrosion inhibition for 

7075 alloy for the nonlinear models using the in-house intuitive 

descriptors. Top panel: model for entire data set.  Bottom panel: 

data set split into training (circles) and test (triangles) sets.  

 

The nonlinear models could account for 70-90% of the 

variance in the data. The ability of the models to predict the 

degree of inhibition of the external test set compounds is good, 

as Figures 3 and 4 also show. 

3.3.2 Corrosion inhibition models for the AA2024 alloy 

The AA2024 alloy was more difficult to model and 

generated structure-inhibition models of lower statistical 

significance than the AA7075 alloy. This was largely due to a 

uneven distribution of inhibition data across the data set than 

with the AA7075 alloy. There were a significantly larger 

number of highly effective inhibitors for AA2024 than for 

AA7075. Again, we found that nonlinear models provided a 

modest but significant improvement in the quality of corrosion 

inhibition structure-property models compared to linear models. 

The results of modelling of AA2024 inhibition using DRAGON 

and in-house descriptor families are summarized in Tables 4 

and 5, and the quality of prediction of the best models 

summarized in Figures 5 and 6. 

 

 

 

 

Table 4. Structure-inhibition models for AA2024 employing 

DRAGON descriptors 

 

Model r2
train SEP % r2

test SEP % Ndesc Neff 

MLREM 0.82 45   8 9 

MLREM 

20% test 
0.83 46 0.80 49 8 9 

BRANNGP 

2 nodes 
0.80 30   8 11 

BRANNGP 

2 nodes 

20% test 

0.81 28 0.74 45 8 11 

Descriptors used were: nR09 nBnz C-027 BEHm7 HOMT C-

044 O-057 S-106 

 

As Tables 4 and 5 show, the DRAGON descriptors generated 

models with higher statistical significance than did the 

atomistic and functional group descriptors for the linear 

models. The nonlinear models were of similar predictive power. 

 

Table 5. Structure-inhibition models for AA2024 employing 

in-house intuitive descriptors 

 

Model r2
train SEE % r2

test SEP % Ndesc Neff 

MLREM 0.62 64   7 8 

MLREM 

20% test 
0.67 65 0.42 94 7 8 

BRANN 

2 nodes 
0.75 36   7 9 

BRANN 

2 nodes 

20% test 

0.76 36 0.69 46 7 9 

Descriptors used were: SH S BCGM~2 BCGM~4 BCGM~5 

A~11 A~31 

 

The nonlinear models were sparse, using only 7-8 molecular 

descriptors and 9-11 effective weights in the models, and gave 

superior prediction to the linear models (SEP values of 45% 

versus 49% (Dragon descriptors) and 46% versus 94% (in-

house intuitive descriptors).  
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It is clear from Figures 5 that the DRAGON descriptors 

generated models that represented the data more evenly across 

the inhibition range. The atomistic and functional group 

descriptors tended to classify compounds either as inhibitors or 

non-inhibitors/accelerants as shown by the clustering in the 

right hand side of Figure 6. As discussed previously, this is 

exacerbated by the rather uneven distribution of inhibition 

values across the range compared to those for AA7075. 

 
  

 
 
 

 
Figure 5.  The observed versus predicted corrosion inhibition 

for 2024 alloy for the nonlinear model using DRAGON 

descriptors. Top panel: model for entire data set. Bottom panel: 

data set split into training (circles) and test (triangles) sets. 
 

 
 

 
 

Figure 6.  The observed versus predicted corrosion inhibition 

for 2024 alloy for the nonlinear models using the in-house 

intuitive descriptors. Top panel: model for entire data set. 

Bottom panel: data set split into training (circles) and test 

(triangles) sets.  

3.4 Interpretation of the models 

The small organic molecules that accelerate corrosion rather 

than inhibit it tend to be fairly strong organic acids (low pKa 

values for either the COOH or SH moieties, see Table 1). This 

may provide a partial explanation for the deleterious effects of 

some of these molecules, particularly for the zinc-rich AA7075 

alloy. These types of molecules may also destabilize the oxide 

layer on the surface of the metal, or generate metal 

carboxylates, thus accelerating corrosion. The corrosive effect 

of organic compounds is quite complex, and has been reviewed 

by Heitz.51 He illustrates the potential for protic organic 

compounds in particular to accelerate rather than inhibit 

corrosion. 

The quantitative structure-inhibition relationships models 

show that a relatively small number of molecular properties 

affected the inhibition. Some of these descriptors are arcane and 

hard to interpret. It appears that sulfur atoms can in some cases 

ameliorate corrosive potential. It is clear by inspection that in 

many cases the presence of a sulfur atom, particularly as an 

ionized –SH moiety and near a heteroatom in a ring, generates 

Page 7 of 10 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Journal Name 

8 | Green Chem., 2013, 00, 1-3 This journal is © The Royal Society of Chemistry 2013 

compounds with very good corrosion inhibition performance. 

 The relevant descriptors for models using DRAGON 

descriptors were: the number of rings containing 9 heavy atoms 

(e.g. benzimidazole) (nR09); the number of benzene-like rings 

(nBnz); the number of R-CH-X moieties (C-027, X is a non-C 

or H atom)); Burden BCUT descriptor - molecular eigenvalue 

based on atomic mass (BEHm7); aromaticity index based on 

length of conjugated pathway (HOMT); the number of R-CX-X 

moieties (C-044); the number of phenol/enol/carboxyl OH 

moieties (O-057); the number of R-SH moieties (S-106). The 

relevant chemically intuitive in house descriptors were: the 

number of thiol moieties (SH); the number of sulfur atoms in 

the molecule (S); the number of hydrogen atoms with 

intermediate partial charge (BCGM2); the number of carbon 

atoms of lower partial charge (BCGM4);  the number of carbon 

atoms of intermediate partial charge (BCGM5); the number of 

tertiary nitrogen atoms (A11); the number of secondary sulfur 

atoms (A31).   

It is clear that some of the descriptors selected from each 

family encode similar properties, especially those relating to the 

sulfur moieties in the inhibitors (S-106, SH, S). The other 

descriptors are difficult to interpret in terms of corrosion 

mechanisms. They relate mainly to the aromaticity of the 

inhibitors (nBnz, HOMT), the heteroaromatic properties of the 

inhibitors (A11, indirectly nR09). These descriptors encode 

properties related to sulfur and nitrogen binding to metals and 

the length of conjugated chains in aromatic or more extended 

molecules, possibly suggesting π-π interactions that would be 

involved if self-assembly at metal surfaces was important. Thus 

it is possible that some of the aromatic inhibitors may be 

forming ordered layers on the surface, or in the case of 

compounds that resemble thiophenolates, there may be 

formation of polymeric complexes on the surface as has been 

reported in the literature.52, 53 It is also clear that some inhibitors 

such as aliphatic thio-containing compounds may be working 

via another mechanism again. Clearly the mechanism of 

interactions of small organic molecules with metal surface is 

complex and largely unknown. These factors, plus the modest 

size and chemical diversity of the data set, suggests caution in 

not over-interpreting the models. Currently, the complexity of 

corrosion and corrosion inhibition for real systems containing 

commercial alloys, water, salts etc. is sufficiently complex that 

only machine learning methods like neural networks are 

feasible for the modelling of corrosion inhibition. However, this 

capability is at the expense of much lower mechanistic insight 

compared to computationally intractable physics-based 

methods like DFT and molecular dynamics 

These models are able to make predictions of the likely 

corrosion inhibition of new small molecules not yet tested or 

synthesized. However, care must be taken to ensure these 

predictions are close to the domain of applicability of the 

models (the ranges of the molecular descriptors used to 

generate the models) or the accuracy of prediction will degrade 

significantly. 

Although the data set we have analysed is relatively small 

for a QSPR modelling study it is, to the authors’ knowledge, 

the largest yet analysed to determine correlation between 

molecular characteristics and experimentally measured 

corrosion inhibition. As such it is of significant interest that 

correlations with DFT derived properties were not useful, and 

that the modelling method found other types of molecular 

descriptors that could model the corrosion efficiency well.  

It should be noted that the DFT derived molecular 

properties (equations 1-5) were all derived from three DFT 

calculations: Namely EN, EN-1, EN+1. This dependence reduces 

the richness of the molecular identifiers. The inability of DFT 

to correlate with corrosion inhibition may be rooted in the 

disparate length scales between molecular simulation and the 

macroscopic measurements of corrosion inhibition, and the 

suitability of the data for comparison. There are also several 

computational issues that should be considered before drawing 

conclusions on the suitability of DFT to provide data for 

corrosion inhibition QSPR models. Firstly, the DFT 

calculations are very time- and resource consuming so cannot 

account for the effect that solvent, ions, and the metal surface 

have on the corrosion inhibitor molecule and vice-versa. The 

adsorption of a corrosion inhibitor molecules which often 

features N, O, S containing functional groups or heterocyclic 

positions, onto a metal/metal oxide surface will likely be 

accompanied by a redistribution of charge and states, which 

may be the result of back-bonding from the surface to the 

corrosion inhibitor, or the formation of a covalent or ionic bond 

with the surface. Such surface states may shift or fill mid-gap 

energy levels, affecting the chemical/electrical characteristics of 

the surface. In addition, the adsorption of a given corrosion 

inhibitor molecule may not be a simple associative adsorption 

with the surface; bond breaking/deprotonation may also occur. 

Thus, calculation of deprotonation energies of the corrosion 

inhibitor may be warranted, as this will quantify the likelihood 

of such an event occurring at room temperature. The inclusion 

of molecular properties such as charge transfer to and from the 

surface, the direction of such a transfer, post-adsorption 

changes in work function, and other inhibitor/surface 

interactions may allow correlations between DFT calculated 

properties and experimentally determined corrosion inhibition 

to be derived identified in the future.  

Correlations between molecular properties and attributes 

and measured inhibition must span length scales from the 

atomic (10-10 m) to the macroscopic (10-1m), the size of the test 

plate used to measure inhibition. Furthermore, the measured 

property % inhibition as determined by mass loss is a complex 

average parameter that is influenced by a wide range of 

parameters that include, surface preparation, oxygen levels, 

initiation of anode and cathode activity on a surface and the 

role of microstructure and intermetallics, transition to 

metastable pitting and then stable pitting, pit chemistry and the 

development of pit caps and oxide layers with the inhibition 

having a potential effect on all these properties. Future work 

could look at refining the experimental measure to reducing the 

complexity of the processes to contribute to the measure. For 

example electrochemical measures such an anodic or cathodic 

current or electrochemical impedance measurements and 
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equivalent circuits could be used, at least as potentially valuable 

descriptors to relate observed inhibition to the structures of the 

inhibitors. However, this will involve a relatively large amount 

of experimental effort for a library of inhibitors. 

Conclusions 

We have shown that, when applied to a larger data set of 

small organic corrosion inhibitors, the reported correlation 

between frontier orbital parameters and inhibitor efficiency 

disappears. We have also shown that it is possible to generate 

reasonably robust, predictive, and quantitative models of 

corrosion inhibition using other types of molecular descriptors 

encoding molecular properties. These models provide a more 

promising method of predicting the likely effectiveness of new 

corrosion inhibitors within the domain of the models. 

Furthermore, they provide a rational basis for design of new 

inhibitors that may eventually replace toxic chromate corrosion 

inhibitors and have much less impact on human health and the 

environment. 
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