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t design of bimetallic materials via
multimodal machine learning and the accessibility
index

Yuming Gu,†a Yating Gu,†a Maochen Yang,†b Shisi Tang,†a Jiawei Chen,a Xinyi Liang,a

Dong Zheng,cd Zekun Li,b Fengqi Song, cd Yang Gao,b Yan Zhu, *a Yinghuan Shi*b

and Jing Ma *a

It is a great challenge to efficiently explore bimetallic systems containing miscible or immiscible elements

(e.g., Au/Ni and Au/Rh) due to the difficulty in screening candidates with favorable formation energy (Eform)

from the vast combination space of different metal pairs and ligands or coordination environments. The

importance of the coordination environment is highlighted through the multilevel attention mechanism

within the graph convolutional neural network (GCNN) and the Shapley additive explanation (SHAP)

analysis for an 8-feature scheme in Eform prediction. To further reduce the prediction error of formation

energy in the test set, multimodal machine learning (MML) is applied to 11 186 bimetallic nanocluster

configurations by integrating the molecule graph of the metal core and the physical property features

such as mixing enthalpy (Hmix) of the bimetallic pair and SMILES strings and solubility (log P) of the ligand.

The present MML model could predict nanoclusters with up to more than one thousand atoms rapidly.

To evaluate the experimental accessibility of bimetallic porous materials, alloys, and 2D materials in

a general way, an accessibility index, 4, is defined as the combination of the electronegativity (cenv) and

the reduced atomic distance index ~D without the need for density functional theory (DFT) calculations.

Larger values of 4 indicate that the bimetallic materials are more accessible, owing to the energetically

favorable interatomic charge transfer and optimal reduced distance around 0.3 (∼3.5 Å metal–metal

distance) for nanoclusters and 0.1 (∼2.5 Å) for zeolites, respectively. Among the 100 external test

samples, three nanoclusters (Au36Ag38((CF3)2PhC^C)30Cl10, Au38Ag33((CF3)2PhC^C)30Cl8, and

Au9AgRh(PPh3)8Cl) and three 2D materials (Au/Ni@NC, Ni/Pt@NC, and Cu/Gd@NC) were synthesized in

this work, in good agreement with that their accessibility indices (4) are in the favorable range (4 $ 0.30)

and low formation energies below −1 eV per atom. The proposed MML scheme and accessibility index

hold promise in facilitating the high-throughput discovery and bimetallic material design.
Introduction

The combination of two different kinds of metal elements
brings unique adsorption and luminescence properties in
various functional bimetallic systems such as ligand-protected
nanoclusters, nanoparticles, alloys, and two-dimensional (2D)
materials with potential applications in catalysis, sensors, and
drug delivery.1–6 It is interesting to study the accessibility of
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bimetallic materials with miscible or even immiscible metal
pairs, whose miscibility is reected by the heat of mixing (Hmix)
in binary phase diagrams, that is, for solid solutions Hmix <
0 and for phase-separated systems Hmix > 0. The mixing of
immiscible elements like Ag/Ni, Ag/Cu, Au/Rh, Au–Pt, etc., has
been realized in nanomaterials via various methods such as
nonequilibrium synthesis,3 colloidal co-reduction,7–10 physical
co-sputtering,11 quenching,12,13 or size reduction methods.14 For
the nanoclusters, which are composed of a certain number of
metal atoms and ligands, some heteroatom-doped gold nano-
clusters with miscible (Au/Cd and Au/Cu)15,16 and immiscible
(Au/Ru, Au/Rh, and Au/Pt) elements17,18 have aroused experi-
mental and theoretical interest. When exploring novel bime-
tallic systems with miscible or immiscible pairs, there exist
several challenges. The vast compositional and structural space,
involving diverse element types, stoichiometries, and coordi-
nation motifs, exceeds the manual exploration. Screening suit-
able formation energies (Eform) among numerous possible
© 2025 The Author(s). Published by the Royal Society of Chemistry
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metal–ligand combinations is particularly challenging. The
strong inuence of coordination environments further
increases the complexity of stability prediction. Density func-
tional theory (DFT) calculations for large-sized systems are
computationally expensive, while experimental synthesis of
such bimetallic systems oen involves high uncertainty and
cost. A predictive machine learning (ML) framework to effec-
tively evaluate the thermodynamic stability and accessibility of
the bimetallic materials is desired to save the computational
and experimental costs.

Recent advances in ML have enabled stability prediction for
materials using diverse data modalities. For instance, the graph
modality was applied to give the prediction of the formation
energies of Au nanoclusters, guiding the experimental synthesis
of new structures (Au10(PPh3)7Cl3 and Au38OT24).19 A quantita-
tive metric of synthesizability for inorganic materials denoted
as the crystal-likeness score (CLscore) was predicted by the
graph modality via positive-unlabeled learning.20 In the context
of bimetallic nanoclusters, several numeric descriptors,
including cohesive energy differences, atomic radius mismatch
(DR), coordination asymmetry, and magnetism have been
employed to build the relationship between the core–shell
Fig. 1 The flow chart of the stability and accessibility index prediction of b
methods.

© 2025 The Author(s). Published by the Royal Society of Chemistry
preference of the bimetallic nanoclusters.21 Despite the prog-
ress, relying solely on a single modality alone is insufficient for
machine learning models to accurately predict target properties
in some cases. Recently, multimodal machine learning (MML),
which integrates heterogeneous data streams such as graph and
text within a shared latent space, was applied to enhance the
efficiency of energy predictions for adsorption congurations to
accelerate the catalyst design.22 MML was also applied to
investigate the key role of the chemical structure in governing
per- and polyuoroalkyl substance removal, which visualized
the contributions of individual chemical elements via adding
the simplied molecular input line entry system (SMILES)
string modality into the numeric modality of the experimental
data.23 In addition, by fusing information from the modalities
of chemical composition (text) and crystal structures (graph),
several novel materials, such as Li1.5NbO0.5F0.5 and Li15TaN7O2,
were recommended as promising candidates for Li-ion
conductors.24

In this study, we develop an MML model to predict the
formation energies of bimetallic nanoclusters with up to thou-
sands of atoms quickly from 11 186 congurations of bimetallic
nanoclusters by DFT calculations, as shown in Fig. 1. The MML
imetallic materials usingmultimodal vs. single-modal machine learning

Chem. Sci., 2025, 16, 19644–19657 | 19645
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model integrates the information from three modalities: (1)
graph-based representations of core motifs, (2) SMILES string
encoding ligands, and (3) digital descriptors capturing key
thermodynamic and environmental features. An easily available
accessibility index, 4, was further introduced to quantify the
synthetic accessibility of bimetallic materials, which integrates
the environment electronegativity (cenv) and the reduced metal–
metal distance index (~D) without the need for DFT calculations.
This descriptor shows good transferability to evaluate 100
bimetallic materials reported in the literature, including porous
materials, alloys, and 2D materials. By taking 4 and Eform into
consideration together, three nanoclusters (Au36Ag38((CF3)2-
PhC^C)30Cl10, Au38Ag33((CF3)2PhC^C)30Cl8, and Au9-
AgRh(PPh3)8Cl) and three 2D materials (Au/Ni@NC, Ni/Pt@NC,
and Cu/Gd@NC) were synthesized successfully. The proposed
multimodal machine learning scheme is expected to accelerate
the experimental discovery and synthesis of bimetallic systems
from a huge chemical space.

Results and discussion
Construction of bimetallic material datasets

Several datasets comprising various nanoclusters have been
developed to facilitate the prediction of stability, bioactivities,
and nanohydrophobicity of nanoparticles.25–27 Herein, we
focused on the bimetallic combinations in material design. As
shown in Fig. 1, a dataset of bimetallic materials was compiled
with a total of 11 412 unique structures, spanning 75 repre-
sentative bimetallic element pairs (covering 44 miscible and 31
immiscible combinations). Among them, 11 186 nanocluster
congurations sampled from the potential surfaces of 126
nanoclusters and 120 zeolites were utilized for training and
internal testing. To evaluate model generalizability, an external
test set consisting of 100 experimentally reported bimetallic
materials, including 14 ligand-protected nanoclusters, 4
zeolites/metal–organic frameworks (MOFs), 35 alloys or nano-
particles, 5 oxide/nitride-supported metal systems, and 42 kinds
of 2D materials, was curated. Six newly synthesized bimetallic
structures in this work were also incorporated to update the
dataset.

Specically, the bimetallic nanocluster training set is mainly
based on 5 types of topology categories, including Au4M2(PET)8,
Au4M2(PET)8(PPh3)2, Au5M2((CH3)5C5)2 (PPh3)3Cl2, Au8-
M(PPh3)8, and Au9M(FPh3P)7Br3 (PET = 2-phenylethanethiol,
PPh3 = triphenylphosphine, FPh3P = tris(4-uorophenyl)phos-
phine, and (CH3)5C5 = 1,2,3,4,5-pentamethylcyclopentadienyl).
The diversity of bimetallic nanoclusters was achieved by doping
heteroatoms into gold nanoclusters, including Mn, Fe, Co, Ni,
Cu, Zn, Ru, Rh, Pd, Ag, Cd, Re, Os, Ir, Pt, and Hg, which
generated 126 types of nanoclusters. The congurational exi-
bility of the ligand also makes the conguration space compli-
cated, since different ligand orientations and binding modes
can lead to multiple stable or metastable structures. As a result,
we may need to search for the possible structures of nano-
clusters. For instance, Au4Ru2(PET)8, which contains an Au4Ru2
core and PET ligands, has been found to have 95 distinct
structures due to the exibility of the ligands and the uidity of
19646 | Chem. Sci., 2025, 16, 19644–19657
the core structure via the distance between Au and S atoms (dAu–
S) and the rotation of the C–S bond. To systematically capture
this structural diversity, we sampled nanocluster geometries
from the potential energy surfaces of 126 nanocluster proto-
types with different metal pairs and ligand types, covering both
miscible and immiscible combinations. For each nanocluster
prototype, multiple congurations were generated by varying
the arrangement of metal atoms and the coordination of
ligands, followed by DFT calculations to obtain their formation
energies. In this way, 11 186 nanocluster congurations were
compiled into the present bimetallic dataset, which encom-
passes a wide range of stoichiometries, coordination environ-
ments, and ligands. This dataset was then divided into training,
validation, and test sets (8 : 1 : 1 ratio) to construct and evaluate
the multimodal machine learning (MML) model in the
following section.

Metal atoms can also be anchored within the channels in
zeolites through coordination interactions with oxygen atoms,
forming the metal–zeolites. The distance between two metal
atoms (D) can be adjusted by the adjacent rings. These bime-
tallic zeolites were derived from Cu@zeolites with different
topologies and pore sizes (PLD), such as MFI (PLD = 6.36 Å),
MOR (PLD = 6.70 Å), and FAU (PLD = 11.24 Å). The doped
metals in bimetallic zeolites were mainly 3d–5d transitionmetal
elements, i.e., Fe/Cu@MFI (Fig. 1).

The 100 external test set data were collected from the pub-
lished literature, which were synthesized in experiments,
including porous materials,28 2D materials,29–31 metal-loaded
metal oxides/nitrides,32–34 alloys,35,36 and nanoclusters.37 Three
newly reported nanoclusters, Au36Ag38((CF3)2PhC^C)30Cl10,
Au38Ag33((CF3)2PhC^C)30Cl8, and Au9AgRh(PPh3)8Cl, were
added into the external test set. Additionally, three bimetallic
pairs supported on nitrogen-doped carbon (NC), namely, Au/
Ni@NC, Ni/Pt@NC, and Cu/Gd@NC were newly synthesized in
this work, which were also incorporated into the dataset to test
the predictive capabilities of the constructed models. The
prediction of accessibility was based on two target properties:
formation energy (Eform) and accessibility index (4), both of
which are dened in detail in the following sections.
Formation energy prediction: single-modal vs. multimodal
machine learning

To qualitatively evaluate the thermodynamic stability of the
bimetallic materials, the formation energy (Eform) was calcu-
lated with the denition shown as follows.

Eform ¼ Etotal �
P

Nmetali � Emetali � EenvP
Nmetali

(1)

In eqn (1), Etotal is the total energy of the bimetallic nano-
cluster or zeolite. Nmetali is the number of one kind of metal
atoms in the bimetallic materials, and Emetali is the energy of
metal atoms, in which i = 1, 2. Eenv is the energy of the
surrounding environment, for example, ligands for nano-
clusters, and frameworks for metal–zeolite. When the calcu-
lated formation energy was negative, it implies that the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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bimetallic materials are thermodynamically favorable for
experimental synthesis under the given conditions. The
computational details are shown in the SI. The formation
energy values are mainly populated in the range between −5.86
and 0.85 eV per atom for the bimetallic nanoclusters and
zeolites. As shown from the distribution of bimetallic formation
energies in the dataset in Fig. S1, most of the formation energies
of bimetallic materials are in the range of−4 to−1 eV per atom.
A DWeibull-like distribution of Eform occurs with D statistic and
p-value of 0.04 and 0.71 by the Kolmogorov–Smirnov (KS) test,
respectively. Two peaks may be ascribed to bimetallic nano-
clusters and zeolites in Fig. S1a and b. All structures of the
bimetallic nanoclusters were collected into the Bimetallic
Materials Dataset to train the multimodal machine learning
model (Fig. S2).

Formation energy prediction based on the GCNN model
with graph modality. Before exploring multimodal approaches,
it is useful to rst compare several commonly used single
modalities, such as graphs and digital descriptors, which can be
applied to predict the formation energy of bimetallic materials.
When only the graph modality was applied to represent the
bimetallic nanoclusters in a graph convolutional neural
network (GCNN) model through the home-made DeepMoleNe-
t,38,39 the input molecular information of the Au nanocluster
could be represented by nodes (atoms) and edges (atom pairs)
automatically, as shown in Fig. 2. In this work, the prediction
ability was tested by statistic values of mean absolute error
Fig. 2 The GCNN model based on graph modality for formation energy

© 2025 The Author(s). Published by the Royal Society of Chemistry
(MAE), root mean squared error (RMSE), and coefficient of
determination (R2), which are dened as

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

(3)

R2 ¼ 1�
Pn
i¼1

ðŷi � yiÞ2

Pn
i¼1

ðyi � yiÞ2
(4)

where yi are the machine learning predicted results, ŷi is the
actual DFT calculation values, and �yi is the averaged DFT values,
respectively. The GCNNmodel gives the prediction (MAE = 0.15
eV per atom; R2 = 0.93) for the formation energies of bimetallic
nanoclusters, in which hyper-parameters of GCNN are listed in
Table S1. Four different learning rates were tested to obtain the
optimal GCNN model, as shown in Fig. S3.

The signicance of the coordination environment in stability
prediction could be revealed through the multilevel attention
mechanism. Local attention operations are performed at T steps
following each aggregation of distinct node feature levels. The
inuence of adjacent atom environments on atomic attention
results in shis in importance at each step. High weight values
highlight the crucial roles of specic atoms in the energy
prediction.

Chem. Sci., 2025, 16, 19644–19657 | 19647
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prediction process. As shown in Fig. 2, taking Au4Pd2(PET)8 as
an example, the normalized attention values, Att, on metal
atoms are the highest in the bimetallic nanoclusters, indicating
that the metal core plays important roles in Eform prediction.
The ligands PPh3, PET, and (CH3)5C5 are the top three ligands in
the occurrence count, with the log P values of 5.69, 2.87, and
0.40, respectively. It is reported that the log P of the ligand has
great inuence on the solubility of Au clusters and cell activity.19

The coordination atoms, i.e., sulfur, also show relatively high
values (AttS = 0.50). When the PPh3 ligands are added to form
Au4Pd2(PET)8(PPh3)3, the bimetallic nanocluster becomes more
stable (Eform = −3.63 eV per atom) with the AttP value of 0.42. It
is found that the attention values of C atoms in coordinated
(CH3)5C5 (AttC = 0.51) are higher than those in PPh3 (AttC = 0.1–
0.2) for the Au5Pd2((CH3)5C5)2(PPh3)3Cl2 nanocluster. Interest-
ingly, the average attention values of ligands (Attligand) exhibit
the correlation between the extent of charge transfer between
two metals (DQCT). It has been revealed that the large extent of
charge difference (DQCT) between two metal atoms may lead to
a more stable structure.19 To sum up, the coordination envi-
ronment, charge transfer, and log P feature of ligands are
modulation factors in the stabilization of metal cores. In the
following subsection, these features will be used as descriptors
in building Eform prediction models.
Fig. 3 The 8-feature scheme model based on digital descriptor modalit

19648 | Chem. Sci., 2025, 16, 19644–19657
Formation energy prediction based on an 8-feature scheme
with digital descriptor modality. In addition to the log P and
DQCT mentioned above, there are another 8 digital descriptors
that are crucial in the prediction of Eform (Fig. 3). The compo-
nent descriptors include the size of the metal core (Nmetal), the
ratio of the number of doped metal atoms (ratio), and the
differences between molar mass of the metals (DM), respec-
tively. Leveraging binary metallic phase diagrams as feature
descriptors could capture the thermodynamics matching
between two metals. Hmix is selected as an easily accessible
feature to describe the miscibility of two metal elements. The
interactions between two types of metal elements were eluci-
dated by the differences between electronegativity (DcM), which
is a readily available parameter. In addition, some geometric
descriptors, such as the average metal–metal distance (D) and
the differences between atomic radius (DR), were further
selected for the formation energy prediction.

Coordination atoms in nanoclusters are usually sulfur (S)
and phosphorus (P), while oxygen (O) atoms are commonly
found in zeolites. The environmental electronegativity (cenv) can
be used to represent the coordination interaction between the
metal core and its surrounding environment, which can be
expressed in eqn (5).
y for the formation energy prediction.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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cenv = �cmetal − �csub (5)

where �cmetal is the average electronegativity of the total atoms
and �csub is the average electronegativity of the substrate. It is
found that the values of DQCT for bimetallic nanoclusters and
zeolites show a volcano-like correlation with the cenv, respec-
tively, as shown in Fig. 3. For bimetallic zeolites, the values of
DQCT become larger with more negative values of cenv, indi-
cating that the larger electronegativity difference enhances the
charge transfer by strengthening the interaction between metal
atoms and O atoms around the channel. In contrast, bimetallic
nanoclusters tend to exhibit larger DQCT values even with
smaller electronegativity differences, likely due to their distinct
coordination environments dominated by exible organic
ligands. The Pearson correlation coefficient matrix of these
features is shown in Fig. S4, from which one can nd that the
top 3 important features are the ratio, cenv, and Nmetal, respec-
tively. Shapley additive explanations (SHAP), derived from the
concept of Shapley values in game theory, provide a fair attri-
bution of contribution to each feature in the prediction process.
In this framework, a feature's contribution was determined by
averaging its marginal impact across all possible feature
combinations, ensuring that the distribution of contributions is
both fair and consistent. According to the SHAP analysis, the
features of ratio and cenv emerge as the most inuential, which
is consistent with the results obtained from the Pearson corre-
lation coefficient matrix. The analysis indicates thatmedium-to-
low values of ratio and higher values of cenv are associated with
more stable structures. A larger electronegativity difference
enhances the interaction between the metal core and its
surrounding environment, ultimately leading to greater struc-
tural stability in bimetallic systems.

The random forest regression (RFR) model gives good
prediction of the formation energies based on the bimetallic
nanocluster dataset among twelve models, as shown in Fig. S5
and S6. To show the generalization performance of these
features, the data of bimetallic zeolites were added to construct
bimetallic nanocluster and zeolite datasets. The RFRmodel also
retained the good prediction performance, in which the MAE
values of 0.18 eV per atom are shown in Fig. S7 and S8, and the
parameters are listed in Table S2.

However, the single data modality may not be entirely
robust to underestimate the complicated interplay of these
factors and may suffer from the overtting limitation to give
the reasonable prediction of the stability of the bimetallic
materials. Graph-based models tend to lack interpretability,
making it difficult to unravel the chemical factors behind
predictions. On the other hand, models that rely solely on
digital descriptors are prone to overtting, primarily due to
their inability to capture the full structural and environmental
complexity of chemical systems. The multimodal machine
learning (MML), a promising approach that integrates diverse
data modalities, will be applied in the next subsection for
prediction of formation energy.

Formation energy prediction based on an MML model. We
have designed an MML model with contextual awareness,
including graph (for the metal core), SMILES (for the ligand),
© 2025 The Author(s). Published by the Royal Society of Chemistry
and some digital descriptors (for physical properties), to predict
the Eform of the bimetallic nanoclusters, as shown in Fig. 4. The
purpose of integrating multiple modalities, such as graph
representations of themetal core, SMILES strings of the ligands,
and digital descriptors such as mixing enthalpy (Hmix) and
solubility (log P), is to capture complementary information
about bimetallic nanoclusters that a single modality alone
cannot fully represent. The graph modality encodes structural
topology, SMILES provides the chemical composition and
ligand environment, and digital descriptors supply the key
thermodynamic and physicochemical properties. By combining
these heterogeneous data streams in a shared latent space, the
MML model could achieve contextual awareness and avoid the
limitations of single-modality models, such as lack of inter-
pretability or overtting.

All the structures were collected into the nanocluster dataset
to train the MML model, in which 8949 data (80%) were chosen
as the training set, 1119 (10%) for the validation set, and the rest
for the test set, as shown in Table 1. The framework of the MML
model is illustrated in Fig. 4a. The bimetallic nanoclusters are
initially separated into two parts: the core and the ligands. The
metal core is represented by a molecular graph that captures its
topological structure,Mcore, which is subsequently encoded into
graph embeddings. As mentioned above, the miscibility of two
metals in the core could be reected by the Hmix value, called
dHmix

. The chemical composition of the ligands is represented
using the SMILES notation, Sligands, which is encoded via
MolT5,40 a pre-trained model for natural language text and
molecule strings. The important feature of ligand solubility is
described by digital values of log P and dlog P. The log P values
were taken from XLOGP3 (ref. 41) and our PoLog P,39 which gave
similar performance in log P prediction. We encode these
features using distinct encoders and project them into a shared
latent space. The descriptor features are encoded by a single
linear layer.

To encode the contextual information of the nanoclusters,
we designed a pre-fusion stage before the fusion stage. In the
pre-fusion stage, the solubility properties of the ligands were
added to the front and back ends of the core's graph features,
and the enthalpy of mixing of the two metal elements was
added to the front and back ends of the ligand SMILES
features. The pre-fusion stage was designed to enhance the
contextual awareness of the model by providing additional
information about the ligands and the core. The augmented
core and ligand features, along with the descriptor features,
were then concatenated and fed into the fusion stage. Four
layers of Mamba2 (ref. 42) were employed to facilitate the
exchange of information between the multimodal features.
The output of the fusion stage was pooled and passed into
a regression head, which consisted of linear layers and PReLU
activation function units.

The model takes the core Mcore, the ligands' SMILES strings
Sligands, and the descriptor features D = [dlog P, dHmix

] as input.
We denote the features decoded by the core encoder 4c, the
ligand encoder 4l, and the descriptor encoder 4d as fc, fl, and fd,
respectively.
Chem. Sci., 2025, 16, 19644–19657 | 19649
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Fig. 4 (a) The flowchart of formation energy prediction on bimetallic nanoclusters by multimodal machine learning; (b) comparison of the
performance of the MML models; (c) prediction of formation energy (Eform) by the MML with log P and Hmix; (d) prediction of the synthesized
bimetallic nanoclusters.
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In the pre-fusion stage, the core and ligand features are
augmented as follows:

faugc = 4c([dlogP, fc, dlog P]) (6)

faugl = 4l([dHmix
, fl, dHmix

]) (7)

where dlog P and dHmix
are the descriptor features of solubility and

enthalpy of mixing, respectively, and 4c and 4l are linear
projection layers.

The augmented core and ligand features were concatenated
with the descriptor features and fed into the fusion stage:
19650 | Chem. Sci., 2025, 16, 19644–19657
fs = SSM([faugc , faugl , fd]) (8)

where SSM denotes the four continuous Mamba2 blocks and fs
is the multimodal feature vector.

The output of the fusion stage was pooled and passed
through the regression head to predict the formation energy of
the bimetallic nanoclusters:

EMML
form = j(Q(fs)) (9)

where Q and j are the pooling operation and the regression
head, respectively.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Coefficient of determination (R2) and mean absolute error
(MAE) of ML models with different modalities

Algorithms

R2 MAE

Training
set

Test
set

Training
set

Test
set

GCNN with graph modality
11 186 data (training : validation : test = 8 : 1 : 1)
GCNN 0.934 0.927 0.121 0.152
8-Feature scheme (cenv, DcM, Nmetal, ratio, DM, Hmix, D, and DR)
246 data (training : validation : test = 8 : 1 : 1)
RFR 0.996 0.969 0.072 0.182
GDB 0.995 0.967 0.077 0.186
CATBoost 0.999 0.967 0.016 0.184
DT 0.993 0.966 0.093 0.198
EXTREE 0.999 0.959 0.001 0.203
XGB 0.997 0.959 0.067 0.215
ADAB 0.955 0.909 0.261 0.325
SVR 0.979 0.855 0.100 0.375
KNN 0.934 0.810 0.261 0.324
RIDGE 0.699 0.654 0.680 0.616
LINEAR 0.699 0.653 0.679 0.614
LASSO 0.686 0.640 0.700 0.649
MML (graph + SMILES strings + Hmix & log P)
11 186 data (training : validation : test = 8 : 1 : 1)
MML w/o Hmix & log P 0.943 0.933 0.070 0.073
MML with Hmix 0.938 0.951 0.061 0.057
MML with log P 0.952 0.950 0.058 0.072
MML with Hmix & log P 0.963 0.952 0.050 0.055
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The loss functions comprised the contrastive loss and the
regression loss. To enable the model to learn the connection
between the original nanoclusters and the unit of core and
ligands, we employed the contrastive loss. The contrastive loss
was calculated using the cross-entropy loss between the graph
features of the original nanoclusters and the combination of the
graph features of the core and the SMILES features of the
ligands. The regression loss was calculated using the mean
squared error between the predicted formation energy and the
actual formation energy. The total loss was computed as the
sum of the contrastive loss and the regression loss, with the
details shown in the SI.

MML could discover inherent relationships between the
modalities, improving the predictive ability and generalization
capability of models to surpass single-data-dimension limita-
tions. Compared with the single-modal machine learning only
with graph or numeric modality in Table 1, the smaller values of
MAE in the test set indicate the better performance of MML
models. We investigated the impact of various descriptors on
model performance further, as shown in Fig. 4b. The MML
model incorporating both log P and Hmix achieved the best
results, with an MAE of 0.055 eV per atom, RMSE of 0.209 eV per
atom, and R2 of 0.952. These results highlight the signicance
of contextual information from the nanoclusters for accurately
predicting the formation energy of bimetallic nanoclusters.
Additionally, we examined the individual contributions of
solubility and the enthalpy of mixing. When either solubility or
enthalpy of mixing was used as the sole descriptor, the model
achieved MAEs of 0.072 eV per atom and 0.057 eV per atom,
© 2025 The Author(s). Published by the Royal Society of Chemistry
respectively. Both of these performances surpassed the model
without any descriptors, suggesting that the ligand environ-
ment and miscibility of metal pairs are very important features
in nanocluster design. As a result, the present MML model
signicantly improved the prediction accuracy of formation
energies, reaching lower mean absolute errors (0.055 eV per
atom) in the test set compared to graph-only or descriptor-only
models, indicating good generalization to larger and experi-
mentally synthesized nanoclusters.

The MML model enabled rapid and reliable evaluation of
large-sized nanoclusters containing hundreds to over a thou-
sand atoms, which are computationally challenging for
conventional DFT methods. The advantage of the constructed
MML model was employed to realize the formation energy
prediction for the large-sized structures. As shown in Fig. 4d,
the selected bimetallic nanoclusters exhibit total atom counts
(Natom) ranging from 277 to 1317, which are much larger than
those in the training set. The predicted formation energies are
all below −2.2 eV per atom, suggesting favorable thermody-
namic stability, consistent with experimental realizations. We
also chose three nanoclusters, Au23Pd(CHT)17, Au24-
Cd(nBuS)18, and Au24Hg(nBuS)18, which are affordable in DFT
calculations. The DFT formation energies were −3.56, −3.58,
and−3.71 eV per atom, respectively, which were reproduced by
MML prediction with an MAE of 0.44 eV per atom. For
example, a nanocluster in the external test set, Au47Cd2(-
TBBT)31 (Natom = 793),43 was predicted to have a formation
energy of −3.34 eV per atom. Furthermore, a recently synthe-
sized nanocluster, Ag135Cu60(PET)60Cl42 (Natom = 1317),44

featuring a buckminsterfullerene-like silver kernel, was pre-
dicted to be thermodynamically stable with a formation energy
of −2.28 eV per atom. This is in agreement with its successful
one-pot synthesis via the reduction of a solution containing 4-
CH3C6H4SO3Ag, CuCl2$2H2O, and 2-phenylethanethiol in
a mixed solvent system of dichloromethane and methanol
using NaBH4 as a reductant.
Accessibility prediction: accessibility index vs. formation
energy

In order to provide useful information for guiding experimental
synthesis, accessibility prediction was carried out with the
consideration of geometric and electronic factors in bimetallic
materials. Analogous to the concept of reduced mass of the two-
body system, the reduced atomic distance (~D) is dened in eqn
(10) as follows:

~D ¼ 1� c� DR

Dþ c� DR
(10)

where D represents the average interatomic distance between
the two metals, DR denotes the difference in their atomic radii,
and c is an empirical scaling factor (set to 100) that ensures the
DR term is appropriately weighted relative to D. When the size of
two metals is similar, such as Au (R = 144 Å) and Ag (R = 144 Å)
atoms in Au4Ag2(PET)8, the value of DR is 0, leading to the ~D of
1. While the average metal–metal distance (e.g., D = 3.92 Å for
Cu/Y@MOR) is much less than c × DR, the values of ~D may be
Chem. Sci., 2025, 16, 19644–19657 | 19651
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close to 0. Our analysis indicates that the optimal reduced
distances are typically around 0.3 for nanoclusters (e.g., Au4-
Ru2(PET)8(PPh3)2, Au4Re2(PET)8(PPh3)2, and Au4Os2(PET)8(-
PPh3)2) and 0.1 for zeolites (e.g., Cu/Sc@MOR, Cu/Sc@MFI, and
Cu/Y@MFI), with the optimal metal–metal distances (D) of 3.5 Å
for nanoclusters and 2.5 Å for zeolites, respectively.

On the other hand, the electronegativity difference between
the metal core and its coordination environment (cenv) serves
as an effective indicator of charge transfer (DQCT) between two
metal atoms (Fig. 3). A volcano-like correlation between cenv

and stability is observed in Fig. 5, where the le and right
branches correspond to Cu/M@zeolites and Au/M nano-
clusters, respectively. Such a consistent trend drawn from
different types of materials suggests that cenv, without relying
on DFT calculations, could be used in the high-throughput
screening of synthetically accessible bimetallic materials.
Motivated by these observations, we propose a new descriptor,
4, to quantitatively evaluate the synthetic accessibility of
bimetallic structures. The denition of 4 is presented as
follows:

4 = ~D × cenv (11)

where ~D is the reduced distance parameter of geometric
difference, and cenv captures the feature of charge transfer
between two metals.

The most stable bimetallic structures are typically found
within a characteristic energy basin where 4 $ 0.3, as shown in
Fig. 5 The definition of the terms of the accessibility index and their
relationship with formation energy.

19652 | Chem. Sci., 2025, 16, 19644–19657
Fig. 5. Thus, a larger 4 value indicates better geometric and
electronic matching, both of which contribute to the enhanced
stability and accessibility of the bimetallic materials.

The combined evaluation of 4 and Eform can serve as
a guideline for the efficient screening of bimetallic materials
that are likely to be synthesizable. As shown in Fig. 6a, the
relationship between the descriptors Hmix and 4 with the Eform
reveals that, in general, bimetallic nanoclusters exhibit greater
thermodynamic stability than metal–zeolite systems. The
formation energies become more negative with the increasing
trend of the Hmix values for bimetallic nanoclusters, which can
be attributed to the protection of the ligands, as shown in
Fig. 6b. Ligands can cover the surface of bimetallic nano-
clusters, reducing the surface energy and passivating the ‘active’
low-coordinated metal atoms to enhance the thermodynamic
stability. Some ligands (e.g., carbonyl and thiol) can form stable
coordination environments to inhibit oxidation and other
unfavorable chemical reactions by forming strong bonds with
metal atoms, thereby preventing excessive aggregation or
dissociation. Some doped metals in bimetallic nanoclusters
with higher values of Hmix have been synthesized in the exper-
iment, i.e., [Au12Ru(Ph2PCH2PPh2)6]

2+ (HAu/Ru
mix = 15 kJ mol−1),

[Au12Ir(Ph2PCH2PPh2)6]
3+ (HAu/Ir

mix = 13 kJ mol−1), and [Au12-
Rh(Ph2PCH2PPh2)6]

3+ (HAu/Rh
mix = 7 kJ mol−1).18 The seemingly

immiscible bimetallic combination could be realized by using
the strategy of the protected ligands. Gold nanoclusters con-
taining immiscible metal pairs, specically Au/Ru, Au/Re, and
Au/Os, are identied as thermodynamically stable, with
formation energies below −5 eV per atom, as shown in Fig. 6c.
Representative examples include Au4Ru2(PET)8(PPh3)2, Au4-
Re2(PET)8(PPh3)2, and Au4Os2(PET)8(PPh3)2, all of which exhibit
4 values greater than −0.3, suggesting favorable synthetic
accessibility. Among them, Au4Ru2(PET)8(PPh3)2 has already
been successfully synthesized and shown to enable light-driven
N2 xation.45 In contrast, bimetallic Cu/M@zeolites (where M =

Ir, Re, and Os) are predicted to be thermodynamically unstable,
with corresponding 4 values of −0.53, −0.55, and −0.54,
respectively, indicating that experimental synthesis of these Cu/
M@zeolite structures may be challenging.

The training dataset, while primarily focused on ligand-
protected nanoclusters and zeolites, contains a variety of metal
combinations, stoichiometries, and coordination environments
that capture essential patterns of metal–ligand interactions and
stability. This diversity within the training data ensures that the
model is not overtted to a specic material type but rather
learns generalizable features of bimetallic systems. The gener-
alization of the proposed multimodal machine learning model
beyond ligand-protected nanoclusters and zeolites originates
from the intrinsic bimetallic pairing in the selected descriptors.
The environmental electronegativity (cenv) describes the inter-
action between themetal core and its surrounding coordination
environment, regardless of whether it is in nanoclusters,
zeolites, alloys, or 2D materials. Similarly, the mixing enthalpy
(Hmix) reects the miscibility between two metals, a property
that is not restricted to a specic family but is applicable to all
bimetallic systems. By incorporating such transferable
descriptors that capture physicochemical principles, the model
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) The formation energy profiles of bimetallic materials with 4 and Hmix; (b) the pairwise relationship between the formation energy and
Hmix; (c) the structures of inaccessible Cu/M@zeolites and accessible Au/M nanoclusters.

Fig. 7 Accessibility prediction via Eform and 4 for the external test set of
bimetallic materials, including porous materials, nanoclusters, alloys,
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achieves predictive capability across different classes of bime-
tallic materials.

The machine learning model was further applied to 100
different materials, including metal–zeolites,28 nanoclusters,37

metal-loaded oxides/nitrides32–34 at the interfaces, alloys,35,36

and 2D materials,29–31 spanning dimensionalities from three-
dimensional to two-dimensional congurations. As summa-
rized in Table S4, the synthesized congurations are predicted
to exhibit thermodynamic stability under operational condi-
tions. The stability index, 4, shows the correlation between the
formation energies and Pearson correlation coefficient (r) of
−0.63, as shown in Fig. 7, indicating that a higher value of 4
may lead to a more stable structure. The predictive accuracy of
the model is expected to increase further by incorporating
material-specic descriptors, which will enhance its ability to
predict the stability of a broader range of bimetallic systems in
future work.

Bimetallic pairs of noble metals (Au/M and Pt/M) and non-
noble metals (Cu/M and Ni/M) are predicted by the RFR algo-
rithm, encompassing nanoclusters, metal–zeolites, 2D mate-
rials, etc., as illustrated in Fig. 8, with associated standard
deviation error bars. The color bar indicates the average values
of the stability index, 4, of these metal pairs. The stability of Au/
M pairs seems to be higher than the Cu/M pairs, which can be
attributed to the higher electronegativity (cAu = 2.54 vs. cCu =

1.90), allowing it to accept electrons when bonded with metals
of lower electronegativity.

Among the noble metal pairs, the top three Au-based pairs
identied are Au/Os, Au/Re, and Au/Ru with immiscible metal
combinations, which are promising for future experimental
© 2025 The Author(s). Published by the Royal Society of Chemistry
realization. The formation energies for Au/Ag pairs are −2.59 ±

0.22 eV per atom, suggesting the potential for experimental
synthesis. By tuning the ligand environment, PPh3, (CF3)2-
PhC^CH, and Cl− were selected to protected the cores to form
the Au/Ag nanoclusters in the following section, with the 4 in
the range of−0.16 to−0.10. Due to the high cost and scarcity of
noble metals, introducing non-noble metals into noble metal
systems to form bimetallic pairs is essential to achieve a balance
nanoparticles, metal oxides/nitrides, and 2D materials.

Chem. Sci., 2025, 16, 19644–19657 | 19653
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Fig. 8 The accessibility prediction via Eform, 4, and Hmix for the
bimetallic pairs comprising noble metals (Au/M and Pt/M) and base
metals (Cu/M and Ni/M) predicted by machine learning.

Fig. 9 The crystal structures and ML predicted formation energies,
EML
form, of (a) Au36Ag38((CF3)2PhC^C)30Cl10 and Au38Ag33((CF3)2-

PhC^C)30Cl8 and (b) Au9AgRh(PPh3)8Cl2.
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between performance and cost. For non-noble metals, d1 (Y and
Sc), d2 (Ti and Zr), and d10 (Au, Cd, and Zn) metals are predicted
to exhibit more stable structures with Cu/M pairs. And Ni
element is favorable to form the metal pairs with d10 metals (Au
and Ag).

Another three miscible/immiscible bimetallic pairs, Ni/Pt,
Cu/Gd, and Au/Ni, exhibit formation energies lower than −1 eV
per atom according to the wind rose diagrams, indicating their
thermodynamic stability. The nitrogen-doped carbon surface
provides a favorable support for anchoring these metal species.
The corresponding 4 values for Ni/Pt@NC, Cu/Gd@NC, and Au/
Ni@NC were calculated to be −0.30, −0.21, and −0.16,
respectively, suggesting that these structures are experimentally
accessible. Taking the multifactors of Eform, 4, and Hmix into
account, these systems are selected in the following section to
validate the applicability and predictive power of the con-
structed machine learning model.
Newly synthesized bimetallic materials as accessibility tests

Among the vast combinations of metal pairs, prediction of
accessibility could accelerate the design and discovery of
promising bimetallic candidates. Two nanocluster crystals were
successfully synthesized in experiments presented in Fig. S9–
S11 (for Experimental details, see the SI). The structures of
Au36Ag38((CF3)2PhC^C)30Cl10 (short for Au36Ag38) and Au38-
Ag33((CF3)2PhC^C)30Cl8 (short for Au38Ag33) were solved by
single-crystal X-ray diffraction, as shown in Fig. 9. Au36Ag38 can
be viewed as a core–shell structure with the predicted formation
energy of−1.24 eV per atom. The Au21Ag3 core is enclosed by an
19654 | Chem. Sci., 2025, 16, 19644–19657
Ag35 shell coordinated with the 10 Cl− ligand, and the outer-
most layer consists of 15 monomeric RC^C–Au–C^CR staples.
Au38Ag33, with the same formation energy of−1.24 eV per atom,
shares a similar structure and ligand arrangement and is co-
crystallized with Au36Ag38, which made it difficult to separate
the single crystals of the two products via crystallization. Like
Au36Ag38, Au38Ag33 is also stabilized by 15 monomeric RC^C–
Au–C^CR staples. In addition to the surface staple structure,
Au38Ag33 contains an Au23 core and an Ag33 shell coordinated
with the 8 Cl− ligand. Interestingly, the constructed ML model
can be further employed to predict the formation energy of
trimetallic nanoclusters. As shown in Fig. 9b, Au9AgRh(PPh3)8-
Cl2 (denoted as Au9AgRh) was obtained by doping Ag and Rh on
the basis of [Au11(PPh3)8Cl2]

−, with a formation energy of −2.23
eV per atom. It has a similar structure to Au11, but the doping of
Ag and Rh caused a slight distortion in its structure. The two
positions coordinated with the Cl− ligand are co-occupied by
Au/Ag/Rh.

Three bimetallic pairs supported on nitrogen-doped carbon
(NC) were predicted to be stable with EML

form of −1.79, −1.41, and
−1.28 eV per atom for Au/Ni@NC, Cu/Gd@NC, and Ni/Pt@NC
systems, respectively, as shown in Fig. 10a. The DFT-calculated
formation energies were −2.45, −1.81, and −1.75 eV per atom
for these systems, respectively, demonstrating qualitative
alignment with the predicted stability trend. The projected
density of states (PDOS) also reveals an interaction between the
d orbitals of bimetallic centers (Au and Ni) and the orbitals of
the coordination N atoms near the Fermi level. The charge
transfer between the bimetallic centers and surrounding N
atoms could strengthen the stability of the Au/Ni@NC.

The Au/Ni@NC, Cu/Gd@NC, and Ni/Pt@NC materials were
synthesized in experiments; their scanning electron microscope
(SEM) images are shown in Fig. 10b (for Experimental details,
see the SI). Powder X-ray diffraction (XRD) provided crystal
structure information on amacroscale (Fig. S12). The structures
of Au/Ni@NC, Cu/Gd@NC, and Ni/Pt@NC were further char-
acterized by X-ray Photoelectron Spectroscopy (XPS), which
could reveal the bimetallic chemical composition and surface
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Plots of DFT vs. ML predicted formation energies and density
of states vs. charge density differences; SEM images; and XPS spectra
of (a) Au/Ni@NC, (b) Cu/Gd@NC, and (c) Ni/Pt@NC.
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chemical state, as shown in Fig. 10c and Fig. S13–S15. For the
Au/Ni@NC, a typical Ni 2p3/2 and 2p1/2 doublet accompanied by
two satellite peaks indicated the positive oxidation state of Ni
atoms.46 The XPS peaks of Au 4f were characterized by two sets
of doublets; the peaks located at 87.50 and 83.80 eV correspond
to Au 4f7/2 and Au 4f5/2 of Au(0), respectively. The peaks at 88.50
and 84.80 eV could be attributed to the Au(III) species.47 For the
Cu/Gd@NC, two characteristic peaks could be attributed to
Cu(0) species at 931.20 eV and 951.42 eV, and the other two
peaks at 934.12 eV and 954.36 eV were assigned to Cu(II)
species.48 Two peaks appeared at 151.44 and 142.20 eV, which
were attributed to Gd 4d3/2 and Gd 4d5/2, respectively, indicating
the existence of the Gd element in the synthesized material.49 As
reected by XPS results of Pt 4f in the Ni/Pt@NC, the spectra
were deconvoluted into two spin–orbit doublets, indicating the
existence of the Pt element in the synthesized material.50 These
results demonstrate that the ML-predicted formation energies
are qualitatively consistent with DFT calculations and experi-
mental observations, indicating the capability to design stable
bimetallic materials.
Conclusions

In this study, we have presented the MML model and accessi-
bility index to identify stable bimetallic materials that can be
experimentally synthesized. By integrating the molecule graph
of themetal core and the SMILES notation of the ligand with the
© 2025 The Author(s). Published by the Royal Society of Chemistry
addition of Hmix and log P, the MML model could predict the
stability of the bimetallic nanoclusters with up to thousands of
atoms. The stability of bimetallic materials could be further
adjusted by the coordination environment, in which the pro-
tected ligands prevented the aggregation or dissociation of the
metal cores. The accessibility index based on the combination
of geometric and electronic factors has been successfully
extended to external test sets for experimentally obtained
bimetallic materials, including the metal–zeolites, nano-
clusters, alloys, metal oxides/nitrides, and 2D materials. When
the 4 is greater than −0.3, the corresponding bimetallic mate-
rial is considered potentially synthesizable in experiments.
Notably, our machine learning model has effectively guided the
synthesis of six new structures, including nanoclusters and 2D
materials, which were anticipated to exhibit stability. The
proposed machine learning approach holds signicant promise
for the discovery and synthesis of bimetallic materials in
experimental settings.
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