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Abstract: Cardiovascular disease (CVD) remains the leading cause of morbidity ar&g‘:m_%;@)@ié
worldwide, with endothelial dysfunction as a key precursor. Flow-mediated dilation (FMD), the gold-
standard measure of endothelial function, is improved by (poly)phenol-rich foods and extracts, with
increases of 1% FMD representing 13% reduced cardiovascular risk. This narrative review aims to
evaluate the efficacy of various (poly)phenol-rich foods and extracts on endothelial function as
measured by flow-mediated dilation (FMD) and assesses the feasibility of a food-first approach.
Literature was systematically searched from databases including PubMed and Web of Science,
focusing on human clinical trials. While all (poly)phenol-rich food groups demonstrate variable effects,
berries (0.9-2.6%), cocoa (0.7-5.9%), and tea (1.2-4.8%) have the most robust evidence, consistently
improving FMD, with chronic intake sustaining benefits. A large variance (0.8—-8.7%) was observed
with grape-derived (poly)phenols, making their effects difficult to substantiate without detailed
compositional or metabolomic data; however, a few key studies highlight their potential. Citrus
polyphenols also exhibit variable FMD responses (0.2—7.2%). However, strong mechanistic evidence
supports their role in vascular health and nitric oxide (NO) bioavailability. Coffee exhibits a variable
response, initially impairing FMD, likely due to caffeine, before later improving endothelial function
as phenolic metabolites increase. Although estimated (poly)phenol intake in Western populations is
high (~1000 - 1200 mg/day), it is primarily derived from tea, coffee, and cocoa, limiting exposure to
diverse bioactive compounds. Moreover, the food matrix significantly influences bioavailability, with
co-consumed components such as milk or sugar attenuating FMD responses. Interestingly,
fortification and enrichment maintain bioactivity and may optimize intake, ensuring consistent and
diverse delivery. Future research should refine dietary guidelines, establish intake thresholds, and
explore fortification strategies to maximize cardiovascular benefits while considering dose-response

relationships and long-term efficacy.

Keywords: (Poly)phenols, FMD, Endothelial Function, Cardiovascular Disease, Berries, Grapes, Citrus

fruit, Cocoa, Coffee, Tea
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. View Article Online
62 1. Introduction DOI: 10.1039/D5FO01106J

63 Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, responsible for
64  approximately 17.9 million deaths annually (WHO 2019), with common cardiovascular risk factors
65 such as hypertension, dyslipidaemia, diabetes, obesity, and smoking playing significant roles in its
66  development 12, Increased fruit and vegetable consumption mitigate risk and reduce CVD incidence
67  with consumption of >8 portions (>569g/day) associated with a reducing risk of cardiovascular
68  mortality by 15% compared to those consuming <3 portions (<240g/day) 3. Similarly, a meta-analysis
69 by Aune and colleagues highlighted a 28% risk reduction in cardiovascular mortality associated with
70  the consumption of 800g/day of fruits and vegetables 4. The effects in part are due to the consumption
71  of (poly)phenol-rich foods such as cocoa, coffee, tea, and berries which contain these bioactive
72 compounds that can modulate endothelial function and the inflammatory processes and reduce
73  oxidative stress >¢. The largest (poly)phenol based randomized intervention study to date, COcoa
74  Supplement and Multivitamin Outcomes Study (COSMOS) also supports these population and
75 experimental observations. The COSMOS study intervened with daily supplementation of 500mg
76 cocoa flavan-3-ols in n=21,444 people over ~3.6 years reducing cardiovascular mortality by 27% in the
77  study population 7. This narrative review aims to evaluate the efficacy of (poly)phenol-rich foods and
78  extracts on endothelial function as measured by flow-mediated dilation (FMD) and explores dietary
79  guidance considerations based on existing evidence. A systematic search was performed using
80  databases including Medline, Scopus and Web of Science. 4,875 manuscripts were screened and 97

81  were included in the final synthesis (2000-2023). The selection of (poly)phenol-rich foods included in

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

82  thisreview was based on their dietary relevance in Western populations, their significant contribution
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83  to overall habitual intake, and the availability of robust evidence linking them to improvements in

84  cardiovascular health and endothelial function as measured by FMD.

(cc)

85

86 1.1 Endothelial Function and Its Role in Cardiovascular Disease

87 Endothelial function is a critical determinant of cardiovascular health, encompassing impaired
88  functionality of the blood vessel inner lining known as the endothelium 8. This layer modulates key
89 vascular processes, including blood flow regulation, vasodilation, vasoconstriction, and the release of
90 signalling molecules °. The pathogenesis of endothelial dysfunction is multifaceted °. Albeit, at its
91 core, chronic inflammation and oxidative stress are key mediators 2!, negatively impacting
92 endothelial cells and disrupting their normal functions including, misbalancing vasoconstrictors such
93 as endothelin-1 (ET-1) and angiotensin Il (Angll), and reducing the production of nitric oxide (NO), a
94  gaseous signalling molecule and potent vasodilator essential for regulating vascular tone 212,

95 Diminished NO availability impairs blood vessel relaxation, leading to vasoconstriction, simultaneously
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increasing oxidative stress, damaging endothelial cells and further reducing NO bioavaighility:{tte s "7 s

amount of a compound or nutrient that is absorbed, entering systemic circulation where it becomes
available to exert a physiological effect), thereby fostering inflammation and stimulating the release
of pro-inflammatory cytokines, which contribute to the pathogenesis of atherosclerosis and other
cardiovascular conditions ®13. NO, produced by endothelial nitric oxide synthase (eNOS), is crucial for
vascular health as it promotes vasodilation, inhibits platelet aggregation, and suppresses smooth
muscle cell proliferation 4. Reduced NO bioavailability is a hallmark of endothelial dysfunction and a
key contributor to CVD progression 1°.

Experimental studies with endothelial cell cultures have provided valuable insights into mechanisms
by which various (poly)phenols may mediate endothelial function 16-18, For instance, resveratrol in
human umbilical vein endothelial cells (HUVECs) significantly upregulate eNOS expression, increasing
NO production and improving endothelial function'®. However, phenolic metabolites have been
shown to play a more significant role than their parent compounds in modulating endothelial function
due to their greater bioavailability and prolonged circulation time. Studies demonstrate direct
stimulation of eNOS activity by certain phenolic metabolites including vanillic acid and protocatechuic
acid reducing superoxide levels by downregulating NADPH oxidase (NOX) activity, indirectly enhancing
NO bioavailability 2°. Additionally, they have been shown to enhance nitric oxide (NO) bioavailability
by activating the Akt-eNOS signalling pathway in endothelial cells 2. Furthermore, protocatechuic acid
has been demonstrated to reduce pro-inflammatory markers such as soluble vascular cellular
adhesion molecule-1 (sVCAM-1) through modulation of gene expression in HUVECs, highlighting their
role in mitigating endothelial inflammation 22. This modulation of endothelial function has also been
confirmed in human studies via several mechanisms including upregulation of eNOS activity, and by
scavenging reactive oxygen species (ROS), which degrade NO and reduce its bioavailability 2324,
Additionally, flavan-3-ols such as epicatechin and catechin have been shown to downregulate
endothelial dysfunction markers such as EDN1, reducing the production of the potent vasoconstrictor
ET-1, and suppress the expression of angiotensin-converting enzyme (ACE), which decreases
Angiotensin Il levels 2526, These mechanisms collectively enhance vascular function, contributing to
improved cardiovascular outcomes 27, however a diverse intake of (poly)phenols is required to attain

the collective bioactive effects.

1.2 Flow-mediated dilation (FMD): A Biomarker of Endothelial Function
Flow mediated dilation (FMD) is the gold standard and non-invasive assessment of endothelial
function, utilising ultrasound to measure arterial dilation in response to shear stress, mediated by the

release of NO, with lower FMD values indicating endothelial dysfunction 282°, The clinical relevance of

001106J
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130  FMD has been validated through the establishment of reference values amongst a predomindtely s 1oes
131 European population (n=1,579), observing a mean FMD of 6.2% + 2.0%, with 0.3—0.4% age-related
132  decreases observed per decade. Importantly, values below 3.1% were identified as pathological, while
133  values above 6.5% were considered optimal 3°. Moreover, ~26% of healthy individuals with low
134  cardiovascular risk (SCORE <1%) exhibited low FMD values (<5.4%), highlighting the complexity of
135 endothelial health beyond traditional risk factors 3°.  Observational meta-analyses further
136  demonstrate that each 1% increase in FMD is associated with a 13% reduction in future cardiovascular
137 events, reinforcing its predictive utility in both diseased and asymptomatic populations 3I.
138 Furthermore, age- and sex-specific reference values were established from a pooled cohort (n=5,362),
139 confirming that lower FMD values correlate with key cardiovascular risk factors, including
140 hypertension, dyslipidaemia, and diabetes 32. Additionally, FMD values below 3.1% exhibit 95%
141 specificity for identifying individuals at high cardiovascular risk, whereas values above 6.5%
142 demonstrate 95% sensitivity for excluding coronary artery disease 3. However, the accuracy and
143 reliability of FMD measurements are dependent on the use of standardized protocols. Thijssen and
144  colleagues highlight the importance of controlling for factors such as baseline arterial diameter,
145  occlusion time, and ultrasound techniques to ensure reproducibility and comparability across studies
146 33, Without such standardization, the variability in FMD results can obscure the true effects of
147  interventions like (poly)phenol supplementation 3335,

148

149 2. Efficacy of (Poly)phenol-Rich Foods and Extracts on FMD

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

150 Research has increasingly focused on the efficacy of (poly)phenol-rich foods and their extracts in

151 improving FMD and overall endothelial function. Numerous intervention trials (Table 1), meta-
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152  analyses and systematic reviews 23253637 have explored the effects of foods such as berries, grapes,

153 citrus fruits, cocoa, coffee and teas, alongside their respective (poly)phenol extracts, on cardiovascular

(cc)

154 health. Given the sensitivity of FMD to endothelial changes, it is commonly employed as a primary
155  outcome in studies examining the cardiovascular effects of (poly)phenol-rich foods 383°. For instance,
156  (poly)phenols have consistently been shown to improve FMD, reflecting their ability to enhance
157  endothelial function via increased NO bioavailability, modulation of antioxidative pathways, and
158 inflammation reduction, suggesting that these compounds directly enhance endothelial function and
159  reduce CVD risk ¢4°. However, the bioavailability and bioaccessibility (the amount or proportion of a
160  nutrient or compound that is released from the food matrix during digestion which becomes available
161  for absorption in intestine) of (poly)phenols are critical determinants of their efficacy %!, as ingested
162 (poly)phenols undergo extensive metabolism in the gastrointestinal tract and liver, resulting in a wide

163 range of metabolites with varying biological activity >#>43, Despite this, studies have consistently
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shown that (poly)phenols from various sources (Table 1 & 2, and Figure 1) can improv%g‘ng%l;ﬁ%’gl
function through their action on NO bioavailability and their ability to mitigate oxidative stress and
inflammation %12, However, the perceived effect may be impacted by various factors including, class
of (poly)phenol, their bioavailability, additional food component or matrix, health status and

individual variability.

2.1 Berries

Blueberries, cranberries, and blackcurrants are rich in (poly)phenols (200-600mg/100 g fresh weight)
including anthocyanins, flavan-3-ols, and proanthocyanidins #* and significantly contribute to dietary
(poly)phenol intake, accounting for approximately 5-20% of total anthocyanin consumption %,
Multiple studies (Table 3) have investigated their efficacy in modulating endothelial function as
measured by FMD, highlighting both acute and chronic improvements with varying ranges of total
(poly)phenol content (TPC), dependant on the timing, dosage, and food matrix “6->1. Despite this,
variability in outcomes—particularly regarding the long-term efficacy of certain berries like

cranberries—warrants further analysis.

Blueberries have been the focus of several studies #647°256 indicating their beneficial effects on
endothelial function, reporting acute improvements in FMD ranging from 0.9% to 2.4%, typically
observed within 1 to 2 hours post-consumption with some studies observing a biphasic response (a
second peak) occurring around 6 hours post-ingestion >3. Dosages ranging between 300mg and
1,800mg TPC (Figure 2) have been tested, but many findings suggest that benefits plateau at moderate
doses (~750mg), with higher doses failing to offer additional vascular improvements °3. This plateau
effect underscores the importance of optimal dosing. Curtis and colleagues demonstrated a 1.45%
increase in FMD with a daily intake of 1 cup (150g) equivalent of freeze-dried blueberries (879mg TPC)
over six months in individuals with metabolic syndrome #’. However, the study also found that a lower
dose (approximately 75 g, which aligns closely with the recommended portion size of 80 g) did not
elicit significant FMD improvements. These findings suggest that an above average, but more
importantly sustained intake of blueberries can provide long-term benefits without requiring
excessive consumption. However, an important consideration which warrants further investigation, is
the lack of studies investigating blueberries as a whole food. This highlights questions regarding the
efficacy of whole blueberries, as processing, such as freeze-drying, can concentrate (poly)phenols,

enhancing their bioaccessibility and bioavailability and thus their impact on FMD.

Cranberries, like blueberries, have been studied for their vascular effects, albeit results have shown
less consistency, particularly in chronic interventions. Although reports indicate a modest and

statistically significant 1% increase in FMD (from 7.7 £ 2.9% to 8.7 £ 3.1%, P = 0.01) four hours after

6
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198  acute consumption of cranberry juice (835mg TPC) in an uncontrolled pilot study involving medjcgted f v
199  patients with coronary artery disease (CAD), no significant changes were observed following four
200  weeks of daily intake °7. Consistent with the previous findings, Rodriguez-Mateos and colleagues
201  demonstrated that cranberry juice (ranging from 409mg to 1,910mg TPC) produced acute dose-
202  dependent improvements in FMD increasing up to 2.6%. Notably, a significant effect detected at
203 787mg TPC, similar to that of the previous study. Moreover, a plateau effect was again observed at
204 1,200mg TPC >8. Given that acute improvements were observed in both studies, irrespective of health
205 status (healthy vs. CAD patients), the key distinction lies in the chronic response, warranting further
206 investigation. A more recent study *° found significant acute (1.5%) vascular improvements aligning
207  with the previous study but, more importantly, significant (p<0.05) chronic (1.1%) improvements in
208 FMD with a daily intake of cranberry extract (525mg TPC), confirming the presence of persistence

209  effects of cranberries, although the mode of delivery (extract) and (poly)phenol composition differs

210 (anthocyanins - 94mg vs 23mg vs 54mg respectively).

211  The studies on blueberries and cranberries consistently point to the critical role of the food matrix in
212 modulating the bioavailability and efficacy of (poly)phenols. Whole foods and extracts offer varying
213 degrees of (poly)phenol concentrations and absorption kinetics, which directly influence their vascular
214  effects %061, The absorption of (poly)phenols is also influenced by the interaction between the
215  (poly)phenol compounds and the food matrix itself 62-%4, Complex matrices, such as those found in
216  whole fruits, may impede the release and absorption of (poly)phenols in the digestive tract. In

217  contrast, extracts or purified forms of (poly)phenols, which lack the complex matrix of whole fruits,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

218 are absorbed more efficiently, resulting in higher concentrations of (poly)phenols in circulation and

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

219  potentially more efficacious endothelial improvements. This effect was evident in one study

220  comparing the effects of aronia extract vs whole fruit, demonstrating a significant (p<0.01) 1.2%

(cc)

221 improvement in FMD after 12 weeks of daily extract consumption (TPC 116mg), whereas whole fruit
222 (TPC 12mg) consumption resulted in a lesser (0.9%, p<0.05), yet still significant improvement #°,
223 confirming what is highlighted when comparing cranberries composition and resulting effects 852,
224  These studies highlight that the food matrix and mode of delivery significantly affect the absorption
225 and subsequent vascular benefits of (poly)phenols, with extracts delivering more pronounced effects
226 due to their enhanced bioavailability. While some evidence suggests that extracts and processed
227  forms may enhance (poly)phenol bioavailability and, in some cases, yield greater effects than whole
228  fruits, direct comparisons remain limited and warrant further exploring. Moderate doses (100 to 200
229 g fresh weight or equivalent) appear to provide meaningful improvements in FMD, typically ranging

230 from 0.9% to 2.5%. However, much of the available research focuses on extract/juice-based
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interventions, warranting further investigation into whether the same bioactivity persists when Usitgc° "7

whole-berry approaches.

In comparison, other berries, such as raspberries, blackcurrants, and strawberries, have been
investigated to a lesser extent. Albeit, available research illustrates promising results regarding their
impact on FMD, suggesting potential cardiovascular benefits warranting further exploration. For
instance, acute FMD improvements of 1.6% and 1.2% were observed 2 hours post-consumption of
raspberry drinks containing 201 mg and 403 mg TPC, respectively, in healthy volunteers. Notably,
these improvements persisted at 24 hours post-consumption, correlating with plasma concentrations
of urolithin metabolites, highlighting the importance of microbial metabolites in mediating vascular
benefits 8. Blackcurrants also show promising effects on endothelial function, as evidenced by a Khan
and colleagues®® where healthy subjects with habitually low fruit and vegetable intake showed
significant increases in FMD from 5.8% to 6.9% following 6 weeks of daily consumption of blackcurrant
juice (250 ml x 4 per day), compared to placebo. This improvement was correlated with increased
plasma vitamin C concentrations opposed to circulating phenolics, warranting further investigation.
Strawberry interventions also demonstrated a significant acute increase in FMD by 1.5% following
strawberry intake (50 g freeze-dried powder equivalent to ~500 g fresh strawberries), suggesting that
strawberries may enhance vascular health independently of broader metabolic changes, potentially
mediated by microbial-derived phenolic metabolites such as 3-(4-methoxyphenyl)propanoic acid-3-0O-
glucuronide . However, this effect was not retained after 4-weeks consumption, raising questions
about the persistence of this benefit, although this may be explained by the observed increase in
baseline FMD % which may have attenuated the effect size, which arguably, may be indication of
endothelial recovery. Collectively, these preliminary findings underscore the potential for raspberries,
blackcurrants, and strawberries to positively impact endothelial function, despite fewer studies
compared with blueberries and cranberries. Future research should further characterize their efficacy,
optimal dosages, and mechanisms of action, including the roles of microbial metabolites, to fully

understand their cardiovascular potential.
2.2 Grape

While many studies have reported vascular benefits from grape (poly)phenol consumption, the effects
vary depending on factors such as (poly)phenol type, dosage, and delivery method (whole food vs.
extract), as well as the population studied. Notably, a range of FMD improvements has been observed
across various grape (poly)phenol interventions 87-5°, Several studies have examined the impact of
grape-derived products, such as grape juice, red wine and grape seed extract (GSE), with results

showing FMD increases ranging between 0.8% and 8% over periods of 1 to 8 weeks. However,

001106J
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264  comparing these findings across studies reveals significant variation, not attributable to B&!g@{&@% %‘Sg%‘gj
265 response relationship, but rather to differences in intervention duration, food matrix, and population
266  characteristics. For example, moderate grape juice consumption (~400-600 mL/day) as calculated for
267  a 70kg individual, was associated with FMD improvements of 1-2% over 1 to 2 weeks in at-risk
268  populations, such as CAD patients and smokers 6779, These modest improvements suggest that even
269 moderate (poly)phenol consumption may exert beneficial effects on endothelial function, though
270 variability between studies remains. For instance, substantial FMD increases of up to 8% in
271 adolescents with metabolic syndrome were observed after a month of consuming a higher dose of
272 grape juice (~1,260 mL/day) 7*. However, the lack of a control group in this study limits the validity of
273 the findings. Moreover, the absence of specific (poly)phenol composition data in the studies of
274 Hashemi and Chou 7%7' further weakens the ability to draw concrete conclusions about the
275 mechanisms driving FMD enhancements. Siasos and colleagues further elucidate this, noting that
276 consumption of 490ml concord grape juice (965mg TPC) over 2 weeks, led to significant improvements
277  in FMD (1.14%, p<0.05) in addition to mitigating the transient decline post smoking. However, no
278  changein plasma lipids or glucose levels were observed and circulating metabolites were unmeasured,
279  raising questions about the direct impact of (poly)phenols.

280  Grape-derived products including wine have also demonstrated promising modulation of endothelial
281  function, as measured by FMD %°. For instance, acute intake of red wine (0.8 g ethanol/kg body weight)
282 significantly improved brachial artery FMD (1.6%, p<0.01) in healthy men, 120 minutes post

283 consumption 72. Nonetheless, consumption of alcohol-free red wine yielded a similar response at 120

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

284 minutes (1.8%, p<0.01) in addition to substantial improvement at 30 mins (4.8%,, p<0.01) 72, indicating

285 that endothelial benefits are largely independent of alcohol and can be attributed primarily to wine-

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

286  derived (poly)phenols, although it could be hypothesised that the (poly)phenols present in the

(cc)

287 alcoholised red wine mitigated the transient decline in FMD % as demonstrated with comparison of
288  alcohol (Japanese vodka) intake (2.0%, p<0.05) 30 minutes post-intervention 72. In support of this, one
289 study 73 noted that the acute detrimental effects of smoking on FMD were mitigated by consumption
290 of both red wine and dealcoholized red wine (250 mL), maintaining FMD close to baseline levels, with
291  the dealcoholized red wine appearing to have somewhat of a stronger effect 73, further supporting a
292 protective role of wine/grape-derived (poly)phenols independent of alcohol. Hampton and colleagues
293 74 further explored this alcohol-independent benefit by demonstrating comparable increases in
294  postprandial FMD following consumption of a meal and intake of a grape juice beverage (122.5 mL)
295  with and without alcohol (12% v/v, 21 g alcohol). Both drinks significantly increased FMD compared
296  to water, confirming that the beneficial endothelial response is driven primarily by the grape

297  components opposed to alcohol. Additionally, significant improvements in FMD were demonstrated
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in hypercholesterolemic individuals after daily consumption of either red wine (250 mL/q@(:)lggtg@@é
juice (500 mL/day) for 14 days, significantly (p<0.05) increasing FMD by 5.5% and 6.8% respectively.
Interestingly, red wine also enhanced endothelium-independent vasodilation significantly (7% p <
0.01), an effect not observed with grape juice, suggesting a possible additional vasodilatory
mechanism attributable to red wine's alcohol content. Importantly, neither improvement occurred
with significant changes in plasma lipids or platelet function, indicating a different mechanism of
action. Nonetheless, the evidence suggests that red wine has potential for improving vascular function
as measured by FMD. However, it is important to note the current evidence examining wine and FMD
do not provide the (poly)phenol composition of the interventions or the corresponding plasma
concentrations of circulating metabolites, limiting the ability to establish an association.

Studies investigating (poly)phenol extracts and FMD, generally report more consistent findings with
increases typically ranging from 2 - 5%. For example, a 1.1% (p<0.05) improvement in FMD was found
after 4 weeks of supplementation with 2 g/day of GSE (1 g of polyphenols) in subjects with elevated
vascular risk 7>. Additionally, Barona and colleagues reported significant improvements in FMD
(approximately 1.7%) following daily supplementation (1 month) with 46g grape powder extract
(266mg TPC) in subjects with metabolic syndrome. Additionally, a decreased systolic blood pressure
correlated with a reduction in inflammatory markers (sVCAM-1) and increased plasma NO metabolites
was observed, highlighting anti-inflammatory effects and increased NO bioavailability as potential
mechanisms 7. Supporting this, significant improvements in FMD (2.14%, p<0.01) were observed
following daily intake of 400 mg red grape cell powder over 12 weeks in prehypertensive and mildly
hypertensive subjects. Moreover, the researchers noted improvement of plasma lipids although these
did not reach significance ”’. In contrast, Greyling and colleagues. reported no statistically significant
differences in blood pressure or FMD following eight weeks of high-dose grape and wine polyphenol
supplementation (800 mg total polyphenols daily) in hypertensive patients already on
antihypertensive medication 78. This suggests that the vascular efficacy of grape-derived polyphenols
may be attenuated or masked by pharmacological intervention, emphasizing the necessity for further
investigation into interactions between dietary polyphenols and existing medication regimens.
Additional reports, also founds no significant improvement in brachial artery FMD with a muscadine
grape seed supplement (83.98 mg TPC) in individuals at high cardiovascular risk, although a significant
increase in resting brachial artery diameter was observed suggesting some level of vascular
improvement 7°,

Although the consumption of grape-derived (poly)phenols consistently improves FMD across multiple
studies, whole foods, such as grape juice, appear to have quite a high degree of variability in response,

although this appears to more prevalent in grape juice studies as studies on wine show some degree
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332 of endothelial improvement across all studies, whether it is improving FMD or mitigating a trapsieéntos 7S
333 decline. However, it must be noted that the removal of alcohol from these interventions, appears to
334  offer more pronounced effect size likely mediated by the phenolics. In contrast, extracts appear to
335 provide more consistent results, partly because of lack of interacting food components but also the
336 length of the studies allowing sufficient exposure time for the phenolics and their metabolites to have
337 an effect. However, the optimal (poly)phenol dosage to maximize FMD improvements without
338 eliciting a plateau effect remains an area that requires further investigation. Additionally, it is
339 important to note that GSE has a distinct (poly)phenol composition compared to whole grapes or
340  grape juice. While GSE is primarily composed of proanthocyanidins, whole grapes particularly red or
341 purple varieties which contain anthocyanins alongside a broader range of (poly)phenols. These
342 compositional differences may influence their respective vascular effects and mechanisms of action.
343 Moreover, the lack of detailed data on circulating (poly)phenol metabolites presents a significant
344 limitation in our understanding of how these compounds exert their cardiovascular benefits.
345  Therefore, future research should focus on optimizing (poly)phenol bioavailability, understanding
346  long-term effects, and refining dosage recommendations to ensure maximum cardiovascular benefits.
347

348 2.3 Citrus Fruits

349  Citrus fruits contain significant levels of (poly)phenols, primarily flavanones such as hesperidin and
350 narirutin. Although research in this area is limited, several studies have reported potential benefits

351  with respect to endothelial function including effects on FMD 8%-8, For instance, daily consumption

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

352 (500 ml) of red orange juice (ROJ) over one week significantly improved FMD from 5.7% + 1.2% to

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

353  7.9% + 1.4% (p<0.001) in subjects at risk for CVD. This improvement was accompanied by reductions

354 in inflammatory markers, including C-reactive protein (CRP) and interleukin-6 (IL-6) 8. Similarly, two

(cc)

355  weeks of blood orange juice (BOJ) consumption led to significant FMD improvements in overweight
356 and obese individuals, with an increase from 8.15% * 2.92% to 10.2% + 3.31% 8. Interestingly,
357  flavanone-rich citrus (orange) beverages were found to mitigate (3.6%) the postprandial decline in
358 endothelial function following a high-fat meal . Collectively these results suggest a strong
359 mechanistic role of citrus (poly)phenols including hesperidin and narirutin in modulating endothelial
360 function by increasing NO bioavailability and reducing inflammation 8818 However, a null effect
361 observed by Constans and colleagues following a longer 4-week intervention of BOJ in subjects with
362 mild hypercholesterolaemia raises questions about sustained benefits 8. This contrast may be owed
363  to differences in the health status of the study population. However, the baseline FMD was lower in

364  the aforementioned study (1.1% vs 5.7% and 8.15%) thus a comparable effect would be expected as

11


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo01106j

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

Food & Function

the composition and dosages of interventions were somewhat comparable 80-82:86, warraBg‘nﬁ){Hﬁj@@[ﬁ
longer-term studies to elucidate these findings.

Interestingly, daily supplementation (1000mg/day) of lemon and sour orange peel extracts, found
notable FMD improvements (5.50 £ 2.12 to 11.99 + 4.05 and 5.55 + 2.17 to 12.79 *+ 5.47 respectively)
after four weeks 84, The substantially higher FMD increases observed in this study, compared to juice-
based interventions, suggest that peel extracts may provide enhanced vascular benefits however the
lack of (poly)phenol composition or metabolomics make it difficult to substantiate. Additionally, daily
hesperidin (500mg) consumption across 3 weeks, was also found to significantly increase FMD in
individuals with metabolic syndrome, from 7.78% + 0.76% to 10.26% * 1.19% (p=0.02). The study also
reported significant reductions in inflammatory biomarkers, such as CRP and serum amyloid A (SAA),
which supports the earlier hypothesis that hesperidin’s cardiovascular benefits are mediated by both
enhanced NO bioavailability and anti-inflammatory effects 8°. Moreover, in vitro studies demonstrate
that hesperitin—a metabolite of hesperidin—stimulates NO production through endothelial nitric
oxide synthase (eNOS) activation, further highlighting the mechanistic pathway by which hesperidin
enhances vasodilation and improves endothelial function. These results are significant as they provide
both in vivo and mechanistic evidence of the role that hesperidin and its metabolites play in vascular
health. While these studies strongly support the vascular benefits of citrus (poly)phenols, some
research highlights the importance of the food matrix and dosage in determining their efficacy.
Purified compounds or peel extracts, as previously mentioned may provide a more concentrated and
bioavailable source of (poly)phenols than juices, leading to greater improvements in FMD. This
distinction between different food matrices raises important questions about how best to deliver

citrus (poly)phenols for optimal cardiovascular benefits.

2.4 Cocoa/Dark Chocolate

The cardiovascular benefits of cocoa (poly)phenols, particularly flavan-3-ols such as epicatechin and
catechin, are known to improve NO bioavailability, mitigate oxidative stress, and reduce inflammation;
all of which contribute to improved vascular health. Increasing studies have emphasized the potential
and limitations of cocoa interventions in various populations. Heiss and colleagues provided early
evidence #° of these effects in healthy smokers, reporting a significant increase (2.7%, p<0.05) in FMD
following acute consumption of a high-flavan-3-ol cocoa drink (306mg total flavan-3-ols), compared
to a 0.9% decrease in the low-flavan-3-ol control. This is further supported by a follow-up study *°
involving an acute intervention of 100 ml high-flavan-3-ol cocoa (185mg total flavan-3-ols) which
improved FMD by 2.4%, thus confirming previous findings. Furthermore, sustained improvements

were observed following daily supplementation of 300 ml for one week, with a plateau (2.7%, p<0.05)
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399  observed on the fifth day. These findings reinforce the role of both acute and chronic cogpa flayaf3: 50055
400 ol intake in modulating vascular function, particularly in individuals with elevated endothelial
401  dysfunction risk, though the transient nature of peak effects suggests potential adaptation over time
402 (Figure 3). Interestingly, research has indicated that cocoa flavan-3-ols may offer greater effects in
403 individuals with pre-existing endothelial dysfunction (Figure 4). For instance, daily consumption of
404  flavan-3-ol-rich dark chocolate (~800mg total (poly)phenols) in patients with peripheral artery disease
405 significantly improved FMD by 4.0% (p<0.001). This improvement was accompanied by reductions in
406 oxidative stress markers, including a 37% decrease in sSNOX2-dp, a key marker of NADPH oxidase
407 activity. Concurrently, NO bioavailability increased by 57%, as indicated by elevated serum
408 nitrite/nitrate (NOx) levels. These biochemical changes correlated with endothelial function
409 improvements, as evidenced by reductions in vascular adhesion molecule-1 and sE-selectin levels.
410 Notably, the in vitro findings align with these results, showing that human umbilical vein endothelial
411  cells (HUVEC) treated with cocoa-derived (poly)phenols (including epicatechin, catechin and
412  epigallocatechin-3-gallate) exhibited increased NO production and reduced expression of adhesion
413 molecules, including E-selectin and VCAM-1. These findings reinforce the role of cocoa flavan-3-ols in
414  modulating endothelial function through oxidative stress reduction and enhanced NO signalling °2.
415 In contrast, the Flaviola Health Study °? further explored the vascular impact of cocoa flavan-3-ol
416  supplementation in healthy adults, reporting a modest acute FMD improvement of 0.7% after a single
417 dose of a cocoa flavan-3-ol-rich drink (450mg total flavan-3-ols, 64mg epicatechin). This is likely

418  attributable to the cohorts’ lack of endothelial dysfunction or potential variations in dosage.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

419 Nonetheless, chronic supplementation over four weeks induced a 1.2% increase in FMD (p<0.05),

420 aligning with earlier reports®*°*, which observed between 1.0-1.3% increases in FMD following

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

421 consumption of high-flavan-3-ol chocolate and cocoa supplementation for 2-4 weeks respectively.

(cc)

422 Faridi and colleagues * expanded on these findings by evaluating cocoa-based interventions in
423  overweight individuals, revealing that solid dark chocolate (3282mg total (poly)phenols) increased
424 FMD by 4.3%, while sugar-free cocoa resulted in a 5.7% improvement. The addition of sugar mitigated
425  the response to 2.0%. Moreover, Rodrigues-Mateos’s research group highlighted the importance of
426  the degree of polymerisation (DP) of cocoa flavan-3-ols, demonstrating that lower-degree
427  polymerized flavan-3-ols (DP1-10) yielded a more substantial endothelial function improvement (1.7%
428  vs -0.2%), in contrast to higher polymerized fractions (DP2-10) °¢. Together, these observations
429  emphasize the importance of flavan-3-ol composition and formulation, as well as dietary context, in
430  optimizing cocoa’s vascular benefits, indicating that both whole-food products and refined cocoa

431  extracts can serve as effective interventions for enhancing vascular health.
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Additionally, cocoa (poly)phenols, particularly their metabolites, have been shown to rgggw%ég}“@é
production of reactive oxygen species (ROS) through activation of AKT/AMPK/eNQOS pathways 32. This
activation may mitigate NO loss from oxidative stress and protect endothelial cells from damage
contributing to the long-term improvement of vascular function. Moreover, the anti-inflammatory
effects of cocoa (poly)phenols, demonstrated by their ability to lower CRP and IL-6 levels, further
support their role in preventing the progression of endothelial dysfunction and atherosclerosis %’.
These mechanisms, combined with theobromine potential to enhance NO production and inhibit
phosphodiesterase activity, suggest that the cardiovascular benefits og cocoa are multifactorial and
extend beyond the simple enhancement of NO bioavailability °8. Notably, evidence from Sansone and
colleagues demonstrated that co-administration of cocoa flavan-3-ols with methylxanthines
significantly enhanced FMD responses compared to flavan-3-ols alone (2.5% vs 1.4%, p<0.05). This
effect was associated with an increased plasma concentration of epicatechin metabolites, suggesting
that methylxanthines enhance flavan-3-ol bioavailability, leading to greater improvements in
endothelial function. These findings underscore the complex interactions between cocoa flavan-3-ols
and methylxanthines, highlighting the importance of considering the full cocoa matrix when
evaluating its vascular effects °°.

To summarise, cocoa (poly)phenols, particularly flavan-3-ols such as epicatechin, offer significant
potential for improving endothelial function, as evidenced by the robust increases in FMD observed
across multiple studies. The dose-dependent nature of these effects, as well as the influence of food
matrices and the correlation between circulating metabolites and FMD, underscores the complexity
of cocoa’s impact on vascular health. While NO bioavailability remains a central mechanism, the
antioxidant and anti-inflammatory properties of cocoa (poly)phenols are equally important in
contributing to their cardiovascular benefits. Future research should focus on optimizing the delivery
and establishing dosages and dietary recommendation of cocoa (poly)phenols to maximize their

therapeutic potential, particularly in populations at high-risk for endothelial dysfunction.

2.5 Caffeinated and decaffeinated coffee

Coffee, one of the most widely consumed beverages globally, contains bioactive compounds such as
caffeine, and chlorogenic acids (CGAs), all of which have been linked to effects on cardiometabolic
health. The impact of coffee consumption on endothelial function, has been extensively investigated,
though the findings remain ambiguous. The variability in results likely arises from factors such as
coffee type (ground, instant, espresso), caffeine content, (poly)phenol concentration, and individual
tolerances. In particular, studies comparing caffeinated coffee (CC) and decaffeinated coffee (DC) have

revealed conflicting results. While some studies suggest that DC yields a more favourable response in
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466  terms of FMD, CC has been associated with detrimental or static effects, likely due E&S%flf&'v%é o0
467  influence on endothelial function.

468 Early reports examined the acute effects of caffeinated and decaffeinated instant coffee on FMD in
469  healthy subjects, finding CC (80mg caffeine) significantly reduced FMD from 7.78% to 2.12% at 60
470  minutes post-ingestion (p<0.001), indicating acute endothelial impairment 1%, Similarly, a study
471 investigating the acute consumption of caffeinated espresso (130mg caffeine) reported a reduction in
472 FMD from 7.7% to 6.0% (p<0.001) 9%, Interestingly, in both studies, DC had a more favourable
473 outcome. Caffeine increases sympathetic nervous system activity, elevating circulating adrenaline and
474  noradrenaline levels'92-195, |eading to increased vascular tone and peripheral vasoconstriction04-107,
475 This acute vasoconstriction reduces arterial responsiveness, reflected as impaired FMD. Thus, the
476 initial endothelial dysfunction observed following caffeinated coffee intake is potentially driven by
477  caffeine-induced vasoconstrictive effects rather than (poly)phenol content. In the study by
478 Papamichael and colleagues, the reduction in FMD for DC was smaller (7.07% to 5.20%) and non-
479  significant, while Buscemi’s research group noted a modest improvement in FMD (6.9% to 8.5%) with
480 DC, though this did not reach statistical significance. However, when investigating dose-dependent
481  effects in earlier research, they found that FMD improved significantly following the consumption of
482 1 cup (6.9% to 8.5%) and 2 cups (7.4% to 10.8%, p<0.001) of DC, likely due to its higher (poly)phenol
483  and lower caffeine content compared to instant coffee 1%, These findings suggest that caffeine may
484 acutely impair endothelial function (Figure 3), while DC, with its lower caffeine content and higher

485 (poly)phenol concentration, may offer protective benefits. Decaffeinated coffee’s (poly)phenol profile

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

486 and the potential endothelial improvements may be impacted by the decaffeination method used 1.

487 Processes such as the Swiss Water Process, solvent-based chemical decaffeination, and carbon dioxide

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

488 extraction differ substantially in their efficiency at retaining chlorogenic acids and other bioactive

(cc)

489  (poly)phenols 109110 potentially altering decaffeinated coffee’s vascular benefits. Consequently, the
490 specific decaffeination method may critically influence the cardiovascular outcomes associated with
491 decaffeinated coffee consumption. However, as highlighted by Boon and colleagues the variability in
492 responses may be influenced by other factors such as brewing method, frequency of
493 consumption/individual tolerances, and baseline endothelial health!!l, Additives commonly
494  consumed with coffee, such as milk and sugar, significantly modulate its cardiovascular effects. For
495 instance, the inclusion of sugars can negatively impact endothelial function through increased
496  oxidative stress and impaired glycaemic control, potentially counteracting the benefits of coffee
497  (poly)phenols 2. Milk proteins can form complexes with various (poly)phenols including chlorogenic
498  acids, potentially reducing their bioavailability and subsequent endothelial benefits 13114, Evidence

499 suggests milk protein-(poly)phenol complexes may decrease antioxidant capacity, thus attenuating
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(poly)phenol-driven improvements in FMD *'>-117, Moreover, the type of coffee was alsg found/ o777

influence FMD in a study investigating the consumption of boiled Greek coffee in comparison other
types of coffee, noting a linear increase in FMD (4.33% to 6.47%, p=0.032) with increased coffee
consumption but interestingly a higher FMD (5.26% vs 3.65%, p=0.035) was found with higher intake
of boiled Greek coffee compared to other coffees respectively 18 Therefore, both the choice of coffee
type and consumption patterns regarding additives are crucial considerations when evaluating
coffee’s overall vascular impact.

Further research explored the time-dependent FMD response to high-(poly)phenol coffee (HPC) and
low-(poly)phenol coffee (LPC) finding a significant biphasic FMD increase at 1 hour for both LPC
(1.10%, p<0.05) and HPC (1.34%, p<0.05). At 5 hours, only HPC showed sustained improvement
(1.52%, p<0.0001) %%, highlighting the importance of (poly)phenol content in maintaining persistent
vascular improvements. The researchers further explored the acute effects of varying doses of CGA
metabolites, specifically 5-caffeoylquinic acid (5-CQA) on FMD, finding that a 450mg dose of 5-CQA
increased FMD from 6.02% to 6.77% at 1-hour post-ingestion, nearing statistical significance (p=0.06)
113, These results suggest that while caffeine may induce short-term reductions in FMD, the
(poly)phenol content, particularly CGAs, can mitigate these effects and even improve endothelial
function over time. This is supported by earlier research which demonstrated improvements in
continuous FMD response following doses of 450mg (0.47%, p=0.016) and 900mg (0.65%, p<0.001) of
5-CGA, with the higher dose showing sustained benefits up to 4 hours post-ingestion 120, Furthermore,
consumption of 600mg of CGAs before a high-calorie meal was found to mitigate the postprandial
decline in FMD, preserving endothelial function at 6 hours (5.6% vs. 4.0%, p<0.05) compared to
placebo 21, However, not all studies align with these findings. In fact, caffeinated coffee (270mg
caffeine, 95mg 5-CGA) was found to have significantly higher continuous FMD response (4.081%,
p<0.001) compared to DC (132mg 5-CGA) and control 11, emphasizing the need to consider individual
variation and other external factors that may affect FMD response to coffee consumption. Individual
differences in response to coffee consumption, especially concerning caffeine, are influenced by
genetic variability, notably polymorphisms in genes encoding cytochrome P450 enzymes such as
CYP1A2 1227125 |ndividuals with fast caffeine metabolism (homozygous CYP1A21A alleles) generally
experience fewer negative cardiovascular effects from caffeine 126, whereas those with slow
metabolism (carrying the CYP1A21F allele) may show heightened sensitivity to caffeine-induced
vasoconstriction and endothelial impairment 126127, These genetic variations highlight the complexity
of assessing coffee’s cardiovascular effects across populations, underscoring the necessity of

personalized nutritional recommendations. These findings underscore the potential of CGA extracts

16

001106J


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo01106j

Page 17 of 70 Food & Function

533  to improve endothelial function through their antioxidant and NO-mediated mechanisms, offef ‘nglg‘gj
534  more predictable benefits than whole coffee.

535

536 2.6 Black and Green Tea

537  Tea is another commonly consumed beverage globally and represents approximately 35-40% of
538 dietary (poly)phenol intake in certain populations, contributing significantly to the reduction of
539  cardiovascular disease risk and improvements in vascular health through its bioactive compounds
540 39128129 For jnstance, daily consumption of black tea (450ml) significantly improved FMD in patients
541  with CAD, increasing from 5.2% + 0.7% to 9.4% + 1.0% immediately after consumption (p<0.001), with
542 further gains to 10.7% + 1.2% after four weeks 3%, These sustained benefits were attributed to
543 enhanced NO bioavailability, mediated in part by the catechins in black tea, which upregulate
544  antioxidative pathways, reducing reactive oxygen species (ROS) and protecting NO from degradation.
545 In comparison, studies investigating green tea have shown more variable effects, ranging from
546  significantimprovementsin FMD (2.3% £ 0.4%, p<0.01) , concurrent with reductions in oxidative stress
547  among hypertensive patients consuming five cups of green tea daily for eight weeks 3!, to no
548  significant change in FMD following short-term green tea consumption in healthy participants 132,
549 Black tea and green tea differ substantially in their (poly)phenolic composition, notably regarding
550 catechins. Green tea predominantly contains unoxidised catechins such as epigallocatechin gallate
551  (EGCG), epicatechin gallate, epigallocatechin, and epicatechin 133134, Conversely, black tea undergoes

552 enzymatic oxidation, converting catechins into polymerized forms like theaflavins and thearubigins,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

553  significantly altering their bioavailability and their putative bioactivity 137138, Interestingly, one study

554  that demonstrated beneficial improvements in FMD (4% % 1%, p<0.05) following consumption of black

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

555 tea, also noted that the addition of milk nullified this benefit, likely due to milk proteins binding to tea

(cc)

556 catechins and reducing their bioavailability 13°. This suggests that black tea, consumed without milk,
557 may be more effective in promoting endothelial health. The importance of bioavailability was further
558 highlighted in a study observing that higher plasma concentrations of catechins were associated with
559  greater FMD improvements %2, Participants consuming five cups of green tea daily for one week had
560 plasma levels of 90nmol/L for epicatechin and 180nmol/L for catechin, correlating with an increase in
561 FMD from 6.3% + 0.7% to 7.9% + 0.9% (p<0.05) #?, underscoring the importance of catechin absorption

562  and individual metabolic differences in determining vascular outcomes.

563 Studies comparing populations with compromised versus healthy endothelial function highlight
564  notable differences in FMD responses to tea (poly)phenols. 4% showed that black tea consumption
565  significantly increased FMD from 8.3% + 1.5% to 14.0% + 2.0% (p<0.05) in renal transplant recipients,

566  a population with compromised endothelial function, suggesting that tea (poly)phenols may provide

17


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo01106j

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

567
568
569
570
571
572
573
574
575

576
577
578
579
580
581
582
583

584

585
586
587
588
589
590
591
592
593
594

595
596
597
598
599

Food & Function

Page 18 of 70

greater benefits to individuals with existing cardiovascular or endothelial impairments, Similafly,cr 005

Grassi and colleagues found significant improvements in hypertensive patients 13!, while studies on
healthy individuals 132139141142 "haye often reported less pronounced or transient effects, and may
arise due to a potential ‘ceiling effect’, limiting the magnitude of measurable FMD improvements
following (poly)phenol consumption. This may indicate that (poly)phenols beneficial vascular effects
are more pronounced in individuals with baseline endothelial impairment, however a recent meta-
analysis comparing n=26 studies investigating flavan-3-ols found a linear increase in chronic A FMD %
response with increasing baseline FMD, indicating that those with a lower baseline FMD may have a

diminished effect, which may be resultant of a compromised endothelial cellular function 43,

In summary, both black and green tea have demonstrated their capacity to improve endothelial
function 122144145 However, the bioavailability of catechins, influenced by factors such as milk addition
and individual metabolic differences, plays a crucial role in determining the efficacy of tea
(poly)phenols. Populations with compromised endothelial function appear to experience greater
benefits from tea consumption, suggesting that regular intake may be effective in reducing
cardiovascular risk among individuals with existing vascular impairments. However, the recent
evidence from Lagou and colleagues suggests that it may be the opposite of this and warrants further

investigation.
3. Relationship between circulating metabolites and FMD

(Poly)phenols exert their beneficial effects on cardiovascular health primarily through the action of
their circulating metabolites, which modulate endothelial function and FMD %4647 These metabolites,
including phase Il conjugates such as ferulic acid, vanillic acid, homovanillic acid, play a critical role by
reducing oxidative stress, modulating inflammation, and enhancing NO bioavailability 14810, One of
the key mechanisms by which these metabolites function is through their modulation of redox-
sensitive cell signalling pathways, particularly those regulating endothelial NO production 1215151, This
action prevents the degradation of NO, ensuring its availability for cell signalling and vasodilation
9152153 Moreover, these metabolites have also been shown to upregulate eNOS through activation of
the PI3K/Akt and AMPK/SIRT1 signalling pathways, which enhance eNOS phosphorylation,

transcription, and enzymatic stability 1>%1>4155 further increasing NO bioavailability.

Cranberries, blueberries, and other berries are particularly rich in anthocyanins and ellagitannins.
However, their cardiovascular benefits are primarily mediated through the action of their metabolites.
Cranberry-derived metabolites, such as cinnamic acid-4'-glucuronide and 3’-hydroxycinnamic acid,
have been identified as predictors of FMD improvements, suggesting that the vascular benefits of

(poly)phenol-rich foods are closely tied to bioavailability and metabolite profiles. These metabolites

18


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo01106j

Page 19 of 70 Food & Function

600  support NO bioavailability and reduce oxidative stress, contributing to improvements in EMD, withinc® o7
601  the range of 1% to 3%. Similarly, after consuming blueberries, phenolic metabolites such as vanillic
602 acid (30—40nmol/L) and homovanillic acid (40-50nmol/L) have been linked to FMD improvements
603  ranging from 2% to 4% 46°3156, Additionally, microbial-derived metabolites including urolithins, also
604  play a significant role. Urolithins are produced from the breakdown of ellagitannins by the gut
605 microbiota and have been shown to enhance FMD by regulating the Nrf2 pathway 7. This pathway
606 activates antioxidant genes such as heme-oxygenase-1 (HO-1), which reduces endothelial oxidative
607 stress. Although urolithins do not directly impact NO bioavailability, their strong antioxidant
608 properties contribute to improvements in vascular function . The extent of these benefits can vary
609 due to differences in gut microbiota composition among individuals, affecting the metabolism and
610  circulation of (poly)phenol-derived metabolites 147157, Together, the metabolites from berries and the

611 microbial-derived urolithins highlight the complexity of (poly)phenol metabolism and its role in

612 sustaining vascular health.

613 Cocoa and tea, rich in flavan-3-ols such as epicatechin and catechins, have also been shown to improve
614  FMD through similar mechanisms 1°%15%, Cocoa-derived epicatechin, reaches concentrations of 600—
615 800nmol/L approximately 1 - 2 hours post consumption, and is associated with FMD improvements in
616  the range of 3% to 5% 98143180, Epicatechin and catechin metabolites enhance NO bioavailability by
617  upregulating endothelial nitric oxide synthase (eNOS) and mitigating oxidative stress through the
618  inhibition of nuclear factor kappa B (NF-kB), a key regulator of inflammation 144, These effects are

619  sustained for several hours post-consumption, with cocoa metabolites remaining in the bloodstream

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

620  reaching peak concentration between 4 — 6 hours and remaining in the circulation up to 48h hours

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

621  post-consumption, contributing to prolonged vascular benefits 162162 |n tea, catechin metabolites

622 present at 90-180nmol/L after consumption have been associated with FMD improvements of 1.5%

(cc)

623 to 4%, further supporting the hypothesis that (poly)phenol metabolites from both tea and cocoa

624  enhance NO bioavailability and promote endothelial health.

625  Coffee, rich in chlorogenic acids, follows a similar pathway. Ferulic acid, a metabolite of chlorogenic
626  acid, reaches concentrations of 0.1-0.15umol/L after consuming chlorogenic acid-enriched coffee.
627  This metabolite is linked to modest FMD improvements in the range of 1% to 3%, attributed to
628 enhanced antioxidant enzyme activity, such as superoxide dismutase (SOD), which reduces oxidative
629  stress and preserves NO bioavailability 1°. Similar to other (poly)phenol-rich foods, the impact of
630 coffee on FMD is strongly linked to the bioavailability of its circulating metabolites and the duration
631 of their presence in the bloodstream. The duration and extent of metabolite presence in the
632 bloodstream are critical for optimizing vascular benefits, however, the bioavailability and metabolism

633  of (poly)phenols vary between individuals due to differences in gut microbiota composition, genetic
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factors, and health status, which can affect circulating levels of active metabolites and %: g&%@%@f

endothelial improvements 1627165,

4.Potential for dietary guidance

(Poly)phenol dietary recommendations for cardiovascular health have gained considerable attention
due to their potential role in various metabolic pathways 3663166167 However, translating these
recommendations into practical dietary guidelines remains challenging due to the natural variability
of (poly)phenol content in foods. Factors such as climate, soil conditions, and harvest timing can
significantly affect (poly)phenol levels in the same food type 89168169 For instance, wild blueberries
contain approximately 487mg anthocyanins per 100 g in contrast to highbush blueberries (~130 mg
per 100 g). Consequently, consuming 80 g wild blueberries would meet an efficacious dose (~390 mg
anthocyanins), while nearly 200 g of highbush blueberries would be required to achieve similar
bioactivity (Rodriguez-Mateos et al., 2019). Similarly, cocoa (poly)phenol content varies markedly due
to cultivation and processing methods, ranging from 50 to 150 mg flavan-3-ols per 100 g in commercial
dark chocolate 28170, This variability underscores the importance of standardized (poly)phenol
measurements to inform accurate dietary guidance. This variability complicates efforts to establish
reliable guidelines based on total (poly)phenol content (TPC). Typically, dietary recommendations
focus on portion sizes rather than precise nutrient quantities, which complicates ensuring optimal

intake for cardiometabolic health.

Interestingly, habitual background (poly)phenol intake may influence the magnitude of cardiovascular
benefits observed with supplementation or dietary interventions. Data from the EPIC study ! indicate
that individuals in lowest percentile of flavan-3-ol consumption (<100 — 150 mg/day), were at higher
risk for high BP and CVD Risk. Complimenting this, evidence from the COSMOS study 7, suggests that
individuals with lower baseline flavanol intake or poorer-quality habitual diets may experience more
pronounced improvements in cardiovascular outcomes and biomarkers such as FMD when
supplemented with cocoa flavanols. In line with this evidence, the Academy of Nutrition and Dietetics
recently recommended a daily flavan-3-ol intake of 400 — 600mg 36, which not only aligns with typical
dietary flavan-3-ol intakes (200-500mg/day) 34>172173 phut also with tested dosages of cocoa and tea
which elicited responses in FMD studies (Table 1 & 2). This recommendation is sufficient to attain the
associative benefits while remaining below the plateau range (500 — 100mg/day). However dietary
guidance for cocoa in particular is complicated, as the typical interventions used in clinical studies such
as the COSMOS trial have more highly concentrated (poly)phenol compositions than that of
commercially available cocoa and dark chocolate 7. In contrast, anthocyanins, and chlorogenic acids,
found in foods like berries and coffee respectively, have daily consumption levels generally below the

dosages used in clinical intervention studies. For instance, average daily intake of anthocyanins ranges
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668  from 10mg to 50mg/day, which is considerably lower than the quantities used in FMD_studies/{20:c° "7
669  400mg), equivalent 100g to 300g which also falls outside the general recommendations for a portion
670 (60 - 80g) of berries. Similarly, daily intake levels of hydroxycinnamic acids (up to 231.8mg/day),
671  including (poly)phenols such as chlorogenic acids are lower than the typically tested ranges (>300mg),
672  this is further complicated with variations in coffee consumption patterns, types of coffee used and

673 preparation methods 34>172.173,

674  Fortification or enrichment may provide a practical solution to the variability in (poly)phenol content
675  across natural sources 8374, Enriching foods with (poly)phenols can ensure more consistent intake by
676  controlling TPC levels and more importantly specific bioactive phenolics, making it easier to meet the
677  dosages shown to be effective in clinical research 617>, Importantly, (poly)phenols have been shown
678  toremain stable during food processing preserving their bioactive properties and health benefits. For
679 example, cereal products enriched with cranberry (poly)phenols maintained their anthocyanin
680 content even after high-temperature processing, ensuring the bioactive compounds remain intact
681  post-manufacture 76, Albeit stability does not guarantee that (poly)phenols will maintain their
682 bioavailability as the food matrix may be altered, introducing other food components which may
683 inhibit absorption, such as sugar, fat and proteins thus mitigating any potential benefits. For instance,
684  blueberry buns fortified with (poly)phenols did not impact TPC although did alter the polyphenol
685  composition, decreasing anthocyanins by ~42% and increasing chlorogenic acid content. This
686  compositional change also impacted the Cmax and AUC of various metabolites. Nonetheless,

687  significant improvements in endothelial function were observed in comparison to non-enriched bun

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

688  and comparable to the blueberry drink positive control, demonstrating that bioactivity was preserved

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

689  following processing °¢. Other studies also confirm (poly)phenol stability during food processing, for

690 instance orange juice enriched with hesperidin, provided greater improvements in endothelial

(cc)

691  function than regular juice, showing the potential of enrichment in widely consumed beverages 2.
692  While coffee fortified with cocoa 7 and enriched with chlorogenic acid '2° were demonstrated to be
693  stable, yielding favourable endothelial modulation. However, implementation of (poly)phenol
694  fortification in public health contexts is constrained by both regulatory and practical
695  considerations3®178179 Regulatory frameworks for functional foods and nutraceuticals vary
696 internationally, often requiring extensive safety and efficacy evaluations before approval 17817,
697  Additionally, practical barriers such as the cost of high-purity extracts and consumer acceptability /
698  tolerance of fortified products must be considered to ensure safe and effective applications 178181,
699  Addressing these challenges is critical if fortification strategies are to complement dietary

700  diversification as a means of maximising the cardiometabolic benefits of (poly)phenols.
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In conclusion, dietary (poly)phenols and (poly)phenol-rich foods beneficially modulate, endoth@lidlc® oS

function as measured by FMD. While the development of dietary recommendations for
cardiometabolic health is essential, their implementation is hindered by the lack of confirmed
(poly)phenol content of various foods and the intrinsic variability in (poly)phenol content across food
sources, making it challenging to establish precise intake guidelines. Whilst the estimated daily intake
of (poly)phenols in Western populations can reach approximately 1000-1200 mg/day*>172, exceeding
efficacious dosages used in many clinical trial, this intake is largely derived from a limited range of
sources, primarily tea, coffee, and cocoa providing specific subclasses such as flavan-3-ols and
chlorogenic acids which may also be impaired by other food matrix components such as sugar and
milk. Albeit, these compounds have well-established health benefits, yet the lack of diversity restricts
exposure to other beneficial compounds including anthocyanins, flavanones etc. which limits potential
complementary and/or distinct bioactive effects. Furthermore, these intake estimations rely on
dietary self-reporting, which is subject to inaccuracies, and do not account for inter-individual
differences in metabolism, absorption, or the influence of other dietary components on (poly)phenol
bioavailability or the resulting bioactivity. Critically, evidence consistently suggests that greater
(poly)phenol consumption is associated with enhanced health benefits, indicating that current dietary
patterns may still be suboptimal. Moreover, if typical dietary sources were sufficient to maximize
(poly)phenol-mediated health effects, higher intakes would not correspond with additional benefits.
Given this, strategies to enhance (poly)phenol intake through fortification and enrichment
technologies warrant further exploration. These approaches may offer a means of increasing overall
intake and ensure the consistent delivery of bioactive compounds, however compositional changes
present a challenge as the associated bioactivity may be altered or diminished dependant on the
degree of the compositional and/or food matrix change and may warrant revaluation if potential

nutrition or health claims are to be utilised by industry.

Nonetheless, the establishment of dietary recommendations remains a critical area of research, as it
will define effective daily intakes while accounting for the plateau effects observed in many clinical
trials. Understanding the thresholds beyond which additional intake does not confer further benefits
will aid in optimizing recommendations, ensuring that individuals achieve sufficient (poly)phenol
exposure without unnecessary overconsumption. Future research should focus on refining both
dietary guidelines and fortification strategies, assessing their long-term efficacy in improving

cardiovascular health outcomes.
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762  5.Summary Tables

7

Table 1: Summary of acute flow-mediated dilation (FMD) responses within different food groups.

Proportion of studies demonstrating

a significant effect on FMD (Poly)phenol dose range (mg)

7 Food group

Page 24 of 70
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Acute FMD changes (%)

Whole food
7 Berry (n=8) 5/8 200-1910
7 Grape (n=4) 3/4 NR
Citrus fruits (n=3) 1/1 32-345
7 Cocoa (n=12) 7/12 185 — 3282
Coffee (n=8) 5/8 89 -900
7 Tea (n=3) 3/5 398-733
Extract
7 Berry (n=7) 3/4 116 -1791
Grape (n=0) NA NA
7 Citrus fruits (n=1) 0/0 272 - 600
Cocoa (n=1) 1/1 150 — 3282
7 Coffee (n=2) 1/2 355
7 Tea (n=3) 1/3 330- 1817
Pure phenolic
Epicatechin (n=2) 1/2 10-100
Resveratrol (n=2) 1/2 30-270
Quercetin (n=1) 0/1 160
Hesperidin (n=1) 0/1 450

0.9-2.6
0.3-8.6
15-21
0.7-5.7
11-34
14-438

1.0-24
NA
1.5

0.7-5.9

03-23

0.2-3.9

1.2-29
2.5-3.6
NA
NA

Acute changes in flow-mediated dilation (FMD) within different food grouped by whole foods (including whole fruits or derived products such as
Jjuices, wines etc.) extracts (including freeze-dried food components administered as capsules, reconstituted in water, or used to enrich derived
food or a meal) and pure phenolic compounds. FMD, flow-mediated dilation; n, number of studies; mg, milligram; NR, not reported; NA, not

applicable.

Table 2: Summary of chronic flow-mediated dilation (FMD) responses within different food groups.

Proportion of studies demonstrating

Food group a significant effect on FMD (Poly)phenol dose range (mg) Chronic FMD changes (%)
Whole food
Berry (n=3) 2/3 12 -835 09-11
Grape (n=3) 2/3 965 0.8-8.7
Citrus fruits (n=4) 2/4 212-419 0.2-2.2
Cocoa (n=14) 7/14 185-1113 1.0-5.6
Coffee (n=2) 1/2 300 - 780 33
Tea (n=6) 5/6 100-1188 1.2-3.8
Extract
Berry (n=4) 2/4 116 -1910 1.1-1.45
Grape (n=12) 6/12 1.65 (NR) 0.3-5.5
Citrus fruits (n=4) 3/4 500 - 600 2.0-7.2
Cocoa (n=3) 2/3 523 -690 1.2-1.8
Coffee (n=0) NA NA NA
Tea (n=1) 1/1 1350 35
Pure phenolic
Epicatechin (n=1) 1/1 10-100 1.1
Quercetin (n=1) 0/1 160 NA

Chronic changes in flow-mediated dilation (FMD) within different food grouped by whole foods (including whole fruits or derived products such as
juices, wines etc.) extracts (including freeze-dried food components administered as capsules, reconstituted in water, or used to enrich derived
food or a meal) and pure phenolic compounds. FMD, flow-mediated dilation; n, number of studies; mg, milligram; NR, not reported; NA, not

applicable.
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. Table 3: Summary of Human Intervention Trials Assessing the Effects of (Poly)phenol-Rich Foods and Extracts on Flow-Mediated Dilation (FMD)

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:83.

uthor (Year) Type of Study
opulation Intervention  design Population’ Duration Age (y) BMI (kg/m?) Intervention and (Poly)phenol Content (mg)  FMD Outcomes
Berries
tas et al. (2018)% Whole food Crossover Healthy Acute (2 hr) 27+3 23+2 200g Raspberry drink (TPC 201mg, Acute (2 hr)
@=10, 100% M Chronic (24 hr) Anthocyanins 125mg, Flavonols 5.7mg, 200g - **11.6% from baseline FMD %
.g Flavan-3-ols 0.6mg, Epicatechin 0.6mg, 400g - *11.2% from baseline FMD %
5 Catechin 0.01mg) Control - 0.0% from baseline FMD %
g 400g Raspberry drink (TPC 403mg, Chronic (24 hr)
5 Anthocyanins 328mg, Flavonols 11mg, 200g - **10.9% from baseline FMD %
2 Flavan-3-ols 1.2mg, Epicatechin 1.2mg, 400g - *10.5% from baseline FMD %
2 Catechin 0.02mg) Control - 0.1% from baseline FMD %
% Control (macro/micronutrient matched drink,
= with raspberry flavours)
_glqurashi et al. Whole food Crossover Healthy Acute (2 hr) 46+1.9 27.6+0.4 Acai Smoothie (TPC 694mg, Anthocyanins Agai smoothie - **11.4% + 0.6% from baseline FM.* %
i£2016)182 493mg) Control - 10.4% + 0.6% from baseline FMD %
=73, 100% M Control (macro/micronutrient - matched
smoothie)
Rodriguez-Mateos et Whole food Crossover Healthy Acute (2 hr) 2442 24+2 Cranberry juice at: 25.1% - ¥10.9% from baseline FMD %

al. (2016)
n=10, 100% M

25

25.1% (TPC 409mg, Flavan-3-ols 2.5mg,
Flavonols 14.5mg, Anthocyanins 6.8mg)
48.2% (TPC 787mg, Flavan-3-ols 5.0mg,
Flavonols 31.3mg, Anthocyanins 16.2mg)
75.8% (TPC 1238mg, Flavan-3-ols 6.8mg,
Flavonols 48.9mg, Anthocyanins 23.2mg)
94% (TPC 1534mg, Flavan-3-ols 10.1mg,
Flavonols 62.8mg, Anthocyanins 26.3mg)
117% (TPC 1910mg, Flavan-3-ols 12.3mg,
Flavonols 76.9mg Anthocyanins 32.3mg)
Control (macro/micronutrient matched drink)

48.2% - *11.55% from baseline FMD %
75.8% - *11.8% from baseline FMD %
94% - *11.55% from baseline FMD %
117% - *11.7% from baseline FMD %
Control - 10.4% from baseline FMD %
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Acute (24 hr)
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Low blackcurrant
juice: 55+ 10
High blackcurrant
juice: 51 £ 11
Placebo: 51 £ 8

Juice-first: 61 +
11
Placebo-first: 63
+9

24+53

27+1

Low blackcurrant
juice: 28.4+5.4
High blackcurrant
juice: 29.2 +6.9
Placebo: 28.9 + 6.5

Juice-first: 30 £ 5
Placebo-first: 29 + 4

23+2.1

25+0.8

26
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Low blackcurrant juice (TPC 273mg, Blackcurrant juice
Anthocyanins 40mg) Low - 10.7% from baseline FMD %
High blackcurrant juice (TPC 815mg, High - *11.1% from baseline FMD %
Anthocyanins 143mg) Control
Control (Flavoured water) 1 wk - 10.9% from baseline FMD %

Cranberry juice (TPC 835mg, Anthocyanins Acute (2 hr) - 10.4% from baseline FMD %
94.47mg, cyn-gal 18.7mg, cyn-glu 1.58mg, Acute (4 hr) - ¥*11.0% from baseline FMD %
cyn-ara 16.47mg, peo-gal 30.83mg, peo-glu Chronic - 10.4% from control baseline FMD %
5.85mg, and peo-ara 21.03mg)

Aronia whole fruit - (TPC 12mg (Flavonols Acute:

2.6mg, Anthocyanins 3.6mg, Whole fruit - 10.5% from baseline FMD %

Proanthocyanidins 3.3mg, Epicatechin Opg, Extract - 11.4% from baseline FMD %
Protocatechuic acid 450p.g) Control - 10.3% from baseline FMD %
Aronia Extract - TPC 116mg (Flavonols Chronic:

35mg, Anthocyanins 30mg, Proanthocyanidins ~ Whole fruit - *0.9% from baseline FMD %
16mg, Epicatechin 101pg, Protocatechuic acid ~ Extract - *1.0% from baseline FMD %
2396ug) Control - |0.2% from baseline FMD %
Control (maltodextrin)

Drink containing freeze-dried blueberry 34g  Blueberry drink:
(TPC 692mg, Total anthocyanins 339mg, Total 1 hr: *12.4% from baseline FMD %
procyanidins 111mg, Monomers 29mg, Dimers 2 hrs: ¥11.55% from baseline FMD %

26mg, Trimers 15mg, Tetramers 14mg, 4 hrs: #10.15% from baseline FMD %
Pentamers 9mg, Hexamers 8mg, Heptamers 6 hrs: *11.3% from baseline FMD %
6.5mg, Octamers Smg, Nonamers 4mg, Blueberry bun:

Decamers Omg, Total oligomers 89mg, 1 hr: *11.8% from baseline FMD %
Quercetin 24mg, Chlorogenic acid 179mg, 2 hrs: #12.6% from baseline FMD %
Caffeic acid 16mg, Ferulic acid 22mg) 4 hrs: ¥10.25% from baseline FMD %
Blueberry buns (x3) made with freeze-dried 6 hrs: *11.0% from baseline FMD %
blueberry 34g: (TPC 637mg, Total Control

anthocyanins 196mg*, Total procyanidins 1 hr: 10.15% from baseline FMD %
140mg, Monomers 29mg, Dimers 42mg*, 2 hrs: 10.35% from baseline FMD %
Trimers 23mg*, Tetramers 17mg, Pentamers 4 hrs: 10.55% from baseline FMD %
11mg, Hexamers 8mg, Heptamers Smg, 6 hrs: 10.65% from baseline FMD %

Octamers 4mg, Nonamers Omg*, Decamers
Omg, Total oligomers 111mg, Quercetin
25mg*, Chlorogenic acid 221mg*, Caffeic acid
17mg, Ferulic acid 38mg*)

Control (Macro / micronutrient matched buns
x 3)
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27+ 1.3

Blueberry: 60 + 1
Placebo: 61 £ 1

25+0.8

Blueberry: 27.6 = 1
Placebo: 27.8 £ 1.1

27

Drinks containing freeze-dried blueberry:
34 (TPC 766mg, Anthocyanins 310mg,
Procyanidins 137mg, Flavan-3-ol monomers
24mg, Flavan-3-ol oligomers 112mg,
Chlorgenic acid 273mg, Quercetin 26mg,
Caffeic acid 17g, p-Coumaric acid 1.4mg,
Ferulic acid 1.4mg)

57 (TPC 1278mg, Anthocyanins 517mg,
Procyanidins 228mg, Flavan-3-ol monomers
40mg, Flavan-3-ol oligomers 188mg,
Chlorgenic acid 455mg, Quercetin 43mg,
Caffeic acid 30mg, p-Coumaric acid 2.4mg,
Ferulic acid 2.4mg)

80 (TPC 1791mg, Anthocyanins 724mg,
Procyanidins 320mg, Flavan-3-ol monomers
56mg, Flavan-3-ol oligomers 264mg,
Chlorgenic acid 637mg, Quercetin 61mg,
Caffeic acid 42g, p-Coumaric acid 3.4mg,
Ferulic acid 3.4mg)

Control (macro/micronutrient matched drink)

Freeze-dried Blueberry Powder (TPC
726mg, Anthocyanins 224mg)

Control (isocaloric and carbohydrate matched)
*added to energy dense meal*

766mg TPC:

1 hr: 12.4% from baseline FMD %
2 hrs: 11.5% from baseline FMD %
4 hrs: 10.1% from baseline FMD %
6 hrs: 11.2% from baseline FMD %
1278mg TPC:

1 hr: 12.2% from baseline FMD %
2 hrs: 11.5% from baseline FMD %
4 hrs: 10.1% from baseline FMD %
6 hrs: 10.6% from baseline FMD %
1791mg TPC:

1 hr: 11.8% from baseline FMD %
2 hrs: 11.0% from baseline FMD %
4 hrs: 10.1% from baseline FMD %
6 hrs: 10.4% from baseline FMD %
Control:

1 hr: ]0.3% from baseline FMD %
2 hrs: |0.5% from baseline FMD %
4 hrs: |0.4% from baseline FMD %
6 hrs: |0.5% from baseline FMD %

Freeze-dried Blueberry Powder

12 wk - 11.34% from baseline FMD %

Controll
12 wk - |0.4% from baseline FMD %
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Extract

Extract

Extract

Extract

Parallel

Crossover

Crossover

Parallel

Healthy

Metabolic
syndrome

Hypercholestero
lemia

Metabolic
syndrome

Acute (2 hr)
Chronic (1 mth)

Acute (24 hr)

Acute (1 hr)

Chronic (6 mth)

Food & Function

Cranberry: 25+ 3
Control: 25+ 3

634+74

531

62.8+7.1

Cranberry: 23 £ 3
Control: 24 + 3

31.4+3.1

31+1

31.2+3.0
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Cranberry powder (TPC 525mg, Total
proanthocyanidins (PACs) 374.2mg,
Epicatechin 0.493mg, Catechin 0.019mg, Total
flavonols 8 1mg, Quercetin-3-rhamnoside eq.
81mg, Quercetin 0.153mg, Kaempferol
0.001mg, Total anthocyanins 54mg, 3',4'-
Dihydroxycinnamic acid equivalent (caffeic
acid) 16mg, 5-O-Caffeoylquinic acid
(chlorogenic acid) 0.720pg, 3,4-
Dihydroxybenzoic acid (protocatechuic acid)
0.051pg, 4'-Hydroxycinnamic acid (p-
coumaric acid) 0.034pg, 4'-Hydroxy-3',5'"-
dimethoxycinnamic acid (sinapic acid)
0.010pg, 4'-Hydroxy-3'-methoxycinnamic acid
(ferulic acid) 0.007pg, 3-Hydroxybenzoic acid
0.006p.g, 3,4-Dihydroxybenzaldehyde
0.004pg, 2,5-Dihydroxybenzoic acid 0.003pg,
2-Hydroxybenzoic acid 0.003ug, 4-
Hydroxybenzoic acid 0.001pg, Dihydrocaffeic
acid 0.001pg, 4-Hydroxy-3'-methoxycinnamic
acid (isoferulic acid) 0.000pg, 4-
Hydroxybenzaldehyde 0.000png.)

Control (Colour matched Maltodextrin)
Freeze-dried Blueberry Powder (TPC
879mg, Anthocyanins 364mg)

Control (isocaloric and carbohydrate matched)
*added to energy dense meal*

Strawberry powder 50g - TPC 450.7mg
(Flavan-3-ols 99mg, Flavonols 36.2mg,
Anthocyanins 141.7mg, Ellagitannins
160.2mg, Phenolic acids 13.6mg) - (25g,
=250g fresh fruit)

Freeze-dried Blueberry Powder:

1 cup equivalent (TPC 879mg, Anthocyanins
364mg)

1/2 cup equivalent (TPC 439mg,
Anthocyanins 182mg)

Control (isocaloric and carbohydrate matched)
*consumed within 8 standardized recipes*
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Freeze-dried cranberry Powder:

2 hr: ***11.5% from baseline FMD %

1 mth: *¥*%11.1% from baseline FMD %

1 mth, 2 hr: *¥*%11.5% from baseline FMD %
Control:

2 hr: |0.0% from baseline FMD %

1 mth: [0.0% from baseline FMD %

1 mth, 2 hr: |0.1% from baseline FMD %

Freeze-dried Blueberry Powder:

3 hr: |0.6% from baseline FMD %

6 hr: |0.5% from baseline FMD %

24 hr: |0.2% from baseline FMD %

Control:

3 hr: |1.1% from baseline FMD %

6 hr: |0.6% from baseline FMD %

24 hr: |0.2% from baseline FMD %

Strawberry powder - ¥12.4% from baseline FMD %
Control - 10.7% from baseline FMD %

Freeze-dried Blueberry Powder:

1 cup - *11.45% from baseline FMD %
1/2 cup - 10.00% from baseline FMD %
Control - 10.45% from baseline FMD %
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Hashemi et al. (2011)
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n=10, 50% M
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(2005)!84
n=16, 50% M

hilip et al. (2019) 83

Extract

Whole food

Whole food

Whole food

Whole food

Crossover

Crossover

Parallel

Crossover

Crossover

Healthy

Healthy smokers

Metabolic
syndrome

Healthy

Hypercholestero
lemia

Acute (2 hr)

Chronic (2 wk)

Acute (4 hr)
Chronic (2 wk)

Acute (30 - 60
min)

Chronic (2 wk)

18 - 25

26.34+4.93

134+1.1

222+3.8

51.6+8.1

Food & Function

213+22

23.21+4.10

27.1+£1.1

23.7+3.15

248+ 1.5

29

Memophenol (TPC 600mg, Flavonoids
260.4mg, Flavan-3-ols monomers 123.6mg,
Anthocyanins 0.6mg, Phenolic acids 3mg,
Oligomers 135mg, Stillbenes 0.6mg)

Concord grape juice 490ml - (TPC 965mg,

hydroxycinnamates 324 pmol/L, flavonols 152

pumol/L, flavan-3-ols 868 umol/L, and
anthocyanins 592 pumol/L)
Control (Grapefruit juice)

Grape juice - 18ml/kg/day
Pomegranate juice - 200ml/day

Meal + Red grape juice - 122.5ml + water -
52.5mL

Meal + Red grape juice - 122.5ml + 40%
alcohol - 52.5 mL

Meal + Control (water) - 175ml

Grape juice - 500ml/day
Red wine - 250ml / day

Memophenol - *** | 1.6% from baseline FMD %

Control *** | 1.5% from baseline FMD %

Concord grape juice

7 days - ¥10.8% from baseline FMD %
14 days - *11.14% from baseline FMD %
Control

7 days - [0.73% from baseline FMD %
14 days - |1.12% from baseline FMD %

Grape juice

4 hrs - ¥18.55% from baseline FMD %

1 month - *¥18.66% from baseline FMD %
Pomegranate juice

4 hrs - ¥14.50% from baseline FMD %

1 month - 14.28% from baseline FMD %
Red grape juice

30 mins - 11.60% from baseline FMD %
60 mins - 10.35% from baseline FMD %
Red grape juice + Alcohol

30 mins - 12.60% from baseline FMD %
60 mins - 10.10% from baseline FMD %
Control

30 mins - |0.00% from baseline FMD %
60 mins - | 1.05%from baseline FMD %
Grape juice - 716.80% from baseline FMD %
Red wine - 715.50% from baseline FMD %
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Whole food

Whole food

Whole food

Extract

Extract

Crossover

Parallel

Crossover

Parallel

Parallel

Healthy smokers ~ Acute (90 min) 28.9+6.5
CAD Chronic (8 wk) 64+ 10
Healthy Acute (120 min) 34+ 1
Healthy Chronic (12 wk)  24.46 £ 2.99
Prehypertension ~ Chronic (12 wk) 53.7+7.7

Food & Function

23.4+32

NR

NR

22.30+4.87

234+34

30

Smoking + Red wine (Dealcoholised) - 250ml
(Caffeic acid 1.65mg)

Smoking + Red wine (Alcoholised) - 250ml
(Caffeic acid 1.63mg)

Smoking (control)

Purple grape juice (8ml/kg/day) - High dose
Purple grape juice (4ml/kg/day) - Low dose

Red wine (0.8g/kg ethanol) - 500ml

Red wine (dealcoholised) - 500ml
Japanese vodka (0.8g/kg ethanol) - 500ml
Control (Water) - 500ml

Taurisolo 400mg x 2/d (TPC ND,
Anthocyanins ND, Epicatechin 1.36mg,
Catechin 1.99mg, Resveratrol 0.01mg)
Control - Maltodextrin

Low-dose (200mg/d)
High-dose (400mg/d)
Control

~85% proanthocyanidin and flavan-3-ol
monomers
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Smoking + Red wine (Dealcoholised)

15 mins - | 1.15% from baseline FMD %

30 mins - 10.28% from baseline FMD %

60 mins - |0.14% from baseline FMD %

90 mins - |0.69% from baseline FMD %
Smoking + Red wine (Alcoholised)

15 mins - | 1.67% from baseline FMD %

30 mins - | 1.74% from baseline FMD %

60 mins - |0.92% from baseline FMD %

90 mins - |0.74% from baseline FMD %
Smoking

15 mins - *|4.61% from baseline FMD %

30 mins - *|4.25% from baseline FMD %

60 mins - *|2.42% from baseline FMD %

90 mins - |1.30% from baseline FMD %

High dose - 1 2.0 + 4.3% from baseline FMD %
Low dose - 1 2.0 £ 3.6% from baseline FMD %

Red wine (Dealcoholised)

30 mins - **14.8% from baseline FMD %
120 mins - **11.8% from baseline FMD %
Red wine (Alcoholised)

30 mins - |0.1% from baseline FMD %
120 mins - **11.6 from baseline FMD %
Japanese vodka

30 mins - *|2.0 from baseline FMD %
120 mins - *|2.4 from baseline FMD %
Control

30 mins - 10.8% from baseline FMD %
120 mins - 10.7%from baseline FMD %

Taurisolo - *15.00% from baseline FMD %
Control - |0.07% from baseline FMD %

Low dose - |0.9% from baseline FMD %
High dose - |1.2% from baseline FMD %
Placebo - 10.1% from baseline FMD %
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"‘E‘rona etal. (2012) 76
n=35, 100% M

Mellen et al. (2010) 7
n=50, 100% M

Weseler et al. (2010)

188

n=28, 100% M

Extract

Extract

Extract

Extract

Extract

Extract

Extract

Crossover

Crossover

Parallel

Parallel

Crossover

Crossover

Parallel

Postmenopausal
women

Hypertensive
(on diuretic
monotherapy)

Pre & stage 1
hypertension

Prehypertension

Metabolic
syndrome

CVD risk

Healthy

Chronic (4 wk)

Chronic (8 wk)

Chronic (12 wk)

Chronic (12 wk)

Chronic (30 d)

Chronic (6 wk)

Chronic (6 wk)

53.6+0.8

46.8£9.0

575

44+ 10

30-70

55+10

MOF
Supplement
46 (30-56)
Control

48 (30-60)

Food & Function

22.88

26.1+£2.1

27.46

325

NR

30+4

MOF Supplement
24+ 1

Control

25+1

31

Grape seed extract (TPC 300mg)
Control (NR)

Grape/Wine extract (TPC 800mg
(Anthocyanins 140.66mg, Phenolic acids
9.68mg, Flavan-3-ols 39.52mg, Epicatechin
10.64mg, Catechin 11.25mg, Flavonols
9.31mg, Stilbenes 0.92mg)

Control (microcrystalline cellulose)

RGC 200mg (TPC 11.2mg, Anthocyanins
1.34mg, Catechin 2.6mg, Resveratrol 3mg)
RGC 400mg (TPC 22.4mg, Anthocyanins
2.68mg, Catechin 5.2mg, Resveratrol 6mg)

Grape seed extract 150mg x 2/day (TPC
528.24mg, gallic acid 9.94mg, Epicatechin
12.78mg, Catechin 9.94mg)

Control x2/day (TPC 236mg, gallic acid
0.5mg/1, Epicatechin ND, Catechin ND)

Freeze-dried grape powder 46g/d (TPC
266.8mg, Flavans 188.6mg, Anthocyanins
35.4mg, Flavonols 1.68mg, Quercetin 1.42mg,
Myricetin 0.12mg, Kaempferol 0.14mg,
Resveratrol 0.07mg) *reconstituted*

Control (Macronutrient matched placebo)

Muscadine grape seed supplement (MGS)
(TPC 83.98mg, Proanthocyanidins 92.12mg,
Gallic Acid 1.99mg, Ellagic Acid 1.33mg, and
Catechins 0.10mg (Catechin 0.10mg,
Epicatechin 7.03mg, Catechin Gallate 0.03mg,
Epicatechin Gallate 0.35mg, Epigallocatechin
0.002mg, Epigallocatechin Gallate 0.0006mg,
and Resveratrol 0.0039mg)

Control (methylcellulose USP powder)

MOF Supplement 100mg x 2 (Total
Catechins 51.2mg (including (+)-Catechin
21.8mg, (—)-Epicatechin 24.4mg, and (-)-
Epicatechin-3-O-gallate 5.0mg). Total Dimers
amount to 55.0mg, comprising
Proanthocyanidin B1 15.4mg,
Proanthocyanidin B2 16.6mg,
Proanthocyanidin B3 5.6mg, Proanthocyanidin

Grape seed extract - ¥*%15.5% from baseline FMD%
Control - |4.6% from baseline FMD %

Grape/Wine extract - 10.2% from baseline FMD%
Control - 10.4% from baseline FMD%

RGC 200mg - 11.13% from baseline FMD %
RGC 400mg - **12.1% from baseline FMD %
Control - 10.23% from baseline FMD %

Grape seed extract - ¥*10.3% from baseline FMD%
Control - *|1.7% from baseline FMD%

Freeze-dried grape powder - *11.70% from control
FMD%
Control - 4.00% FMD

MGS - |0.65% from baseline FMD %
Control - |0.09% from baseline FMD %

MOF Supplement
4 wk - [0.5% from baseline FMD %
8 wk - 0% change from baseline FMD %

Control
4 wk - [0.1% from baseline FMD %
8 wk - | 1.1% from baseline FMD %
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Citrus fruit

Li etal. (2020) 8!
n=15, 33% M

Extract

Extract

Extract

Whole food

Crossover Healthy males
Parallel Treated
hypertensive
Crossover High-risk of
CVD
Crossover Healthy

Food & Function

Chronic (2 wk) 314+9.0 232+25

Chronic (6 wk) 1)59.5+59 1)28.7+3.6
2)613£6.3 2)27.7+£3.4
3)62.3+7.1 3)28.6+2.6
4)63.6+8.2 4)293+43

Chronic (12 wk)  34-70 28.4

Acute (7 hr) 28.7£6.5 29.8+3.1

32

B4 3.2mg, and Proanthocyanidin B2-gallate
14.2mg)

Control (microcrystalline cellulose)

Grape seed solids - 6 x 500mg/d (TPC 800mg
(Epicatechin 56mg, Catechin 64mg,
Epicatechingallate 24mg)

Wine/grape solids - 6 x 500mg/d (TPC
800mg (Anthocyanins 137.3mg, Phenolic acids
9.6mg, Catechin 4.2mg, Flavonols 0.9mg,
Stilbenes 0.2mg)

Control (microcrystalline cellulose)

1) 500mg/day vitamin C and matched
grape-seed (poly)phenol placebo

2) 1000mg/day grape-seed (poly)phenols and
matched vitamin C placebo

3) 500mg/day vitamin C and 1000mg/day
grape-seed (poly)phenols

4) Control (matched placebo tablets for both
grape-seed (poly)phenols and vitamin C)
Grape seed extract 2 x 1g (**TPC 592.5mg/g,
gallic acid 49mg/g, catechin 41mg/g,
epicatechin 66mg/g, proanthocyanidins
436.6mg CatechinEq/g**)

Grape seed extract with Quercetin 2 x
1g+0.5g quercetin)

Control (Yogurt (2 x 240g)

*Taken in Yogurt (2 x 240g)
**https://www.sciencedirect.com/science/articl
e/pii/S0027510708002571**

Blood orange juice 400ml/d; (Hesperidin
32.08mg, Narirutin 0.04mg)
Control (Sugar-matched control drink)
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GSE:

After low-fat breakfast - 10.2 from Control FMD %
After high-fat lunch - |0.2 from Control FMD %
Wine/grape extract:

After low-fat breakfast - |0.4 from Control FMD %
After high-fat lunch - 10.7 from Control FMD %
Control

After low-fat breakfast - 3.9% FMD

After high-fat lunch - 4.5% FMD

1) 10.6 from baseline FMD %
2) 10.6 from baseline FMD %
3) 10.65 from baseline FMD %

GSE - *11.1% from baseline FMD%
GSE with Quercetin - |0.59 from baseline FMD %
Control - |0.33 from baseline FMD %

Blood orange juice - **12.05% from baseline FMD
Control - |0.34% from baseline FMD %
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86 Extract
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Mild
hypercholesterol
aemia

Healthy
postmenopausal
women

CVD risk

Pre or stage 1
hypertension

Healthy

Chronic (4 wk)

Chronic (6 Mth)

Chronic (1 wk)

Acute (2 -6 hr)
Chronic (12 wk)

Acute (7 hr)

Food & Function

53.8+ 10

57.8+3.7

CVR group - 48 +

13
Control group -
35+8

Orange juice -
433+12.0
Enriched OJ -
43.6+11.8
Control - 45.4 +
13.0

48+ 1

26£5

25.7+23

CVR group - 31.4 +
2.9

Control group - 31.4 +
3.5

Orange juice - 26.4 +
3.6

Enriched OJ - 26.1 +
34

Control - 26.1 3.8

284+0.4

33

Blood orange juice - 3 x 200ml/d (Hesperidin
266.25mg, Narirutin 37.43mg)

Control (Matched placebo drink) - 3 x
200ml/day

Grapefruit juice 340 mL/d (Naringenin
glycosides 212.9mg)
Control (Drink without flavonoids)

Red orange juice 500 mL/d (TPC 419mg/l,
Anthocyanins 71.3mg/L, Narirutin 43mg/L,
Hesperidin 319mg/L

Control (Blend of water, sugars, and orange &
colorants)

Orange juice 500ml - (Hesperidin 345mg,
Narirutin 64mg)

Hesperidin-enriched orange juice 500ml -
(Hesperidin 600mg, Narirutin 77.5mg)
Control (Matched placebo drink) - 500ml

Orange juice: 128.9mg/d; (Total flavonoids
128.88mg, Hesperidin 107.30mg, Narirutin
15.41mg, Others 6.17mg)

Flavanone-rich orange juice: 272.1mg/d;
(Total flavonoids 272.14mg, Hesperidin
220.46mg, Narirutin 34.54mg, Others
17.14mg)

Orange juice - **10.28% from baseline FMD %
Control - |0.78% from baseline FMD %

Grapefruit juice - |0.24% from baseline FMD %
Control - 10.11% from baseline FMD %

CVR Group:

Red orange juice - **12.2% from baseline FMD %
Control - |0.70% from baseline FMD %

Healthy:

Red orange juice - 10.1% from baseline FMD %

Orange juice

2 hrs - 10.45 AU from baseline IRH

4 hrs - 10.50 AU from baseline IRH

6 hrs - 10.70 AU from baseline IRH
Enriched OJ

2 hrs - 11.00 AU from baseline IRH

4 hrs - 11.10 AU from baseline IRH

6 hrs - ¥*11.45 AU from baseline IRH
Control

2 hrs - 10.50 AU from baseline IRH

4 hrs - 10.70 AU from baseline IRH

6 hrs - 10.65 AU from baseline IRH

0J - *10.29% from baseline FMD %
FOJ - **]0.06% from baseline FMD %
HWO - **0.05% from baseline FMD %
Control - |3.70% from baseline FMD %
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Marsh et al. (2017) 1!
n=12, 0% M

Dower et al. (2016) 2
n=20, 100% M

Pereira et al. (2014) '3
n=60 33% M

Loffredo et al. (2014)
91

n=20 70% M

Extract

Extract

Extract

Whole food

Whole food

Whole food

Whole Food

Whole Food

Parallel

Parallel

Crossover

Crossover

Crossover

Parallel

Crossover

Metabolic
syndrome

Overweight /
Obese

Metabolic
syndrome

Healthy

Postmenopausal
women

Healthy

Healthy

PAD

Chronic (8 wk)

Chronic (1mth)

Chronic (4 wk)

Acute (2 hr)

Acute (80 min)

Acute (2 hr)

Chronic (4
weeks)

Chronic (2
weeks)

NR

13.7+7.0

52+2

23+£4.30

57.6+4.8

61.8+9.3

20.23 +£2.22

69.9+9

Food & Function

NR

23.38+£3.82

347+1.5

23.66 £3.19

243+4.1

251+2.1

22.92 +3.66

27+3

34

Homogenized whole orange: 452.8mg/d;
(Total flavonoids 452.71, Hesperidin
352.80mg, Narirutin 76.58mg, Others
23.33mg)

Control - Isocaloric drink; (Total flavonoids
0.10mg, Narirutin 0.08mg, Others 0.02mg)
Citoven 500mg twice daily

Lemon peel - 1000mg/d
Sour orange peel - 1000mg/d
Control (Cornstarch powder) - 1000mg/d

Hesperidin extract - 500mg/d
Control (Cellulose)

hFCD (TPC 1052.5mg, Flavan-3-ols 681mg,
Procyanidins 495.9mg, Epicatechin 150mg,
Catechin 35.5mg), Theobromine 179.8mg,
Caffeine 19.3mg

IFCD (TPC 143mg, Flavan-3-ols 4.1mg,
Procyanidins ND, Epicatechin <4mg, Catechin
<4mg), Theobromine 179.8mg, Caffeine
19.3mg

DC (TPC 394.8mg, Flavanoids 3600mg/kg,
Epicatechin 587.1ug/g, Catechin 1394.2ug/g)
MC (TPC 200.1mg, Flavanoids 980mg/kg,
Epicatechin 288.4ug/g, Catechin 770.1ug/g)
WC (TPC 34.9mg, Flavanoids 370mg/kg,
Epicatechin ND, Catechin 38.4ug/g)

Dark chocolate - 70g and 2 x placebo
capsules (Flavan-3-ols (DP1-10) 770mg,
Flavan-3-ols (DP2-10) 578mg, Epicatechin
150mg , Catechin 42mg)

White chocolate- 75g and 2 x epicatechin
capsules (Epicatechin 150mg)

White chocolate - 75g and 2 x placebo
capsules (microcrystalline cellulose)

10g dark chocolate (75% cocoa)
Control - No intervention

Dark chocolate (TPC 799mg, Epicatechin
0.59 mg, Catechin 0.32 mg, Epigallocatechin
gallate 1.8 mg)

Control - Milk chocolate (TPC 296mg,
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Citoven - **%13.04 from baseline FMD %

Control - 10.54% from baseline

Lemon peel - ***16.49% from baseline FMD %
Sour orange peel - ***17.24% from baseline FMD ¢
Control - |0.05% from baseline FMD %

Hesperidin - *12.02% from baseline FMD %
Control - |0.46% from baseline FMD %

hFCD - **%10.7% from baseline FMD %
IFCD - *** | 1.0% from baseline FMD %

DC - 7112.4% from baseline FMD %
MC - [0.95% from baseline FMD %
WC - 10.25% from baseline FMD %

Dark chocolate - **¥10.96% from baseline FMD %
Epicatechin - 10.75% from baseline FMD %

Dark Chocolate - ***19.31% from baseline FMD %
Control - 10.38% from baseline FMD %

Dark Chocolate - **14.0% from baseline FMD %
Control - 11.3% from baseline FMD %
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Whole Food

Whole Food

Whole Food

Whole Food

Crossover

Crossover

Crossover

Crossover

Overweight Acute (2 hr)
Chronic (4
weeks)

Overweight Chronic (6
weeks)

Healthy Acute (6 hr)

Healthy Chronic (1
weeks)

Food & Function

Acute - 64 +4
Chronic - 63 £5

522+11

252425

53.8+8.9

Acute - 27.8 £2.6
Chronic - 27.6 £2.3

30.5+3.4

22.8+£2.0

254+24

35

Epicatechin 0.16 mg, Catechin 0.13 mg,
Epigallocatechin gallate 0.28 mg)

High flavan-3-ol dark chocolate (1078 mg
flavan-3-ols, 349 mg epicatechin)

Normal flavan-3-ol dark chocolate (259 mg
flavan-3-ols, 97 mg epicatechin)

Sugar-free cocoa (Total procyanidins 805mg,
catechin 21mg, epicatechin 48mg, procyanidin
dimer 92mg, procyanidin trimer 98mg,
procyanidin tetramer 31mg, procyanidin
pentamer and hexamer 55mg) — theobromine
436mg, caffeine 28mg

Sugar-sweetened cocoa (Total procyanidins
805mg, catechin 21mg, epicatechin 48mg,
procyanidin dimer 92mg, procyanidin trimer
98mg, procyanidin tetramer 31 mg, procyanidin
pentamer and hexamer 55mg) — theobromine
436mg, caffeine 28mg

Control - Placebo drink (no cocoa)
High-Flavan-3-ol Cocoa (Total flavan-3-ols
918.00 mg, monomers 145.96 mg, epicatechin
120.25 mg, catechin 29.37 mg, dimers 113.83
mg, trimers-decamer 383.72 mg) -
theobromine 210 mg, caffeine 40 mg

Control - Low-Flavan-3-ol Cocoa (Total
flavan-3-ols 14.68 mg, monomers 2.93 mg,
epicatechin 0.73 mg, catechin 1.38 mg, dimers
4.77 mg, trimers-decamer 6.97 mg) -
theobromine 220 mg, caffeine 40 mg.
*Postprandial - Fatty Meal

Treatment 1 - Placebo drink (Total flavan-3-
ols 0 mg, epicatechin 0 mg) — theobromine 329
mg, caffeine 25 mg.

Treatment 2 - Low-flavan-3-ol cocoa (Total
flavan-3-ols 80 mg, epicatechin 17 mg) —
theobromine 329 mg, caffeine 25 mg.
Treatment 3 - Moderate-flavan-3-ol cocoa
(Total flavan-3-ols 200 mg, epicatechin 42 mg)
— theobromine 329 mg, caffeine 25 mg.
Treatment 4 - High-flavan-3-ol cocoa (Total
flavan-3-ols 500 mg, epicatechin 105 mg) —
theobromine 329 mg, caffeine 25 mg.
Treatment S - Very high-flavan-3-ol cocoa
(Total flavan-3-ols 800 mg, epicatechin 168
mg) — theobromine 329 mg, caffeine 25 mg.

Acute (2 hour)

HFDC - |0.4% from baseline FMD %
NFDC - 10.9% from baseline FMD %
Chronic (4 weeks)

HFDC - 11.2% from baseline FMD %
NFDC - 10.9% from baseline FMD %

Sugar-free cocoa - *#12.4% from baseline FMD %
Sugared-sweetned cocoa - **¥11.5% from baseline FI.ZD

%
Control - |0.8% from baseline FMD %

High-Flavan-3-ol Cocoa

2 hours - ***|1.1% from baseline FMD %
4 hours - *|0.5% from baseline FMD %

6 hours - |0.3% from baseline FMD %
Control

2 hours - |2.0% from baseline FMD %

4 hours - |0.9% from baseline FMD %

6 hours - |0.3% from baseline FMD %

Treatment 2 - ¥11.07% from control FMD %
Treatment 3 - *11.44% from control FMD %
Treatment 4 - ¥11.97% from control FMD %
Treatment 5 - ¥12.02% from control FMD %


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo01106j

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27:03.

ammer et al. (2015)

mens Attribution-NonComrr

=2171% M

eiss et al. (2010) %8
16 100% M

sHicensed under a Creative Cam

“Faridi et al. (2008) %
=45,22% M

Thisarticles

(ec)

Davison et al. (2008)
199

n=4937% M

Whole Food

Whole Food

Whole food

Whole Food

Crossover

Crossover

Parallel

Parallel

PAD

CAD

Overweight

Healthy

Food & Function

Acute (2 hour) 66.9 NR
Chronic (4 64 +3 27.8+1.8
week)

Acute (2 hr) 52.8+11. 30.1+3.3

HF+Ex - 45.2 £ 4.0
HF+Ex - 45.5+4.0
LF+Ex-44.4+4.4
LF+Ex-45.3+4.4

HF+Ex-33.5+1.1
HF+Ex-33.2+1.6
LF+Ex- 345+ 1.8
LF+Ex- 32.8+1.1

Chronic (12
weeks)

36

Dark chocolate (TPC 780mg, Epicatechin 45
mg, Catechin 13.5 mg)
Control - Milk chocolate

HiFI (Total Flavan-3-ol 375mg, Monomers
65mg, Epicatechin 59mg, Catechin 6mg,
Dimers 53mg, Trimers-decamers 258mg) -
theobromine 93mg, caffeine 11mg.

Control - LoFl (Total Flavan-3-ol 9mg,
Monomers 3mg, Epicatechin 1mg, catechin
2mg, Dimers 2mg, Trimers-decamers 3mg) -
theobromine 96mg, caffeine 9mg.

Placebo chocolate (TPC ND, Flavan-3-ol ND,
Epicatechin ND, Catechin ND, Procyanidin
dimer ND, Procyanidin trimer ND,
Procyanidin tetramer ND, Procyanidin
penta’hexamer ND)

Solid dark chocolate (TPC 3282mg, Flavan-
3-ol 821mg, Epicatechin 21.5mg, Catechin
10.4mg, Procyanidin dimer 81.4mg,
Procyanidin trimer 67.3mg, Procyanidin
tetramer 37mg, Procyanidin penta/hexamer
67mg)

Sugar-free cocoa (TPC 3282mg, Flavan-3-ol
805.2mg, Epicatechin 48.4mg, Catechin
20.9mg, Procyanidin dimer 92mg, Procyanidin
trimer 98.1mg, Procyanidin tetramer 30.6mg,
Procyanidin penta/hexamer 54.8mg)

Sugared cocoa (TPC 3282mg, Flavan-3-ol
805.2mg, Epicatechin 48.4mg, Catechin
20.9mg, Procyanidin dimer 92mg, Procyanidin
trimer 98.1mg, Procyanidin tetramer 30.6mg,
Procyanidin penta/hexamer 54.8mg)

Placebo cocoa (TPC 17.6mg, Flavan-3-ol
8.8mg, Epicatechin ND, Catechin ND,
Procyanidin dimer ND, Procyanidin trimer
3.3mg, Procyanidin tetramer ND, Procyanidin
penta/hexamer 5.5mg)

High-Flavan-3-ol Cocoa Drink (Flavan-3-ols
451mg) - theobromine 337 mg, caffeine 18
mg.

Control Cocoa Drink (Flavan-3-ols 18mg) -
theobromine 327 mg, caffeine 21 mg.
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Dark Chocolate - 140.4% from baseline FMD %
Control - {,2.0% from baseline FMD %

HiFl - ¥**1°3.8% from baseline FMD %
Control - 1M 1.3% from baseline FMD %

Placebo chocolate - | 1.8% from baseline FMD %

Solid dark chocolate - ***14.3% from baseline FMD %%
Sugar-free cocoa - **%15.7% from baseline FMD %
Sugared cocoa - ¥**12.0% from baseline FMD %
Placebo cocoa - | 1.5% from baseline FMD %

No exercise

HF+Ex - *11.8% from baseline FMD %
LF+Ex - 1,0.3% from baseline FMD %
Exercise

HF+Ex - *11.5% from baseline FMD %
LF+Ex - 1,0.4% from baseline FMD %
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Whole Food Parallel CHF
Whole Food Parallel Hypertensive
Whole Food Crossover T2DM
(feasability)
Parallel
(efficay)
Whole food Crossover Healthy smokers

Acute (2 hr)
Chronic (4
weeks)

Chronic (2
weeks)

Acute (6 hr)
Chronic (4
weeks)

Acute (2 hr)

Chronic (1 wk)

Food & Function

FRC-60.3 £10.1
CC-58.1+119

448 +8.0

Feasibility - 64.7
+99

Treatment - 63.1
+8.3

Control - 64.4 +
8.6

27+1

FRC-25.9+5.1
CC-25.6%35

26.5+1.9

Feasibility - 27.8 £ 3.6
Treatment - 32.1 £ 5.1
Control - 31.1 £5.1

22+1

37

Flavanoid-rich chocolate (TPC 624mg,
Epicatechin 36mg, Catechin 10.8mg)
Control chocolate

Dark Chocolate (TPC 1008mg, Epicatechin
110.9mg, Catechin 36.12mg, quercetin 2.5mg,
kaempferol 0.03mg, isohamnetin 0.2mg) -
theobromine 1.7mg, caffeine 136mg.

Control - White Chocolate (Epicatechin
0.13mg, Catechin 0.04mg)

High-Flavan-3-ol Cocoa Drink (Flavan-3-ols
963mg, Monomers 253.8 mg, epicatechin
203.0 mg, catechin 50.8 mg, dimers 180.9 mg,
trimers-decamer 528.3 mg) - theobromine
586.2 mg, caffeine 31.8 mg.
Medium-Flavan-3-ol Cocoa Drink (Flavan-
3-ols 371mg,Monomers 98.6 mg, epicatechin
78.9 mg, catechin 19.7 mg, dimers 74.3 mg,
trimers-decamer 198.1 mg) - theobromine
575.6 mg, caffeine 35.2 mg.

Control Cocoa Drink (Flavan-3-ols
371mg,Monomers 21.0 mg, epicatechin 16.8
mg, catechin 4.2 mg, dimers 21.0 mg, trimers-
decamer 30.3 mg) - theobromine 570.3 mg,
caffeine 36.9 mg.

hFCD - 100ml (Total Flavan-3-ol 185mg,
Monomers 74mg, Epicatechin 22mg,
Procyanidins 111mg)

Control - IFCD (Total Flavan-3-ol <l 1mg,
Monomers <lmg, Epicatechin <Img,
Procyanidins <11.4mg)

Acute (2 hour)

FRC - *11.0% from baseline FMD %
Control - 1, 0.59% from baseline FMD %
Chronic (4 weeks)

FRC - ¥**11.88% from baseline FMD %
Control - 1, 1.02% from baseline FMD %

Dark Chocolate - ***11.4% from baseline FMD %
Control - 10.2% from baseline FMD %

Acute (2 hour)

High-Flavan-3-ol - ¥11.8% from baseline FMD %
Medium-Flavan-3-ol - 10.9% from baseline FMD %
Control - 10.2% from baseline FMD %

Chronic (8 Days)

Medium-Flavan-3-ol x3/day - ***10.8% from baseli=2

FMD %
Control - |0.4% from baseline FMD %
Chronic (4 weeks)

Medium-Flavan-3-ol x3/day - *11.0% from baseline r MD

%
Control - 10.1% from baseline FMD %

Acute: (100 ml)

Day 1 - 712.4% from baseline FMD %
Chronic (300ml)

Day 3 - ¥12.4% from baseline FMD %
Day 5 - 712.7% from baseline FMD %
Day 8 - 712.4% from baseline FMD %
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Whole Food

Whole food

Whole food

Whole food

Whole food

Extract

Extract

Parallel

Crossover

Crossover

Crossover

Parallel

Parallel

Crossover

Postmenopausal
women

Healthy

15 young adults
19 older addults

Healthy smokers

Healthy

Healthy

Healthy

Chronic (6
weeks)

Acute (2 hr)

Chronic (4 wk)

Acute (2 hr)

Chronic (2 wk)

Acute (2 hr)
Chronic (4 wk)

Chronic (4 wk)

Food & Function

HCF-57.7+2.2
LCF-554+1.7

25-32

479+3.0

301

Low-flavanoid -
325+£29

High-flavanoid -
31.8+3.2

DP1-10-23+2
DP2-10-25+2
Control - 23 +£2

Flavan-3-ol - 45 +
8
Control -44 £ 9

HCF-249+1.0
LCF-253+0.8

19-23

Young -284+1.3
Older - 28.0+ 1.9

21.8+£0.7

Low-flavanoid - 21.9
+0.5

High-flavanoid - 23.2
+0.5
DP1-10-23.6+0.5
DP2-10-24.1+2.2
Control - 23.1+2.4

Flavan-3-0l -25+3
Control - 26 + 3

38

High Cocoa Flavan-3-ol (Total Flavan-3-ols

446mg)
Control - Low Cocoa Flavan-3-ol (Total
Flavan-3-ols 43mg)

hFCD (Flavan-3-ols 917mg)
IFCD (Flavan-3-ols 37mg)

hFCD (TPC 910.2mg, Flavan-3-ol 821mg,
Epicatechin 9.2mg, Catechin 10.7mg, and
Flavan-3-ol oligomers 69.3mg)

IFCD (TPC ND, Flavan-3-ol ND, Epicatechin
ND, Catechin ND, and Flavan-3-ol oligomers

ND)

hFCD (Total Flavan-3-ol 306mg, Monomers

74mg, Epicatechin 59mg, Catechin 15mg,
Dimers 57mg. Trimer-decamers 175mg)
Control - IFCD (Total Flavan-3-ol 312mg,
Monomers 3mg, Epicatechin 2mg, Catechin
Img, Dimers 2mg. Trimer-decamers 7mg)
HFC (TPC 259mg, Procyanidins 213mg,
Epicatechin 46mg)

LFC (TPC Omg, Procyanidins Omg,
Epicatechin Omg)

DP1-10 Cocoa flavan-3-ols extract (Total
Flavan-3-ol 690mg, Epicatechin 130mg,
Dimers-decamers 560mg)

DP2-10 Cocoa flavan-3-ols extract (Total
Flavan-3-ol 560mg, Epicatechin 20mg,
Dimers-decamers 540mg)

Control (Matched placebo)

Intervention (TPC 523mg, Flavan-3-ol
450mg, Epicatechin 64mg, Catechin 9mg)
Control (TPC ND, Flavan-3-ol ND,
Epicatechin ND, Catechin ND)
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HFC - ¥*#12.0% from baseline FMD %
Control - | 1.5% from baseline FMD %

hFCD - *#1~5.65% from baseline FMD %
IFCD - |0.05% from baseline FMD %

Younger - ¥¥13.5% from baseline FMD %
Older - **#14.5% from baseline FMD %

Acute
hFCD- *#12.7% from baseline FMD %
IFCD - |0.9% from baseline FMD %

HFC - **#11.3% from baseline FMD %
LFC - |0.96% from baseline FMD %

Acute

Chronic

DP1-10 - *11.8% from baseline FMD %
DP2-10 - |0.1% from baseline FMD %
Control - 10.4% from baseline FMD %

Chronic - 11.2% from baseline FMD %
Acute - 10.7% from baseline FMD %
Acute - 10.1% from baseline FMD %
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Buscemi et al. (2010)

101

n=20, 50% M
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ills et al. (2017) '
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Whole Food

Whole Food

Whole Food

Whole Food

Whole Food

Whole Food

Crossover

Crossover

Crossover

Crossover

Crossover

Crossover

Pre - or stage 1
hypertension

Healthy

Healthy

Healthy

Healthy

Healthy

Acute (2hr)

Acute (1-5hr)

Acute (2hr)

Acute (1hr)

Acute (2hr)

Acute (1hr)

Food & Function

Study 1 (S1): 53
+19
Study 2 (S2): 56
+15

Study 1: 26.3 +
1.6
Study 2: 23.8 +
1.4

59.4+6.4

59.9+82

449+13

31+£2

Study 1 (S1):24.5+
4.1
Study 2 (S2):23.2 +
3.2

Study 1: 23.5£0.5
Study 2:23.2+ 0.4

247433

247+33

21.9+0.5

23.9+0.7

39

Beverage A (Chlorogenic acids 412 mg,
Hydroxyhydroquinone: 0.11 mg)

Beverage B (Chlorogenic acids 373 mg,
Hydroxyhydroquinone 0.76 mg)

Beverage C (Chlorogenic acids: 0 mg,
Hydroxyhydroquinone: 0.1 mg)

LPC (Chlorogenic acids 89mg, 3-
Caffeoylquinic acid 20mg, 4-Caffeoylqunic
acid 22mg, 3-Feruloylquinic acid 4mg, 5-
Caffeoylqunic acid 29mg, 4-Feruloylquinic
acid 4mg, 5-Feruloylquinic acid 5Smg, 3, 4-
Dicaffeoylqunic acid 2mg, 3, 5-
Dicaffeoylqunic acid 1mg, 4, 5-
Dicaffeoylqunic acid 2mg)

HPC (Chlorogenic acids 310mg, 3-
Caffeoylquinic acid 43mg, 4-Caffeoylqunic
acid 45mg, 3-Feruloylquinic acid 10mg, 5-
Caffeoylqunic acid 124mg, 4-Feruloylquinic
acid 6mg, 5-Feruloylquinic acid 24mg, 3, 4-
Dicaffeoylqunic acid 23mg, 3, 5-
Dicaffeoylqunic acid 17mg, 4, 5-
Dicaffeoylqunic acid 2mg)

Caffeinated (CC) ground coffee - 200ml x 2
(270 mg caffeine) CC (TPC 300mg, 5-
chlorogenic acid 95mg)

Decaffeinated (DC) ground coffee - 200ml x
2 (ND caffeine) DC (TPC 287mg, 5-
chlorogenic acid 132mg)

Hot water (Control) - 200ml

Treatment 1 (5-chlorogenic acid 450mg)
Treatment 2 (5-chlorogenic acid 900mg)
Treatment 3 (Epicatechin 200mg)

Control (Maltodextrin)

Coffee bean (poly)phenols (TPC/CGA 600
mg; Caffeoylquinic Acids 349.8 mg (3-CQA,
4-CQA, 5-CQA), Feruloylquinic Acids 119.4
mg (3-FQA, 4-FQA, 5-FQA), Dicaffeoylquinic
Acids 130.8 mg (3,4-diCQA, 3,5-diCQA, 4,5-
diCQA))

Placebo - no coffee bean (poly)phenols
beverage

Caffeinated (CC) Italian espresso coffee -
25ml (caffeine:130 mg)

Decaffeinated (DC) Italian espresso coffee -
25ml (caffeine: 5 mg)

Study 1:

Beverage A - 111.5% from baseline FMD %
Beverage B - 11.0% from baseline FMD %
Study 2:

Beverage A - 111.5% from baseline FMD %
Beverage C - |0.4% from baseline FMD %
1 hour

LPC - *¥11.10% from baseline FMD %

HPC - **11.34% from baseline FMD %
Control - 10.07% from baseline FMD %

3 hours

LPC - 10.25% from baseline FMD %

HPC - |0.1% from baseline FMD %

Control - |0.45% from baseline FMD %

5 hours

LPC - ¥10.79% from baseline FMD %

HPC - ***11.52% from baseline FMD %
Control - |0.46% from baseline FMD %

CC - 16.1% from 0% continuous FMD %
DC - 16.0% from 0% continuous FMD %
Control - 14.9% from 0% continuous FMD %

Treatment 1 - *10.6% from baseline FMD %
Treatment 2 - *11.1% from baseline FMD %
Treatment 3 - 10.9% from baseline FMD %
Control - 10.4% from baseline FMD %
Coffee bean (poly)phenols

1 hour - [0.50% from baseline FMD %

2 hours - 10.70% from baseline FMD %

4 hours - |0.00% from baseline FMD %

6 hours - *0.20% from baseline FMD %
Control Beverage

1 hour - 10.40% from baseline FMD %

2 hours - |0.10% from baseline FMD %

4 hours - |0.90% from baseline FMD %

6 hours - 7| 1.90% from baseline FMD %
CC - *]1.7% from baseline FMD %

DC - 11.6% from baseline FMD %
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18,83% M

Whole Food

Whole Food

Whole Food

Whole Food

Extract

Crossover

Crossover

Parallel

Parallel

Crossover

Healthy

Healthy

Healthy

Healthy

Healthy

Acute (1hr)

Acute (0.5 -2hr)

Chronic (8
weeks)

Chronic (8
weeks)

Acute (1 - 24hr)

29+£3

289+3.0

385+9

30 - 64 years

56.2+52

Food & Function

243+0.9

NR

24.1+£2.6

Active: 24.2 +0.9

Placebo: 24.2 £1.1

27.5+3.7

40

Decaffeinated espresso coffee - 25 ml x 2 (10
mg caffeine)

Decaffeinated espresso coffee - 25 ml (5 mg
caffeine).

Caffeinated (CC) instant coffee - 200ml (80
mg caffeine)

Decaffeinated (DC) instant coffee - 200ml
(<2 mg caffeine)

High CGA coffee (Chlorogenic acid 780 mg,
Cafesol 0.75mg, Kahweol 0.92mg)

Medium CGA coffee (Chlorogenic acid 420
mg, Cafesol 0.75mg, Kahweol 0.89mg)
Control - No coffee consumption
Hydroxyhydroquinone (HHQ)-reduced
coffee (Chlorogenic acid 300mg,
Hydroxyhydroquinone 0.03mg)
HHQ/CGA-reduced coffee (Chlorogenic acid
0Omg, Hydroxyhydroquinone 0.03mg)

Control - Canned coffee (Chlorogenic acid
134mg, Hydroxyhydroquinone 0.12mg)
Decaffeinated green coffee extract (DGCE)
Dose 1 (TPC/CGA 156.4 mg; 156.4 mg; 3-O-
Caffeoylquinic Acid 30.0 mg, 4-O-
Caffeoylquinic Acid and 3-O-Feruloylquinic
Acid 39.0 mg, 5-O-Cafteoylquinic Acid 38.1
mg, 3,4-O-Dicaffeoylquinic Acid 12.5 mg, 3,5-
O-Dicaffeoylquinic Acid 4.6 mg, 4,5-O-
Dicaffeoylquinic Acid 9.8 mg, 4-O-
Feruloylquinic Acid 9.3 mg, 5-O-
Feruloylquinic Acid 12.1 mg, Caffeic Acid 0.6
mg, Ferulic Acid 0.3 mg)

Dose 2 (TPC/CGA 312.8 mg; 3-O-
Caffeoylquinic Acid 60.0 mg, 4-O-
Caffeoylquinic Acid and 3-O-Feruloylquinic
Acid 78.1 mg, 5-O-Caffeoylquinic Acid 76.2
mg, 3,4-O-Dicaffeoylquinic Acid 25.0 mg, 3,5-
O-Dicaffeoylquinic Acid 9.2 mg, 4,5-O-
Dicaffeoylquinic Acid 19.6 mg, 4-O-
Feruloylquinic Acid 18.7 mg, 5-O-
Feruloylquinic Acid 24.2 mg, Caffeic Acid 1.3
mg, Ferulic Acid 0.7 mg)

Dose 3 (TPC/CGA 439.9 mg; 3-O-
Caffeoylquinic Acid 84.3 mg, 4-O-
Caffeoylquinic Acid and 3-O-Feruloylquinic
Acid 109.8 mg, 5-O-Caffeoylquinic Acid
107.1 mg, 3,4-O-Dicaffeoylquinic Acid 35.2
mg, 3,5-O-Dicaffeoylquinic Acid 13.0 mg, 4,5-
O-Dicaffeoylquinic Acid 27.5 mg, 4-O-
Feruloylquinic Acid 26.3 mg, 5-O-
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x1 cups - 11.6% from baseline FMD %
X2 cups - ***13.4% from baseline FMD %

CC (30 min) - **|4.92 from baseline FMD %
CC (lhr)- ***|5.66 from baseline FMD %
DC (30 min) - |0.83 from baseline FMD %
DC (1hr) - |1.86 from baseline FMD %
HCCGA - |0.2% from baseline FMD %
MCCGA - 15.9% from baseline FMD %
Control - 15.2% from baseline FMD %

Active (2 weeks) - 113.3% from baseline FMD %
Placebo (2 weeks) - |0.6% from baseline FMD %

1 Hour

Dose 1 (302 mg) - [0.01% from baseline FMD %
Dose 2 (604 mg) - 10.69% from baseline FMD %
Dose 3 (906 mg) - 10.46% from baseline FMD %
Control (Placebo) - 10.35% from baseline FMD %
3 Hours

Dose 1 (302 mg) - 10.45% from baseline FMD %
Dose 2 (604 mg) - 10.47% from baseline FMD %
Dose 3 (906 mg) - 10.69% from baseline FMD %
Control (Placebo) - 10.85% from baseline FMD %
5 Hours

Dose 1 (302 mg) - 10.75% from baseline FMD %
Dose 2 (604 mg) - 11.09% from baseline FMD %
Dose 3 (906 mg) - 10.99% from baseline FMD %
Control (Placebo) - 10.17% from baseline FMD %
7 Hours

Dose 1 (302 mg) - 10.90% from baseline FMD %
Dose 2 (604 mg) - 11.17% from baseline FMD %
Dose 3 (906 mg) - 10.75% from baseline FMD %
Control (Placebo) - 11.11% from baseline FMD %
8.5 Hours

Dose 1 (302 mg) - ¥*11.93% from baseline FMD %
Dose 2 (604 mg) - 11.10% from baseline FMD %
Dose 3 (906 mg) - 11.36% from baseline FMD %
Control (Placebo) - 10.86% from baseline FMD %
10 Hours

Dose 1 (302 mg) - 11.24% from baseline FMD %
Dose 2 (604 mg) - 11.36% from baseline FMD %
Dose 3 (906 mg) - 11.32% from baseline FMD %
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Extract Parallel
Extract Crossover
Extract Crossover
Whole Food/  Crossover
Extract

Whole Food/  Crossover
Extract

Healthy

Healthy
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Healthy

Healthy

Chronic (2
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Acute (4hr)

Acute (2hr)

Acute (2 hr)

Acute (2 hr)
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446+53 219+ 1.7
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Feruloylquinic Acid 34.0 mg, Caffeic Acid 1.8
mg, Ferulic Acid 0.9 mg)
Control - Maltodextrin

CGAs-enriched coffee bean extract (cGCE)
(Chlorogenic acid 300mg)
Water (Control) - 100ml

Coffee (poly)phenol extract containing
beverage (TPC 355 mg; Chlorogenic Acids
256.02 mg (3-CQA, 4-CQA, 5-CQA),
Feruloylquinic Acids 68.52 mg (3-FQA, 4-
FQA, 5-FQA), Dicaffeoylquinic Acids 29.47
mg (3,4-diCQA, 3,5-diCQA, 4,5-diCQA) and
caffeine 54.9 mg)

Control (coffee-flavored , Free CGAs and
54.9 mg of caffeine)

CGA dissolved in water (3-O-caffeoylquinic
acid 400mg)
Control (water) - 200ml

Ice cream + GTE (TPC 1817mg/ L GAE,
catechin 1050mg, epicatechin 910mg)
Control - Milk chocolate ice cream (TPC
96mg/L GAE, catechin 6mg, epicatechin 3mg)

Brewed green tea (Gallic acid 15.65 mg,
Gallocatechin 49.95 mg, Catechin 4.77 mg,
Gallocatechin gallate 3.45 mg, Epicatechin
22.81 mg, Epicatechin gallate 39.38 mg,
Epigallocatechin 62.32 mg, Epigallocatechin
gallate 200.00 mg) - Theobromine 6.63 mg,
Caffeine 117.13 mg.

Green tea extract (Gallic acid 5.36 mg,
Gallocatechin 0.00 mg, Catechin 2.64 mg,
Gallocatechin gallate 6.70 mg, Epicatechin
28.24 mg, Epicatechin gallate 28.64 mg,
Epigallocatechin 58.91 mg, Epigallocatechin
gallate 200.02 mg) - Theobromine 0.00 mg,

Control (Placebo) - 11.43% from baseline FMD %
12 Hours

Dose 1 (302 mg) - *11.37% from baseline FMD %
Dose 2 (604 mg) - 11.18% from baseline FMD %
Dose 3 (906 mg) - 11.19% from baseline FMD %
Control (Placebo) - 10.43% from baseline FMD %
24 Hours

Dose 1 (302 mg) - *10.75% from baseline FMD %
Dose 2 (604 mg) - 10.22% from baseline FMD %
Dose 3 (906 mg) - 10.70% from baseline FMD %
Control (Placebo) - |0.03% from baseline FMD %
c¢GCE - *10.6% from baseline FMD %

Control - | 1.2% from baseline FMD %

60 mins

Coffee extract - |1.85% from baseline FMD %
Control - |3.15% from baseline FMD %

120 mins

Coffee extract - ¥10.08% from baseline FMD %
Control - |2.35% from baseline FMD %

180 mins

Coffee extract - ¥10.07% from baseline FMD %
Control - |0.95% from baseline FMD %

240 mins

Coffee extract - ¥10.1% from baseline FMD %
Control - |0.15% from baseline FMD %

CGA - 10.41% from control FMD %

Control - 9.60% FMD

Ice cream + GTE - ***13.9% from baseline FMD %
Control - |0.25% from baseline FMD %

Green Tea - **¥11.36% from baseline FMD %
Green Tea Extract - 10.18% from baseline FMD %
EGCG Supplement - |0.23% from baseline FMD %
Control - |0.84% from baseline FMD %
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week)
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8

Tea-first: 54 £ 8
Caffeine: 56 + 8

513+8.2

224+3.0

513+8.2

54+8

Water-first: 30.9 0.9
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Caffeine 2.88 mg.

EGCG supplement (Gallic acid 0.11 mg,
Gallocatechin 0.00 mg, Catechin 0.15 mg,
Gallocatechin gallate 0.00 mg, Epicatechin
1.07 mg, Epicatechin gallate 8.69 mg,
Epigallocatechin 0.00 mg, Epigallocatechin
gallate 200.30 mg) - Theobromine 0.00 mg,
Caffeine 0.01 mg.

Control - Hot water

Brewed (TPC 733.5mg, Flavanoids 477mg,
Epicatechin 6.3mg, Catechin 59.85mg,
Epigallocatechin 9mg, Epicatechin gallate
27mg, Epigallocatechin gallate 17.55mg,
Theoflavins 27mg)

Freeze -dried (TPC 1350mg, Flavanoids
873mg, Epicatechin 19.8mg, Catechin
116.1mg, Epigallocatechin 207mg, Epicatechin
gallate 32.4mg, Epigallocatechin gallate 27mg,
Theoflavins 22.5mg)

Water - 450ml (Acute) & 900ml (Chronic)
Caffeine (200mg)

Black tea (TPC 300mg, Catechins 24.2mg,
Theaflavins 10mg, Gallic acid 9mg)

Black tea (TPC 1188.24mg, Gallic acid
197.34 mg, Gallocatechin 186.72 mg,
Epigallocatechin 164.16 mg, Catechin 105.42
mg, Epigallocatechin gallate 486.42 mg,
Epicatechin 9.06 mg, Gallocatechin gallate
1.50 mg, Epicatechin gallate 37.62 mg) -
caffeine 103.92 mg.

Black tea + milk (TPC 1188.24mg, Gallic
acid 197.34 mg, Gallocatechin 186.72 mg,
Epigallocatechin 164.16 mg, Catechin 105.42
mg, Epigallocatechin gallate 486.42 mg,
Epicatechin 9.06 mg, Gallocatechin gallate
1.50 mg, Epicatechin gallate 37.62 mg,
Theobromine 40 mg, Theogallin 136 mg) -
caffeine 103.92 mg.

Control - Hot water

Black tea (TPC 300mg, Catechins 24.2mg,
Theaflavins 10mg, Gallic acid 9mg)

Control (Matched placebo) - 100 - 200 ml x
2/d

Black tea -150ml x 3 & 300ml (TPC 600mg,
Flavanoids 500mg)
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Acute

Brewed- ***13.4% from baseline FMD %

Water - |0.3% from baseline FMD %

Chronic

Freeze-dried black tea - ***13.5% from baseline FMC %
Water - 10.1% from baseline FMD %

Chronic - ***13.8% from control baseline FMD %
Acute on Chronic - ¥**11% from baseline FMD %

Black tea - ***11.0% from control continuous FMD %a
Black tea + milk - ***|0.64% control continuous F:/D
%

Chronic - ***13.8% from control baseline FMD %
Acute on Chronic - ¥***11% from baseline FMD %

Black Tea - *¥11.4% from baseline FMD %
Hot water - 10.1% from baseline FMD %
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Black tea (TPC 429 mg)
Control

Black tea - 150ml x 2
(100, 200, 400, 800mg flavonoids)

Black tea (Total catechins S60uM,
Epigallocatechin-3-gallate 324uM, Epicatechin
gallate 116uM, Epigallocatechin 70uM,
Epicatechin 50uM, Gallocatechin OuM,
Catechin OuM, Gallic acid 91uM)

Green tea (Total catechins 1012uM,
Epigallocatechin-3-gallate 464uM, Epicatechin
gallate 130uM, Epigallocatechin 257uM,
Epicatechin 79uM, Gallocatechin 52uM,
Catechin 30uM, Gallic acid 30uM)

Black tea (TPC 505.52 mg, Gallic acid 30.96
mg, Epigallocatechin 42.88 mg,
Epigallocatechin gallate 279.02 mg,
Epicatechin 29.03 mg, Epicatechin gallate
102.63 mg)

Black tea + milk (TPC 1188.24mg, Gallic
acid 197.34 mg, Gallocatechin 186.72 mg,
Epigallocatechin 164.16 mg, Catechin 105.42
mg, Epigallocatechin gallate 486.42 mg,
Epicatechin 9.06 mg, Gallocatechin gallate
1.50 mg, Epicatechin gallate 37.62 mg)
Control - Hot water

Starch confection + GTE (Epigallocatechin

gallate 489.1 mg, Epigallocatechin 144.5 mg,
Epicatechin gallate 65.7 mg, Epicatechin 75.5
mg) - caffeine 7.4 mg.

Control - Starch confection

Water-based test drink containing 0.1, 0.5
and 1.0 mg/kg BW of epicatechin
Control (water)

Trans-resveratrol (trans-resveratrol 150mg)
Control (2 x 58 mg/day cellulose)

Chronic (3 months)

Tea - |0.27% from baseline FMD %
Control - 10.32% from baseline FMD %
Chronic (6 months)

Tea - |0.13% from baseline FMD %
Control - 10.41% from baseline FMD %
100mg - **11.2% from control FMD %
200mg - **11.3% from control FMD %
400mg - ***11.8% from control FMD %
800mg - ***12.5% from control FMD %
Black tea - ***14.1% from baseline FMD %
Green tea - **%14.8% from baseline FMD %
Hot water - 10.9% from baseline FMD %

Black tea - **14.3% from control continuous FMD 9§
Black tea + milk - 10.8% control continuous FMD %
Control - 11.00% control continuous FMD %

Starch confection + GTE - 7| 0.5% from baseline FM Y %
Control - T10.48% from baseline FMD %

Low dose - 10.5% from baseline FMD %

Medium dose - ¥**11.2 + 0.3% from baseline FMD Y%
High dose - ***12.9 + 0.3% from baseline FMD %
Control - |0.05% from baseline FMD %

Trans-resveratrol |0.7% from baseline FMD %
Control 10.2% from baseline FMD %
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Hesperidin 2S (450 mg supplied as 500 mg
Cordiart)

Control (Cellulose (500 mg microcrystalline
cellulose)

Resveratrol (75 mg)
Control (Calcium Hydrogen Phosphate,
microcrystalline cellulose)

Resveratrol (30, 90, 270 mg)
Control (Calcium Hydrogen Phosphate,
microcrystalline cellulose)
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Acute

Hesperidin 2S - |0.27% from baseline FMD %
Control - |0.49% from baseline FMD %
Chronic

Hesperidin 2S - |0.21% from baseline FMD %
Control - |0.14% from baseline FMD %

30mg Resveratrol - *10.57% from baseline FMD%
Control - |0.81% from baseline FMD%

30mg Resveratrol - ¥12.50% from Control FMD%
90mg Resveratrol - ¥12.40% from Control FMD%
270mg Resveratrol - ¥13.60% from Control FMD%
Control - 4.10% FMD

.%ge and BMI values are presented as mean + standard deviation (where not available, the range is provided). Significane compared to control denoted using; *, p<0.05;**.p<0.01;*** p<0.001. Significance compared to baseline denoted using; ¥, p<0.0Z, f
5<0 01; 711, p<0.001. BMI, body mass index; CC, caffeinated coffee; CAD, coronary artery disease; CVD, cardiovascular disease; CVR, cardiovascular risk; DC, dark chocolate or decaffeinated coffee (context-dependent); DP1-10, degree of
ﬁolymerlzatlon 1-10; DP2-10, degree of polymerization 2-10; d, day(s); F&V, fruit and vegetables; FMD, flow-mediated dilation; g, grams; GSE, grape seed extract; HCCGA, high CGA coffee; hFCD, high flavan-3-ol cocoa drink; hr, hour(s); IFCL:, low
flavan-3-ol cocoa drink; kg, kilograms; IFCD, low flavan-3-ol cocoa drink; M, males; MC, milk chocolate; MCCGA, medium CGA coffee; mg, milligrams; MGS, muscadine grape seed; MOF, monomeric and oligomeric flavan-3-ols; mth, month(s);
mber of participants; ND, not disclosed; NR, not reported; RGC, red grape concentrate; TPC, total (poly)phenol content; uM, micromolar; WC, white chocolate; wk, week(s); y, years .
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Figure 1: Comparison of dose-dependent acute and chronic FMD responses for Whole Foods and Extracts, within each food category. Diamonds represent significant values (p<0.05) and
Straight lines represent non-significant values (p>0.05). FMD, flow-mediated dilation; TPC, total (poly)phenol content; mg, milligrams.

64


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo01106j

3

Open Access Article. Published on 15 2025. Downloaded on 17.10.2025 14:27-

=t
£

age 65 of 70
(=]
Z
<
o
=
2
£
<
2
o
=
£
Q
o
()]
=
8
o
©
o]
o)
c
=}
©
@
)
S
K]
e
'_

)

£

(&}

&
]
=1

1200

1000

800

600

400

200

“III[

Average (poly)phenol content of interventions

Berry (n=13)

Grape (n=10)

Citrus (n=8)

Cocoa (n=15)

Coffee (n=9)

Tea (n=11)

Food & Function

100%
90% A
80%
70% A
60% -
50% A

40% A

Polyphenol content (mg)

30%

20% -

10% A

0% -

Average (Poly)phenol intervention composition

—III

@
@
=3
)
»

= Anthocyanins
m Proanthocyanidins
® Narirutin

o]
i
o
@
»

H Flavonols
m Procyanidins
m Chlorogenic acids

Citrus
® Flavan-3-ols
m Resveratrol
® Phenolic acids

()
o
Q
o
5]

Coffee

m Epicatechin
m Quercetin
H Gallic acid

Tea
u Catechin
m Hesperidin
u Caffeic acid
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Figure 3: Acute and chronic time-dependent changes in flow-mediated dilation (A FMD %) in response to extracts (left panels) and whole foods (right panels)
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Figure 4: Effect of polyphenol-rich foods and extracts on flow-mediated dilation (AFMD%) following chronic and acute interventions across different health statuses and polyphenol-rich food groups. (Left
panels) Mean + SEM change in FMD (%) following acute and chronic polyphenol intervention across different health statuses. (Right panels) Mean AFMD% for each polyphenol-rich food group, calculated
from relevant studies within each category for acute and chronic interventions.
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(AFMD%) following chronic and acute interventions. Data presented as the delta change in FMD (%), calculated

from relevant studies within each category for acute and chronic interventions.
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