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The emergence of artificial intelligence (Al) and, more particularly, machine learning (ML), has had
a significant impact on engineering and the fundamental sciences, resulting in advances in various fields.
The use of ML has significantly enhanced data processing and analysis, eliciting the development of new
and improved technologies. Specifically, ML is projected to play an increasingly significant role in helping
researchers better understand and predict the behavior of porous media. Furthermore, ML models will
be able to make use of sizable datasets, such as subsurface data and experiments, to produce accurate
predictions and simulations of porous media systems. This capability could help optimize the design of
porous materials for specific applications and improve the effectiveness of industrial processes. To this
end, this review paper attempts to provide an overview of the present status quo in this context, i.e., the
interface of ML and porous media in six different applications, namely, heat exchanger and storage,
energy storage and combustion, electrochemical devices, hydrocarbon reservoirs, carbon capture and
sequestration, and groundwater, stressing the advances made in the application of ML to porous media

and offering insights into the challenges and opportunities for future research. Each section also entails
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DOI: 10.1039/d4ta00251b models. Future research trends include employing hybrid models by combining ML models with physics-

rsc.li/materials-a based models of porous media to improve predictions concerning accuracy and interpretability.

1. Introduction

Porous media play an important role in many natural and
engineered systems, including subsurface reservoirs for energy
resources such as oil, natural gas, and geothermal heat, as well
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of fluid, heat, and mass in porous media and the interactions
between fluid, solid, and thermal components.*

¢Department of Chemical Engineering, University of Manchester, Oxford Road,
Manchester, M13 9PL, UK. E-mail: vahid.niasar@manchester.ac.uk
"School of Climate Change and Adaptation, University of Prince Edward Island,

Charlottetown, PEI, Canada Current research on porous media covers various aspects of
‘Department of Chemical Engineering & Materials Science, University of Southern  physics, chemistry, and engineering. In terms of transport
California, USA phenomena, the transport of fluid, heat, and mass in porous

‘Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, media and the impact of fluid-fluid, fluid-solid. and solid-solid
’ ’
Esbjerg 6700, Denmark . . . . .
vers interactions on these processes are investigated. In materials
UAE science, researchers are developing new materials with

T Electronic  supplementary information (ESI) available. See DOI: 1mpr0ved properties, such as hlgher permeablllty, better
https://doi.org/10.1039/d4ta00251b mechanical strength, and improved thermal conductivity, for

*Department of Chemical and Petroleum Engineering, Khalifa University, Abu Dhabi,

This journal is © The Royal Society of Chemistry 2024 J. Mater. Chem. A, 2024, 12, 20717-20782 | 20717


http://crossmark.crossref.org/dialog/?doi=10.1039/d4ta00251b&domain=pdf&date_stamp=2024-08-12
http://orcid.org/0000-0003-1069-8812
http://orcid.org/0000-0002-4106-1067
http://orcid.org/0000-0002-7879-3544
http://orcid.org/0000-0002-7615-9689
http://orcid.org/0009-0008-6846-0835
http://orcid.org/0000-0001-9104-8138
http://orcid.org/0000-0003-0956-3662
http://orcid.org/0009-0004-5774-8594
http://orcid.org/0000-0001-8975-3081
http://orcid.org/0000-0003-3532-7532
http://orcid.org/0000-0001-5773-4003
http://orcid.org/0009-0008-0386-1347
http://orcid.org/0000-0002-5447-8056
http://orcid.org/0000-0002-9256-852X
http://orcid.org/0000-0002-6220-6288
http://orcid.org/0000-0002-9472-555X
http://orcid.org/0000-0003-2797-7252
https://doi.org/10.1039/d4ta00251b
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ta00251b
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA012032

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 19 2024. Downloaded on 02.10.2025 03:11:18.

(cc)

Journal of Materials Chemistry A

use in an assorted range of applications. In the context of energy
resources such as oil and natural gas, researchers are studying
the behavior of subsurface reservoirs and developing tools and
techniques to improve the extraction of these resources.”

Over recent years, there has been a marked increase in
interest in employing ML and data analysis techniques to
uncover and elucidate the underlying mechanisms and inter-
actions within porous media, thereby enhancing the ability to
both understand and predict their behavior. Researchers are
attempting to develop models that capture the composite
interactions between fluid, solid, and thermal components and
use these models for optimizing processes and augmenting
predictions. In particular, ML techniques can particularly assist
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in cases where traditional modeling methods are limited by the
complexity of the system or the availability of data.®* Fig. 1
depicts the occurrences of the published research on the
keywords “machine learning” (ML) and “porous media” over
the past two decades together with the relevant fields. This
rapport between the interface of ML and porous media is
conspicuous to grow even more over the coming years, sign-
posting the present review paper's direction.

Chapter two provides a comprehensive description of
different ML models employed in the study of porous media
such as supervised and unsupervised learning methods. Addi-
tionally, it gives instances of particular models that have been
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deployed, such as decision trees, random forests, support vector
machines, and neural networks, followed by evaluation metrics.

In chapter three, the review paper applies the different
applications of ML to porous media, stratified in different
sections, namely, heat exchanger and storage, energy storage
and combustion, electrochemical devices, hydrocarbon reser-
voirs, CCS, and groundwater. In each section, the different
variables involved are scrutinized which include fluid flow
prediction and characterization of porous media, i.e., perme-
ability, porosity, pore size distribution, wettability, and trans-
port properties. Furthermore, it underscores examples of
particular applications, such as the prediction of permeability,
pinpointing the optimal production and injection methods,
and flood optimization.

A common and essential component of many porous media
applications is heat transfer. The contribution of the various
geometrical shapes, governing parameters, materials, and
micro/macroscale flow in different forms (convection, conduc-
tion, and radiation) elicits challenges in analyzing, optimizing,
and predicting such physics. In the field of heat exchanger and
storage, ML allows for optimizing heat transfer processes and
thermal management of porous media. In this scope, key
thermal properties, such as thermal conductivity, diffusivity,
and heat capacity, are crucial for ensuring efficient and safe
heat transfer in thermal systems, especially high flux systems
such as electronics, chemical reactors, etc. ML models can assist
in interpreting large thermal data sets generated by monitoring
these systems and provide critical information that will ulti-
mately lead to the identification and mitigation of potential
risks and better decision-making to ensure the desired
operation.

ML models are commonly used in the energy storage field to
predict and improve the performance of various energy storage
systems, including thermal, electrochemical, hydrogen gas, and
hybrid energy storage methods.*® This includes identifying
optimal charging and discharging approaches for batteries and
thermal storage systems, as well as controlling the operation of
energy storage equipment such as inverters and charge
controllers. Furthermore, ML models can predict and diagnose
the state of energy storage systems, including identifying factors
responsible for battery degradation. The use of ML models
helps improve the performance and reliability of energy storage
systems. These models can analyze data from weather forecasts,
energy usage, and energy production to predict energy demand.
This information is then used to optimize the use of energy
storage systems and balance the energy grid through grid
integration. Thermal energy storage (TES) systems, such as
thermal batteries, can be improved using ML models. These
models analyze data from experiments and monitoring systems,
such as temperature and heat flux, to optimize the design and
operation of TES systems. This results in improved efficiency for
the system. In general, implementing ML in energy storage can
enhance the effectiveness, functionality, and dependability of
energy storage systems. This can also lead to the optimization of
energy storage systems to manage the balance between energy
supply and demand. The incorporation of ML models into
combustion has led to many discoveries, particularly in the field

This journal is © The Royal Society of Chemistry 2024
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of optimizing and controlling combustion systems used in
power generation, industrial heating, and transportation. These
models are utilized to forecast and improve the performance of
various combustion systems, such as by identifying the optimal
fuel-air ratios and combustion conditions for maximum effi-
ciency. They also help in controlling the operation of combus-
tion equipment, such as burners and boilers, by considering
factors such as ignition, flame propagation, and burnout. An
important field of study involves the creation of fresh
combustion technologies, specifically those that produce low
levels of emissions. Using ML models, data from experiments
and simulations can be analyzed to discover innovative strate-
gies and technologies that can enhance performance while also
reducing emissions. Finally, ML models can aid in predicting
combustion-related problems. For instance, they can identify
the root cause of combustion instability, leading to enhanced
performance and reliability of combustion systems.

In the field of electrochemical devices, ML models have
found various applications to analyze experimental data and
improve the understanding and optimization of electro-
chemical processes. For electrocatalyst experiments, ML models
are used to assess stability and activity, aiding in the develop-
ment of more efficient catalysts for reactions such as the
hydrogen evolution reaction (HER) and oxygen evolution reac-
tion (OER).” ML models are also valuable for battery research,
predicting the performance and behavior of different battery
types such as lithium-ion, alkaline, carbon zinc, redox flow, and
zinc air. This information can guide battery design and opti-
mization. Supercapacitors can also benefit from ML modeling.
ML models are used in corrosion prediction to analyze experi-
mental data and forecast the corrosion rate of various materials,
contributing to corrosion mitigation strategies. Additionally,
ML models can be employed in electrodeposition processes to
control the microstructure of metal coatings, leading to
improved properties. In the field of electrolysis, ML models
explored the relationship between electrocatalyst synthesis
conditions, structural properties, and catalytic performance.®®
Specifically, in the PEM water electrolyzer, ML highlighted the
key variables that influence current/power density and polari-
zation of the electrolyzers. In fuel cells, both PEM and solid
oxide, ML helps design porous media such as gaseous diffusion
layers (GDLs) and catalyst layers (CLs) by optimizing porosity
and pore size distribution and their impacts on fuel cell
performance.* Finally, ML models are employed in pore-scale
modeling to predict electrochemical transport and reactions
within porous media, providing accurate predictions of the
behavior of charged species.

The review paper focuses on the ML models in hydrocarbon
porous media, as a complex and dynamic system, to foremost
raise the understanding and thereafter provide an overview of
ways that optimize the recovery of hydrocarbons from the
reservoir.™* In reservoir characterization, ML models are used
for analyzing data from reservoir cores, including porosity and
permeability, for creating more accurate reservoir models. To
this end, the location of wells can be optimized to improve the
recovery of hydrocarbons from the reservoir. ML models in
reservoir history matching are used for matching production

J. Mater. Chem. A, 2024, 12, 20717-20782 | 20719


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ta00251b

Open Access Article. Published on 19 2024. Downloaded on 02.10.2025 03:11:18.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

data from oil or gas reservoirs to numerical models, which
allows for more accurate predictions of future production and
its changes over time. In enhanced oil recovery (EOR), ML
models may be employed for optimizing EOR methods
including CO, injection and waterflooding,'” by analyzing data
from the reservoirs. In rock physics modeling, ML models are
used for introducing rock physics models, whereby the
connection between rock's physical properties, such as porosity
and permeability, and the fluids’ properties in the rock, such as
oil and water are described. Here, pore-scale fluid flow and
transport are also appraised allowing for better predictions of
oil and gas behavior in porous media. Furthermore, in the
subfield of fracture characterization, ML models can be used to
analyze data from seismic surveys and well logs to eventually
identify and characterize fractures in the reservoir, which are
critical to the fluids' flow. Finally, by analyzing data from log
measurements, i.e., resistivity, porous media properties can be
determined.

Many key applications of ML can be applied to CCS porous
media. ML models can be used for analyzing data from exper-
iments on the CCS process, for instance, porosity, pore struc-
ture, and permeability, and using this to discern the CO,
behavior and thereafter optimize the CCS process."> ML models
in predictive modeling can be used for predicting CO, behavior
in introducing a new framework for calculating the normalized
effective permeability resulting from hydrate formation.
Furthermore, ML models can be introduced for optimizing the
CO,-EOR process, by analyzing experimental data and opti-
mizing the CO, injection rate, timing, and location in the
reservoir. ML can make it possible to provide algorithms for
developing new materials and has attracted a great deal of
interest for its ability to accurately predict chemical and phys-
ical properties, establish structure-property relationships,
synthesize activated carbon and porous materials adsorbents
via several types of biomasses, and navigate the chemical space
to direct chemical synthesis. To determine structure-perfor-
mance correlations and choose the top descriptors that can
precisely predict the CO, adsorption capacity, efficiency, and
selectivity, ML is applied to discover different porous materials
for carbon capture technologies. Furthermore, ML models
could predict highly accurate process condition prediction
allowing for quantifying the influence of CO, capacity variations
on material ranking in adsorption process technologies.™
Nowadays, researchers present cases of ML algorithm develop-
ment in various CO, capture, storage, transport, and utilization
(CCSTU) systems. Adsorption, absorption, chemical looping,
membranes, sequestration, and hydrates are a few examples of
carbon capture or separation technology (CCST). Modeling and
simulating solvent-based carbon capture would be a progressive
effort towards the complicated governing processes of absorp-
tion, particularly chemical absorption, involving mass transfer
and chemical reactions.*

The paper reviews ML models that can be applied to
groundwater porous media to optimize the management of
water resources and ensure water is used sustainably. The ML
models are utilized for aquifer characterization, namely,
analyzing experimental data on aquifers, which include their
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porosity, pore structure, and permeability, to understand the
aquifer water behavior and attempt to promote groundwater
management. Parameters such as recharge, flow, and storage of
aquifers can be studied over some time through ML models to
better manage groundwater resources through predictive
modeling. Concerning water quality, by analyzing data from
water quality sensors in monitoring systems, the ML models
can detect changes in water quality and therefore predict issues
such as heavy metal removal, nitrates, pH variations, and
contamination, aimed at mitigating potential risks. Data-driven
decision-making is also addressed in this field. Regarding
groundwater recharge prediction, ML models can examine
parameters such as temperature, precipitation, and evapo-
transpiration and predict the groundwater recharge rate and
hence identify optimal conditions for recharge. Finally, further
assessments such as optimal pumping rate and drought
prediction, i.e., predicting the onset and severity of droughts,
and flood prediction, by analyzing data from weather forecasts
and water level monitoring systems, can be made using ML
models for water management decisions.

The review paper sums up by addressing the challenges and
outlook of ML in porous media. The article recollects the
challenges and relevant limitations associated with using ML
on porous media grounded on the findings of the prior section.
With the authors’ prior knowledge in this field, this may include
issues such as the requirement for powerful computing, lack of
data, the complexity of studying porous media, dimensionality,
scaling, and validation and interpretability. The review paper
attempts to signpost new techniques to overcome these chal-
lenges and to improve the accuracy and robustness of ML
models for porous media. It additionally culminates future
research outlook for the application of ML to porous media,
such as integrating ML with other technologies such as simu-
lation and imaging and developing state-of-the-art ML methods
especially designed for porous media systems. Finally, as
a further reading and better comprehension of the scope of the
review, a list of available online databases that can be used as an
exercise to train ML models and all the reviewed literature in the
manuscript as a spreadsheet are given in the ESLt

2. Background on machine learning
and porous media

The integration of ML with porous media has been addressed
extensively during the past 10 years and, as evidenced by the
number of publications in this field, the field will be even more
focused on in the years to come. The review synthesizes recent
advancements and interdisciplinary applications by providing
a detailed analysis of how different ML models can improve and
innovate these applications, each of which is crucial to resource
management and sustainable technology advancements. Addi-
tionally, the review enjoys the addition of a supplemental
database of literature and datasets and discussions on current
challenges and future outlook. Dynamic research in ML for
porous media primarily focuses on data-based methods for
predicting the characteristics of complex porous substances in

This journal is © The Royal Society of Chemistry 2024
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transportation and chemical reactions. This area finds utility in
various sectors, including subsurface contaminant transport,*
geothermal power utilization,"” CO, and H, containment in
geological formations,'® water purification,” and lithium-ion
batteries.*

One of the main challenges in this domain involves accu-
rately capturing the physical properties of pore-scale pores,
dealing with the heterogeneity and uncertain nature of porous
substances, and extrapolating these predictions to a larger
scale. By employing ML techniques to learn from different types
of data, such as visual representations or computer simulations
of porous media, we can overcome these obstacles and provide
rapid and accurate evaluations of relevant factors such as pore
volume, flow capacity, pathway complexity, and reaction rates.

ML can extract insights from various data sources, including
two or three-dimensional images, pore structure characteristics,
computational fluid dynamics (CFD), or experimental find-
ings.*»** It can also incorporate fundamental physical constraints
or existing knowledge into the learning process to enhance
accuracy and applicability. The field of ML applied to porous
media represents an innovative and stimulating area, offering
fresh perspectives and solutions to numerous scientific and
technical challenges related to fluid movement and distribution
in complex materials. The following section briefly provides an
overview various ML methods applicable to porous media.

2.1. Principles of porous media

Porous substances are characterized by two primary attributes:
(1) the presence of unfilled voids or pores within the solid
material that can be occupied by liquids such as air, water, oil, or
a combination of different fluids and (2) the ability to allow
various fluids to pass through at specific pressure differentials.”®

2.1.1. Relevant parameters

2.1.1.1. Permeability. Permeability, which refers to the flow
of liquids through materials containing pores or cavities such as
rocks, soils, or filtration devices, has been extensively studied by
researchers and experts in porous media. Factors influencing
permeability include pore volume, pathway complexity, pore
shape and size, and other porous medium characteristics.
Various methods exist to determine permeability, such as core
analysis, interpretation of well logs, and well assessments.
Permeability is commonly expressed in units of Darcy or milli-
Darcy.”

2.1.1.2. Porosity. Within the context of porous media,
porosity represents the proportion of empty spaces within the
material. It significantly influences the movement of liquids,
heat, and solutes within the porous medium. Porosity is generally
quantified as a dimensionless ratio or percentage. Furthermore,
porosity can be categorized into different types: total porosity,
effective porosity, primary porosity, and secondary porosity.*

2.1.1.3. Capillarity. Capillarity refers to the phenomenon
where fluids are drawn into tiny pores or porous materials due
to surface tension driven by capillary pressure. The capillary
pressure, influenced by interfacial tension, pore size and shape,
and the wetting characteristics of the liquids and solid struc-
ture, is used to determine the pressure difference at the

This journal is © The Royal Society of Chemistry 2024
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interface of two immiscible liquids. Capillarity plays a crucial
role in governing the flow, spreading, and confinement of
liquids within porous media, with applications in areas such as
oil extraction, CO, storage, groundwater decontamination, and
fuel cells.”®

2.1.1.4. Sorption. Sorption, in the context of porous media,
refers to the process by which a porous material adsorbs or
absorbs a substance. This phenomenon significantly impacts the
movement and fate of pollutants in soil and groundwater, as well
as the sequestration and retrieval of gases such as CO, and CH,.
The properties of the substance, the porous material, and the
environmental conditions all play a crucial role in influencing
sorption. Sorption can exhibit nonlinearity, meaning that the
sorbed substance amount does not correspond linearly to its
concentration in the liquid phase. This nonlinearity arises from
the heterogeneous nature of the porous material, the arrangement
of sorption sites, and competition among different substances for
the same sites. Additionally, sorption can exhibit disequilibrium,
where the equilibrium between the solid and liquid phases is
delayed or hindered in rate. This phenomenon is due to substance
diffusion within the pores, mass transfer between distinct pore
regions, and the kinetics of sorption reactions.”

2.1.1.5. Fluid-solid interactions. The interaction between
fluids and solids in porous media, known as fluid-solid inter-
action, explores the interplay at the pore scale and its implica-
tions for the macroscopic properties of the porous material.
This interaction encompasses fluid flow, solid deformation,
mass transfer, chemical reactions, and phase transitions.
Fluid-solid interaction has significant applications and conse-
quences in fields such as geomechanics, hydrology, petroleum
engineering, environmental engineering, and biomedicine.?®

2.1.2. Relevant equations. The fundamental theories of
porous media rely on mathematical formulations of equations
that conserve mass, momentum, and energy for both the liquid
and solid phases within the porous medium. Different models
can be derived to describe porous media's flow and transport
behavior, depending on the assumptions and simplifications
employed. Some commonly used models include.

2.1.2.1. Darcy's law. Darcy's law, which serves as the foun-
dational model, relates the fluid velocity to the pressure
gradient within the porous medium. According to this law, the
volumetric flow rate of the fluid is directly related to the cross-
sectional area of the porous medium, its hydraulic conduc-
tivity, and the hydraulic gradient (pressure or head difference
per unit length) along the flow direction. Mathematically, Dar-
cy's law can be expressed as:*

q=——F (1)

In this equation, g represents the Darcy flux, k denotes the
permeability, A is the cross-sectional area (m?), AP signifies the
pressure difference, and L corresponds to the length of the
porous medium. Darcy's law is applicable for low Reynolds
number flows in homogeneous and isotropic porous media.

2.1.2.2. Brinkman's equation. Regarding porous substrates,
the concept of Brinkman characterizes an advancement of

J. Mater. Chem. A, 2024, 12, 20717-20782 | 20721


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ta00251b

Open Access Article. Published on 19 2024. Downloaded on 02.10.2025 03:11:18.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

Darcy's law, encompassing the influence of fluid thickness on
the flow through the porous material. An extension of Darcy's
law, the Brinkman equation integrates a component reflecting
the Laplacian of velocity in accordance with the Stokes equation
for viscous movement. The Brinkman equation is expressed as
follows:**

—Vp + uViu = f%u (2)

In this equation, p represents pressure, u denotes the
dynamic viscosity of the fluid, and u signifies Darcy's velocity.
The first term on the left symbolizes the pressure gradient, the
second term represents the Brinkman viscosity factor, and the
resistance term of Darcy is depicted on the right side.

This Brinkman equation proves effective in modeling fluid
movement within porous substances exhibiting low porosity,
reduced permeability, or high velocity, where viscosity impacts
are more evident. The Brinkman equation can also be
combined with other elements to account for supplementary
influences such as inertia, reactions, diffusion, and heat
transfer within porous substances.

2.1.2.3. Forchheimer equation. In to porous
substrates, the Forchheimer equation denotes a notion that
encompasses a modification of Darcy's law, incorporating the
inertial effects of fluid motion through the porous material. The
Forchheimer equation, an expansion of Darcy's law, encom-
passes a term signifying the squared relationship between the
pressure gradient and velocity, akin to the Bernoulli equation
for non-viscous motion. The Forchheimer equation can be
formulated as follows:*

~Vp = (%ﬂ)ﬁ\uI)u 3)

relation

In this equation p refers to the density of the fluid, g is the
Forchheimer coefficient and « denotes Darcy's velocity.

The Forchheimer equation proves valuable in modeling the
movement of fluid within porous substances featuring high
porosity, increased permeability, or high velocity, where inertial
effects become noticeable.

2.1.2.4. Richards' equation. In the case of porous substrates,
Richards' equation represents a concept that encompasses
a partial differential equation elucidating the movement of
water in unsaturated soils, where gravitational and capillary
effects play a significant role. This equation is based on the
Darcy-Buckingham law, representing water flow in porous
substances under varying saturation conditions, and the law of
mass conservation for an incompressible porous substance
with consistent liquid density. The equation can be formulated
as follows:*

gz % y (K(h)%—l— k(h)) (a)

In this equation, # represents the volume-based water
content, ¢ denotes time, K represents the hydraulic conductivity,
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h signifies the pressure head of the liquid, and z symbolizes the
unit vector in the vertical direction.

Richards' equation proves effective in modeling the move-
ment of water in the vadose zone, which is the region between
the atmosphere and the aquifer, where saturated and unsatu-
rated conditions can coexist. The equation can also be
employed to investigate various phenomena such as water
infiltration, drainage, evaporation, irrigation, plant transpira-
tion, soil erosion, pollutant transportation, and heat transfer in
porous substances.

2.1.2.5. Navier-Stokes. The Navier-Stokes equation is
a crucial mathematical model that characterizes the motion of
fluids by considering the conservation of mass, momentum,
and energy. It can be expressed in the general form below:

p(%+u><Vu):pr+V><r+pf (5)
Here, p signifies the fluid pressure, T symbolizes the viscous
stress tensor, and f stands for the body force per unit mass. The
Navier-Stokes equation is applicable to various fluid types,
including Newtonian, non-Newtonian, compressible, incom-
pressible, laminar, and turbulent, among others. However,
when fluid flows through porous media, the Navier-Stokes
equation requires modification to incorporate the effects of the
solid matrix. One common approach to achieving this is using
Darcy's law. Nonetheless, Darcy's law is only valid for low Rey-
nolds number flows, and it does not account for the effects of
inertia, turbulence, or non-linearity of the fluid. Additionally,
the permeability £ is often difficult to measure or unknown, and
it may vary spatially and temporally based on the properties of
the porous medium and the fluid.

To address these challenges, ML techniques can be employed
to enhance the modeling of fluid flow in porous media. ML can
be utilized to approximate the solution of the Navier-Stokes
equation in porous media. For instance, ML can predict steady-
state velocity fields and permeability in porous media.*

2.2. Types of learning

Fundamentally, ML operates by utilizing encoded instructions
to analyze and evaluate input data, generating predictions
within a permissible range. As new information is introduced,
these algorithms adapt, improve their functionality, and grad-
ually acquire knowledge, becoming more effective over time.

ML algorithms can be classified into four categories: super-
vised learning, semi-supervised learning, unsupervised
learning, and reinforcement learning.

2.2.1. Supervised learning. Supervised learning involves
learning from examples. A supervisor provides the algorithm
with a dataset containing specific inputs and corresponding
outputs, deciphers trends within the dataset, absorbs insights
from noted instances, and establishes conjectures to imitate the
preferred results. The supervisor continually adjusts the algo-
rithm's predictive outputs until its accuracy or performance
significantly improves. In supervised learning, the algorithm
acts as a student meticulously studying a set of labeled exam-
ples. It analyzes the connection between the input data (pore
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size distribution, permeability, etc.) and the corresponding
labels (flow rate and transport behavior) to learn the trends.
Supervised learning can be used in applications such as pre-
dicting fluid flow properties and classifying pore types. Super-
vised learning includes tasks such as classification and
segmentation:**

(1) Classification: during categorization functions, the ML
application must deduce the group of fresh instances using the
data.

(2) Segmentation: it is the process of classifying a given set of
data into different groups. It is used in machine learning
applications to determine similarities and differences in the
data and to identify patterns and trends.

2.2.2. Semi-supervised learning. Obtaining fully labeled
data in porous media research can be expensive and time-
consuming, especially when characterizing complex properties
or rare phenomena. This is where semi-supervised learning
shines and combines labeled and unlabeled data. Labeled data
contain meaningful tags that aid the algorithm's under-
standing, while unlabeled data lack such information. This
combination enables algorithms to learn how to categorize
unlabeled data.*

Reservoir simulations pose a significant computational chal-
lenge due to their complexity. In this situation, semi-supervised
learning offers a promising solution to this problem. By
utilizing high-resolution simulations from a limited number of
samples and combining them with lower-resolution data from
a larger set, semi-supervised learning enables more efficient
upscaling of simulations for reservoir characterization. Another
application of semi-supervised learning in porous media is its
use in identifying anomalous flow patterns. By training on
labeled data containing examples of normal and anomalous flow
patterns, a semi-supervised learning model can leverage unla-
beled data to detect potential anomalies in new datasets.

2.2.3. Unsupervised learning. Unsupervised learning
involves the algorithm examining data to identify patterns
without guidance from an answer key or human intervention. It
establishes correlations and relationships by scrutinizing the
available data. Unsupervised learning tasks the algorithm with
deciphering large volumes of data and organizing it in a struc-
tured manner.*® In the context of porous media, this could be
a vast dataset of images representing the microstructure of
various samples, or extensive flow rate measurements without
corresponding information on the specific characteristics of the
porous media they originated from. As the algorithm processes
more data, its decision-making capabilities regarding the data
gradually improve. Techniques in unsupervised learning
include clustering and dimension reduction.

(1) Clustering groups of similar datasets based on specific
criteria allows for data segmentation into multiple groups to
identify patterns within each group.

(2) Dimension reduction simplifies the consideration of
variables by reducing their number, aiming to reveal the
essential data required.

Unsupervised learning enables the analysis of unlabeled
images of porous materials, allowing the quantification of pore
network complexity metrics such as connectivity and tortuosity.
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Moreover, unsupervised learning algorithms can detect anom-
alies in flow data, identifying deviations from typical flow
patterns within large datasets. This capability is particularly
useful for early detection of issues such as preferential flow
paths or blockages, which can significantly impact porous
media behavior. Overall, unsupervised learning has proven to
be a promising tool for studying porous media, with various
potential applications in both research and industry.

2.2.4. Reinforcement learning. Reinforcement learning
encompasses organized learning methods, in which a ML
algorithm adheres to a series of activities, instructions, and end
consequences. Through pre-established regulations, the algo-
rithm investigates various possibilities and assesses each
consequence to identify the most appropriate selection. By
including experimentation and correction, reinforcement
learning allows the algorithm to acquire knowledge from prior
encounters and adapt its strategy according to the situation,
striving for the best outcomes.**

2.3. Machine learning models

ML models can be seen as software programs designed to
identify patterns in new data and make predictions. These
models are represented as mathematical functions that take
input queries, make conjectures, and produce corresponding
outputs. Initially, the models are trained on a dataset, and an
algorithm is applied to reason over the data, extract patterns,
and acquire knowledge from it. Once trained, these models can
be used to predict unseen data.

2.3.1. Decision trees. Decision trees are a prevalent choice
for ML models that can handle both regression and classifica-
tion challenges. A decision tree employs a tree-like diagram of
decisions alongside their potential repercussions and results. In
this, every internal node serves to represent a check on an
attribute and each branch symbolizes the result of that test. The
greater the number of nodes a decision tree possesses, the more
precise the outcome will be.

Decision trees' merits lie in their simplicity and ease of
implementation, but they fall short in precision. They find
extensive application in operational research, especially in
decision analysis, strategic planning, and primarily in ML.

In relation to porous substances, decision trees can aid in
determining the crucial features influencing CO, adsorption,
such as textural characteristics, compositional properties, and
adsorption parameters.*’

2.3.2. Random forest. The random forest represents an
ensemble learning technique encompassing a considerable
quantity of decision trees. Each tree within a random forest
predicts a result, and the prediction receiving the most votes is
deemed the final outcome.*®

A random forest model is versatile, being applicable to both
regression and classification tasks. For classification tasks, the
outcome from the random forest is derived from the majority
voting. Conversely, the outcome in regression tasks originates
from the mean or average of predictions produced by each tree.

2.3.3. Support vector machines. The support vector
machine (SVM) is a prevalent ML algorithm predominantly
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employed for classification and regression tasks. More specifi-
cally, it excels at resolving classification challenges. SVM's
primary goal is to identify optimal decision boundaries within
an n-dimensional space capable of segregating data points into
distinct classes. The superior decision boundary is termed
a hyperplane. The SVM employs the extreme vector to ascertain
this hyperplane, which is why these vectors are dubbed support
vectors.*

2.3.4. Neural networks. Artificial neural networks (ANNs)
or simply neural networks constitute a group of ML algorithms
that derive inspiration from the human brain and, as per the
Universal Approximation Theorem, can approximate any func-
tion.* Furthermore, due to their flexibility and modularity,
neural network's structure can be customized for various
supervised, unsupervised, and reinforcement learning applica-
tions. The construction of deep learning (DL) models is made
possible by layering numerous levels in neural networks, which
enhances the models' ability to extract features and learn
intricate data representations. Hence, the neural network is
a favorite algorithm across all domains of ML, consistently
demonstrating remarkable results in all sorts of practical
issues.

Numerous varieties of neural networks exist, each with
varying complexity levels. All aim to emulate the human brain's
functionality to tackle complex problems or tasks. The config-
uration of each neural network type somewhat mirrors neurons
and synapses. However, they differ in complexity, applications,
and structure. The differences extend to modeling artificial
neurons within each type of neural network and the connec-
tions between each node. Other distinctions include the way
data navigate through the neural network and the density of the
nodes. The most common types of neural networks used in
porous media are detailed in the following.

2.3.4.1. Multi-layer perceptron. A multi-layer perceptron
(MLP) falls under the category of feedforward neural network
(FFNN).** It is a versatile and commonly used architecture for
supervised learning tasks such as classification and regression.
MLPs are the most fundamental deep neural network, consist-
ing of a sequence of fully interconnected layers (an input layer,
one or more hidden layers, and an output layer). Each neuron
within the network processes input data using weighted
connections and activation functions. MLPs can be utilized to
circumvent the need for extensive computational resources
required by modern deep learning frameworks.

2.3.4.2. Convolutional neural networks.
neural networks (CNNs) constitute a variant of neural networks
predominantly utilized for processing image and visual data.
They are designed to autonomously learn and extract hierar-
chical patterns and features from input images. CNNs encom-
pass convolutional layers that apply filters to input data,
followed by pooling layers for downsampling and fully con-
nected layers intended for classification or regression tasks.

2.3.4.3. Recurrent neural networks. A recurrent neural
network (RNN) represents another category of ANNs that
leverages sequential data input. RNNs were conceived to tackle
the time-series challenge posed by sequential input data. An
RNN's input comprises the current input along with prior

Convolutional
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samples. As a result, the connections between nodes form
a directed graph that follows a chronological order. Addition-
ally, every neuron in an RNN possesses an internal memory that
preserves computational information from prior instances.

2.3.4.4. Physics-informed neural networks. Physics-informed
neural networks (PINNs) are a groundbreaking fusion of artifi-
cial intelligence and mathematical physics, specifically tailored
to address the complexities of partial differential equations
(PDEs). Their modus operandi involves projecting solutions to
these PDEs through the fine-tuning of a neural network aimed
at minimizing a meticulously designed loss function. This loss
function is imbued with critical elements representing the
initial and boundary conditions within the space-time domain
and the residual of the PDE at specific loci, known as colloca-
tion points. As PINNs function under the umbrella of deep
learning models, they deliver a calculated approximation of
a differential equation's solution at a specific point within the
computational domain after completing their training. A revo-
lutionary stride in the field of PINNs is the incorporation of
a residual network that envelops the primary physics equations.
In essence, the PINN's training process is viewed as an unsu-
pervised learning approach, eliminating the necessity for pre-
labeled data that typically originate from prior simulations or
experiments.

The PINN algorithm is a grid-independent method that
procures solutions to PDEs by recasting the task of directly
solving governing equations into an optimization challenge for
the loss function. This transformation becomes feasible by
weaving the mathematical model into the fabric of the network
and enriching the loss function with a residual term extracted
from the governing equation. This residual term acts as
a constraint that focuses on the range of acceptable solutions,
ensuring more precise and rel