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Retention time prediction and MRM validation
reinforce the biomarker identification of LC-MS
based phospholipidomics†

Jiangang Zhang, Yu Zhou, Juan Lei, Xudong Liu, Nan Zhang, Lei Wu and
Yongsheng Li *

Dysfunctional lipid metabolism plays a crucial role in the development and progression of various dis-

eases. Accurate measurement of lipidomes can help uncover the complex interactions between genes,

proteins, and lipids in health and diseases. The prediction of retention time (RT) has become increasingly

important in both targeted and untargeted metabolomics. However, the potential impact of RT prediction

on targeted LC-MS based lipidomics is still not fully understood. Herein, we propose a simplified

workflow for predicting RT in phospholipidomics. Our approach involves utilizing the fatty acyl chain

length or carbon–carbon double bond (DB) number in combination with multiple reaction monitoring

(MRM) validation. We found that our model’s predictive capacity for RT was comparable to that of a pub-

licly accessible program (QSRR Automator). Additionally, MRM validation helped in further mitigating the

interference in signal recognition. Using this developed workflow, we conducted phospholipidomics of

sorafenib resistant hepatocellular carcinoma (HCC) cell lines, namely MHCC97H and Hep3B. Our findings

revealed an abundance of monounsaturated fatty acyl (MUFA) or polyunsaturated fatty acyl (PUFA) phos-

pholipids in these cell lines after developing drug resistance. In both cell lines, a total of 29 lipids were

found to be co-upregulated and 5 lipids were co-downregulated. Further validation was conducted on

seven of the upregulated lipids using an independent dataset, which demonstrates the potential for trans-

lation of the established workflow or the lipid biomarkers.

1 Introduction

Perturbations in lipid metabolism are associated with various
diseases, including cardiovascular disease, type 2 diabetes
mellitus (T2DM), and cancer.1,2 The aggravation of lipids and
their interaction with genes and proteins play a crucial role in
the progression of these diseases.3,4 Over the past three
decades, significant advancements in high throughput
sequencing technology have facilitated the establishment of a
well-defined regulatory network of genes and proteins.5,6 This
has accelerated the translation of research findings from lab-
oratory experiments to clinical applications, such as the early
identification of susceptibility genes in diseases.7,8 In recent
years, spatiotemporal multi-omics technology has expanded
our understanding of the interactions between genes, proteins,
and metabolites at the single-cell level.9,10 Additionally, lipids,
which make up the lipidome in biological samples,11 serve as

substrates for post-translational modification of proteins, con-
tribute to the structure of cell membranes, and play a role in
energy metabolism.12,13 The intricate interplay between lipids
and signaling pathways highlights their potential as bio-
markers for screening and development of novel therapeutics.

Lipidomics is a powerful tool used for profiling lipidomes
in a biological system. It can be divided into two categories:
untargeted and targeted lipidomics.11,14 Untargeted lipidomics
is utilized for the analysis of the comprehensive lipid profile,
benefiting from its high resolution (HR) and wide ion coverage
facilitated by mass analyzers such as time of flight (TOF) or
Orbitrap. On the other hand, targeted lipidomics is suitable
for determining a predefined list of targeted lipids using quad-
rupole (Q)-TOF and quadrupole ion trap (Q-TRAP) with high
sensitivity, as indicated by relatively low limits of quantitation
(LOQ) and detection (LOD).15 In both cases, liquid chromato-
graphy coupled with mass spectrometry (LC-MS) has become
the most commonly used detection platform due to its high
separation capacity and versatility in chromatography.16,17

However, interference peaks often occur when signals overlap
in untargeted approaches or when one lipid generates a peak
in another lipid’s multiple reaction monitoring (MRM) tran-

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3an01735d

Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing

400030, China. E-mail: lys@cqu.edu.cn

This journal is © The Royal Society of Chemistry 2024 Analyst, 2024, 149, 515–527 | 515

Pu
bl

is
he

d 
on

 3
0 

 2
02

3.
 D

ow
nl

oa
de

d 
on

 0
7.

06
.2

02
5 

07
:5

3:
58

. 

View Article Online
View Journal  | View Issue

http://rsc.li/analyst
http://orcid.org/0000-0002-2610-6976
http://orcid.org/0000-0003-2175-9449
https://doi.org/10.1039/d3an01735d
https://doi.org/10.1039/d3an01735d
https://doi.org/10.1039/d3an01735d
http://crossmark.crossref.org/dialog/?doi=10.1039/d3an01735d&domain=pdf&date_stamp=2024-01-09
https://doi.org/10.1039/d3an01735d
https://pubs.rsc.org/en/journals/journal/AN
https://pubs.rsc.org/en/journals/journal/AN?issueid=AN149002


sition within a small retention time (RT) range in targeted
methods. This can result in inaccurate lipid annotation or
quantification.18 While this issue can be partially addressed by
using lipid library matching with an exact mass weight or
tandem mass spectrometry (MS/MS) obtained mostly from
untargeted methods, such as METLIN Gen2,19 MassBank data-
base,20 the LIPID MAPS Web tools,21 LipidBlast,22 etc.,
researchers still need to carefully consider the advantages and
disadvantages of these methodologies before proceeding with
their acquisition.

In addition to mass information, large-scale lipid identifi-
cation requires supplementary information. RT from chrom-
atography, included in lipid libraries, is crucial in supporting
both untargeted and targeted strategies.23–25 The prediction of
RT for lipids has gained popularity in untargeted lipidomics.
Xu and Kohlbacher et al.23 introduced machine learning-based
approaches to improve the assignment of lipid structures and
automate annotation. Snel et al.26 developed an equivalent
carbon number (ECN) model for predicting the RT of lipids
with the same headgroup in reversed-phase separation. Other
software packages such as LiPydomics,27 PredRet,24 quantitat-
ive structure-(chromatographic) retention relationship (QSRR)
Automator,28 DynaStI,29 etc., have also been developed for
similar RT prediction purposes. Among these, QSRR models
are the most commonly used theory for RT prediction.25,30

Artificial intelligence algorithms are used to enhance data
integration and processing in iterative computing and data
calibration. However, not all laboratories have a bioinformatics
specialist proficient in applying these models and codes,
leading to frequent occurrences of bugs and errors when data
formats or default settings are inconsistent. Therefore, a modi-
fied workflow is often required to address such situations.

The interference of lipid signals may become more promi-
nent and compromise the efficiency of detecting lipids in tar-
geted lipidomics when a large number of MRM transitions are
added to the methods, as suggested by previous research on tar-
geted metabolomics.18 The use of the aforementioned model
for RT prediction may help reduce false positive signal
responses and improve lipid annotation to some extent. In our
previous study, we utilized an equivalent carbon number and
retention time prediction model to discover unusual odd chain
fatty acyl lipids in targeted LC-MS lipidomics.31 However, such
practices are still lacking in targeted lipidomics and may
enhance the accuracy of lipid quantification, especially when
researchers have limited diversity in mass spectrometry equip-
ment. This prompts us to further investigate this field and
explore the lipid phenotype in various disease contexts.

To gain further insight into the accurate measurement and
analysis of lipids using targeted LC-MS lipidomics, here we
developed a predictive model based on RT, validated it using
MRM validation patterns, as well as used this model to investi-
gate the changes in phospholipid dynamics. Furthermore, we
verified these specific lipids using an independent clinical lipi-
domics dataset,32 to suggest the potential of these lipids as
biomarkers for predicting the sensitivity of HCC treatment to
sorafenib.

2 Methods
2.1 Chemicals and reagents

Acetonitrile (ACN, Cat#CAEQ-4-003306-4000), dichloroform
(DCM, Cat#CAEQ-4-012002-4000), isopropanol (IPA,
Cat#CAEQ-4-013493-1000) and methanol (MeOH, Cat#CAEQ-4-
003302-4000) were purchased from Shanghai ANPEL
Experimental Technology Co., Ltd (https://www.labsci.com.cn/
). All solvents were HPLC grade. A Millipore Milli-Q purifi-
cation system (Bedford, MA, UK) was used to produce de-
ionized water and ammonium acetate (Cat#338818) was
brought from Sigma-Aldrich (Taufkirchen, Germany).
Sorafenib was obtained from Shanghai Beyotime
Biotechnology Co., Ltd (Cat#SC0236, https://www.beyotime.
com/index.htm). The authentic standards of PA(16:0/18:1)
(Cat#840857C), PA(18:0/18:1) (Cat#840861P) and
UltimateSPLASH™ ONE (Cat#330820L) were provided by
Avanti Polar Lipids Inc. (AL, USA). In particular,
UltimateSPLASH™ ONE for lipidomic analysis is a commercia-
lized mixture of deuterium labeled internal standards (IS) con-
taining 40 deuterium labeled phospholipids in 1 : 1
dichloromethane : methanol solution (1.2 mL per vial). The
deuterated standards were provided at defined concentrations
and were used directly (phospholipids are listed in Table S1†).
The certificate of analysis for UltimateSPLASH™ ONE is avail-
able at https://avantilipids.com/.

2.2 Sorafenib resistant HCC cell lines

MHCC97H and Hep3B cell lines were exposed to sorafenib for
a duration of at least 12 months. This exposure was divided
into an inducing phase and a steady phase, each lasting
6 months. During the inducing phase, MHCC97H cells were
treated with a gradient concentration of 5, 7.5, and 10 μM of
sorafenib, while Hep3B cells were treated with slightly lower
concentrations of 2.5, 5, and 7.5 μM. Each gradient treatment
lasted for two months. In the steady phase, MHCC97H and
Hep3B cells were stimulated with 7.5 and 6 μM sorafenib,
respectively, for the remaining 6 months of the experiment. As
a result of this 12-month drug exposure, stable and acquired
sorafenib resistant cell lines were obtained. The following drug
resistant (DR) cell lines were referred to as MHCC97H-DR and
Hep3B-DR, and the corresponding wildtype control (C) of
MHCC97H-C and Hep3B-C respectively.

2.3 Cell culture and collection

MHCC97H (Cat#SCSP-5092) and Hep3B (Cat#SCSP-5045) were
purchased from the Cell Bank of Type Culture Collection of
Chinese Academy of Sciences (Shanghai, China), and both cell
lines were authenticated and tested for mycoplasma. The wild-
type and sorafenib resistant cells of MHCC97H and Hep3B
were cultured in DMEM (4.5 mg mL−1 D-glucose) from Gibco
(Cat#C11995500BT, Invitrogen, Life Technologies). The culture
medium was supplemented with 10% fetal bovine serum (FBS)
(Cat#10091148, Gibco), 100 IU mL−1 penicillin, and 100 mg
mL−1 streptomycin. Sorafenib (Cat#C0222, Beyotime) was
added as described in section 2.2. Prior to collection, cells
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were counted using the Countstar Altair (Alit Biotech
(Shanghai) Co., Ltd) and several aliquots of cells were seeded
in culture dishes. After incubation in a 37 °C5% CO2 incuba-
tor, the culture flask was observed under an inverted micro-
scope to confirm that the cells were ready to be collected for
further experiments (80% confluence). Upon collection, the
cells were washed with pre-warmed PBS at 37 °C, and then cen-
trifuged to discard the supernatant. The cells were then snap-
frozen in liquid nitrogen and stored at −80 °C until analysis.
Additionally, two more wells of cells were scraped and
extracted for BCA protein quantification using a BCA assay kit
(Cat# P0009, Beyotime) and normalization.

2.4 Lipid extraction

The lipid extraction process follows a modified Bligh and Dyer
procedure33 as described in a previous study.31 Briefly, prior to
opening, the ampule of the internal standard mixture was
sonicated in a warm bath for approximately five minutes and
repeated inversion or vortex mixing was performed to comple-
tely solubilize and mix the vial contents as per the manufac-
turer’s protocols. Cell pellets were then warmed to ambient
temperature and 0.9 mL of H2O was added into the samples.
Subsequently, 5 μL of internal standards, 2 mL of MeOH, and
0.9 mL of DCM were successively added to the sample mixture.
The extracts were gently vortexed for 5 seconds and left on the
benchtop at room temperature for 30 minutes. An additional
1 mL of H2O and 0.9 mL of DCM were added to the extracts,
followed by another gentle vortexing for 5 seconds. The
extracts were then centrifuged for 10 minutes to separate them
into a bilayer, and the bottom organic phase was transferred to
a new glass tube for each extract. The original extracts under-
went another isolation step by adding 1.8 mL of DCM, vortex-
ing for 5 seconds, and centrifuging as mentioned earlier. The
resulting extracts were combined with the previous aliquots.
Finally, the sample extracts were concentrated under stable
nitrogen flow and reconstituted in 100 μL of the running solu-
tion (1 : 1 DCM :MeOH containing 10 mM ammonium
acetate).

2.5 Reverse phase LC-MS/MS-based lipidomics

LC-MS/MS analysis was performed on an Exion UHPLC-AB/
SCIEX QTRAP 6500 Plus (Applied Biosystems, Foster City, CA,
USA) platform. Data acquisition was performed using Analyst
1.6.3 software (AB SCIEX). LC separation was carried out using
an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm,
Waters Corporation) and gradient elution was employed.
Mobile phase A consisted of a solvent mixture of
MeOH : ACN : H2O (1 : 1 : 1), while mobile phase B contained
IPA, both with 5 mM ammonium acetate. The elution gradient
of a total of 17 minutes was applied as follows: 0–1 min: 20%
B, 1–2.5 min: 40% B, 2.5–4 min: 60% B, 4–14 min: 90% B,
14–15 min: 90% B, 15–15.1 min: 20% B, and 15.1–17 min:
20% B. The temperature and flow rate of the chromatography
column were set at 40 °C and 0.3 mL min−1, respectively. An
injection volume of 5 μL was used, and the negative ESI mode
was employed throughout the analysis. Lipid quantitation was

performed using scheduled MRM, and the parameters for ion
spray voltage (ISV, −4500 V), curtain gas (CUR, 30 psi), nebuli-
zer gas (GS1, 55 psi), turbo-gas (GS2, 55 psi), turbo ion spray
source temperature (350 °C), and collision gas (CAD, medium)
were optimized.

Additional parameters of the mass spectrometer, such as
de-clustering potential (DP), entrance potential (EP), collision
exit potential (CE), and collision exit potential (CXP), were opti-
mized for each subclass of lipid species. Nitrogen was used as
the collision gas with an auto-generator. Peak assignment and
integration were performed using SCEX OS. The signals were
automatically recognized and integrated based on the RT pre-
dictive value. Manual inspection was also conducted to ensure
accurate peak integration by the software. All lipids were then
normalized to the peak area of the internal standard within
the same subclass (Table S4†).

2.6 Method validation and QC

The method validation was conducted following the pro-
cedures outlined in our previous study.31 Each batch consisted
of six replicate samples for a group (n = 6), two method blanks,
and a pooled sample (referred to as QC). Initially, three repli-
cates of the QC were analyzed to condition the system, fol-
lowed by the randomized analysis of the samples. The QC was
injected every 6 samples throughout the batch sequence to
serve as a reproducible and stable monitor of the system. The
lipid signal responses were plotted against the measured
samples, allowing for the identification of outliers due to
sample preparation or instrumental failures. Additionally,
principal component analysis (PCA) was employed to provide
an overview of the outliers in all samples.

2.7 Statistical analysis

Data normalization was performed using MetaboAnalyst
(https://www.metaboanalyst.ca/). The concentrations of lipids
were uploaded and filtered based on the interquartile range
(IQR). Subsequently, the data were normalized through log
transformation and Pareto scaling. The normalized data were
then used for further analysis. Principal component analysis
(PCA) and orthogonal projections to latent structures discrimi-
nant analysis (OPLS-DA) were performed using SIMCA version
14.1 (Umetrics, Umeå, Sweden). R2 was utilized to quantify the
variation of lipid species, while Q2 was employed to evaluate
the predictive capability of the model in SIMCA software.
Statistical significance was determined at a P-value <0.05, and
all P-values were tested for multiple corrections using the
Bonferroni approach.

Additional variable influence of projection (VIP) was calcu-
lated for each individual OPLS-DA model. Only lipids with
P-values <0.05, VIP values >1, and fold changes ≥20% for rela-
tive abundance were considered statistically important. Data
processing was also performed using MetaboAnalyst for cross-
validation and reproducibility verification.

Other statistical analyses were conducted using the two-
tailed, unpaired Student’s t-test or one-way ANOVA with the
Dunnett multiple comparison test, as specified in GraphPad
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Prism 9.0.0. P values (***P < 0.001, **P < 0.01, and *P < 0.05)
were automatically labeled in the figures. The graphical
abstract was created using BioRender (https://www.biorender.
com/). Graphs were plotted using either OriginPro 2021
(64-bit) 9.8.0.200 or GraphPad Prism 9.0.0, and final figures
were prepared using Adobe Illustrator CS4.

3 Results
3.1 RT predictive modeling of phospholipids in reverse
phase liquid chromatography

In targeted LC-MS lipidomics, LC plays a central role due to its
high separation power and versatility. The lipids first flow
through the chromatographic column with elution solvents,
and different polar fractions are successively brought to the
MS apparatus. In soft ionization sources such as ESI or APCI,
ionized lipids are carried into a quadrupole mass spectrometer
for further scan and fragmentation. The MRM detective mode
utilizes quadrupoles to select a precursor ion (Q1) of the lipid,
which is usually found in a pseudo-molecular ion or adduct
ion. It breaks the precursor ion into smaller ions (Q2) and
then sequentially selects a lipid’s characteristic product ion
(Q3) before sending the ions to the detector. Due to the
superior sensitivity and selectivity of MS, even compounds
present at trace concentrations can be measured. The LC-MS
technique separates different lipids based on their chromato-
graphic RTs and the mass-to-charge ratio (m/z) of the precursor
and product ions. Therefore, this workflow combines RT, Q1
m/z, and Q3 m/z for lipid-specific measurements.

Using a limited sum of deuterated standards from commer-
cially available products (Table S1†), referred to as the training
lipid set, we initially generated the RT list of 40 phospholipids
(Table S1†). The mean RTs of five replicates of LC-MS runs
were calculated. The standard error of the RT was within an
acceptable range and could be utilized for further compu-
tations. For both the internal standards and the phospholipid
library (including PC, PE, phosphatidylglycerol (PG), phospha-
tidylinositol (PI), phosphatidylserine (PS), and phosphatidic
acid (PA), Table S1†), we calculated the total number of carbon
atoms and double bonds. The highest number of carbon
atoms obtained was 43, which was consistent across the six
subclasses of lipids. This value was then used to determine the
relative carbon atom number using the equation y = C/Cmax,
where C represents the number of carbon atoms of a specific
lipid and Cmax is kept as 43. By defining Cmax as a constant, we
simplified the comparison of interclass RTs of lipids and
ensured the rational distribution of RTs among the six sub-
classes of phospholipids. Consequently, the relative carbon
atom numbers of the lipids were naturally deduced. Similarly,
the relative RT was calculated using the equation y = T/Tmax,
where T represents the retention time of a specified lipid and
Tmax was the elution time of the established chromatographic
system (17 minutes in this case). This calculation allowed for
the easy preparation of RT ratios for deuterated standards.

The second degree polynomial regression (y = B0 + B1 × x +
B2 × x2) was then used to fit the curve between fatty acyl chain
length or DB number and RT. For example, in the case of PC,
the compounds 17:0-14:1 PC-d5 (PC(31:1)-d5), 17:0-16:1 PC-d5
(PC(33:1)-d5), and 17:0-18:1 PC-d5 (PC(35:1)-d5), which had
double bonds at carbon atom numbers 0.72, 0.77, and 0.81
respectively, exhibited relative RT values of 0.32, 0.34, and
0.37, respectively. Therefore, the regressive curve of PC(X:1) (X
refers to the number of carbon atoms) could be fitted as y =
0.3047 − 0.4733x + 0.6801x2. Due to the limited number of
standards available for model training, a simple rule regarding
the variation of the RT values could be derived. This rule
suggested a nearly constant RT ratio between PC(33:1)-d5/PC
(31:1)-d5 (approximately 1.077151335) and PC(35:1)-d5/PC
(33:1)-d5 (approximately 1.083677686), which was referred to
as the carbon chain length constant (k). Based on this con-
stant, the RT values of PC(37:1) and PC(39:1) were estimated to
be 0.40 and 0.43, respectively.

The following experimental RT values confirmed our initial
hypothesis. The fluctuation of RT is influenced by both the
length of the carbon chain and the degree of unsaturation. In
general, when a lipid has more double bonds or fewer carbon
atoms, RT tends to decrease, while it tends to increase when
there are fewer double bonds or more carbon atoms.34,35 We
then investigated the relationship between lipids with the
same chain length but varying double bonds, specifically 17:0-
20:3 PC-d5 (PC(37:3)-d5), 17:0-22:4 PC-d5 (PC(39:4)-d5), and
PC(37:1), PC(39:1). We found that the square root of the RT
ratio between PC(37:3)-d5 and PC(37:1) was 0.941656387
(referred to as λ, the double bond constant). Surprisingly, the
cube root of RTPC(39:4)-d5/RTPC(39:1) was 0.943296587, matching
the previously obtained square root value. Based on the RT of
PC(X:1) and these established results, we predicted the RT of
PC(37:Y) (where Y refers to the number of double bonds, Y = 0,
1, 2, 3, 4, etc.) and PC(39:Y) in accordance with PC(X:1) (where
X = 31, 33, 35, 37, 39, etc.). Subsequently, an array of relative
RTs of PC were extrapolated and fitted with regressive curves
simultaneously, as shown in Fig. 1A and Table S2.† Similarly,
the RTs and fit curves of PE (Fig. 1B), PG (Fig. 1C), PI (Fig. 1D),
and PS (Fig. 1E) were processed proficiently (Table S2†).
However, due to a lack of deuterated PA standards in the kit,
authentic standards of PA(16:0_18:1) and PA(18:0_18:1) were
alternatively employed to estimate the k value of PA.
Consistently, RT at 5.18 and 5.57 min yielded a k value of
1.075289575, illustrating the comparable value obtained from
the other subclasses of phospholipids. Directly, the λ value
from PC was used for the RT estimation of PA (Fig. 1F).

In addition, lysophospholipids, derived from the aforemen-
tioned lipid classes after hydrolysis to remove an acyl group,
exhibited different properties compared to their original phos-
pholipids. Therefore, the RT prediction of LPC (Fig. S1A†), LPE
(Fig. S1B†), LPG (Fig. S1C†), LPI (Fig. S1D†), and LPS
(Fig. S1E†) was also inferred using their respective deuterated
standards containing 15:0, 17:0, and 19:0 fatty acyl moieties
(Table S3†). In order to estimate the RT, the λ constant from
the precursor lipids was approximately used. As a result, a
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library of different subclasses of phospholipids with predictive
RTs was successfully constructed (Tables S4 and 5†).

3.2 Model evaluation and external validation

Experimental verification was conducted using RT matching
and scheduled MRM to confirm the RT prediction. The phos-
pholipids’ signal response was observed through the total ion
chromatograph (TIC) using an optimal elution gradient
(Fig. 2A). The difference between the actual reference RT and
the predicted RT was less than 0.5 min (Fig. 2B), and there was
a close linear relationship between the two factors (Fig. 2C).
Additionally, there was a positive correlation between the RT
and the mass range of lipids (Fig. 2D), and interclass RT com-
parison could be performed when X shared the same carbon
chain length. For example, PE(X:1) had the longest RT, slightly
longer than PC(X:1). The RTs of PG(X:1) and PI(X:1) were iden-
tical and significantly less than the RT value of PS(X:1). On the
other hand, PA(X:1) exhibited the shortest retention in chrom-
atography due to its relatively strong polarity (Fig. 1 and 2D).
These findings are consistent with our previous research.31

Recent studies have utilized machine learning techniques
to predict RT. However, applying a published machine learn-
ing model to diverse research contexts and lab facilities may
present challenges. Here we attempted to predict RT using
various codes and packages, including QSRR Automator,28 a
software package designed to automate RT prediction models.

In this process, lipid IDs were first converted to the simplified
molecular input line entry system (SMILE) format using
MetaboAnalyst (https://www.metaboanalyst.ca/MetaboAnalyst/
upload/ConvertView.xhtml). Subsequently, the RT values were
added to the templates and the data were inputted, resulting
in the smooth generation of predictive results for PC
(Fig. S2A†) and PE (Fig. S2B†). The final models for PC and PE
achieved R2 scores of 0.99 and 0.98, respectively. The mean
absolute errors for PC and PE were 0.003 and 0.054, respect-
ively. These results demonstrate the consistency of RT predic-
tion between the QSRR Automator and our developed model.

3.3 MRM validation and signal interference diagnosis

According to the fragmentation rules, phospholipids exhibit
two distinct patterns during collision-induced dissociation,
except for lipids with the same sn-1 and sn-2 fatty acyl residues
(Fig. S3†). Fragment ions resulting from this fragmentation
process can be detected when the collision energy reaches a
certain threshold. However, understanding the fragmentation
rules alone is not sufficient. In negative ESI mode, MS/MS-
based identification may be affected by various factors such as
DP, CE, fatty acyl chain length, and unsaturation. To further
evaluate, deuterated standards were created using two MRM
transitions. The extracted ion chromatogram of both MRM
channels showed a strong signal response under optimized
ESI detection conditions with DP, EP, CE, and CXP set at 80,

Fig. 1 Fatty acyl chain length or DB number-based RT predictive modeling of phospholipids. The predictive regression curve of PC (A), PE (B), PG
(C), PI (D), PS (E) and PA (F) in the negative ESI mode. The X represents the total carbon chain length, x represents the relative fatty acyl chain length,
and y represents the relative RT time.
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10, 50, and 15 eV, respectively. This suggests that both MRMs
are accessible for validation in our lipidomics instrumental
setups. Subsequently, a library of 526 phospholipids with 1052
MRM transitions was generated, and de-replication was per-
formed using the AB SCIEX Analyst 1.6.4 software prompts.
Ultimately, a total of 1037 MRMs were listed for further assign-
ment (Tables S4 and 5†).

LC-MS analysis was conducted using sample extracts to
identify peaks, as shown in Fig. 3. The peaks for PC
(18:0_18:3), PE(16:0_20:1), PG(18:0_18:1), PI(18:0_20:5), PS
(16:0_18:1), and PA(18:0_18:2) exhibited significant signal
interference, complicating the lipid annotation process.
However, by comparing peaks and considering predictive RT,
it was possible to accurately identify the correct lipids even
when one channel displayed a single peak and the other was
affected by unknown chemicals.

Moreover, there are two situations that can occur when
annotating lipids with equivalent carbon atoms and degree of
unsaturation. For instance, PC(38:5) can be split into PC
(18:0_20:5) and PC(18:2_20:3) with retention times (RT) of
5.7 min and 5.4 min, respectively (Fig. S4A†). In this scenario,
the two lipids can be automatically separated at baseline.
However, in another case, lipids with the same molecular
formula may not be resolved in chromatography, resulting in
different fatty acyl moieties sharing nearly identical RTs.
Examples of such lipids were PC(18:1_18:3), PC(16:0_20:4),

and PC(18:2_18:2) of PC(36:4) (Fig. S4B†). Unfortunately, this
technical limitation cannot be easily overcome during targeted
lipidomics.

A recent study utilized the combination of hydrophilic
interaction liquid chromatography (HILIC) and trapped ion
mobility spectrometry (TIMS) to address the challenge of deter-
mining the double bond locations in phospholipids and sn-
positions in phosphatidylcholine. This innovative approach
offers a solution for differentiating lipid isomers within the
phospholipidome.36 Despite the presence of remaining chal-
lenges facing the field, the validation of MRMs has proven to
be an effective tool for lipid assignment. This was evident in
the identification of various lipids, such as PC(16:0_18:1), PE
(16:0_18:1), PG(16:0_18:1), PI(18:0_18:1), PS(18:0_18:1), and PA
(16:0_18:1) (Fig. S5†), through robust identification in both
MRM channels.

3.4 Phospholipidomics of sorafenib resistant HCC cell lines

Hepatocellular carcinoma (HCC) is the second leading cause
of cancer-related death worldwide. The first line systemic and
traditional therapies for HCC are sorafenib and lenvatinib.
However, resistance to sorafenib poses a significant challenge
in achieving HCC regression. Previous research has indicated
that dysregulated lipid metabolism is involved in sorafenib re-
sistance. However, the dynamics of phospholipids during
acquired sorafenib resistance and the potential use of special-

Fig. 2 The method evaluation of RT predictive modeling. Total ion chromatography of phospholipids in the negative ESI mode (A), where x rep-
resents the RT (min) and y represents the intensity (cps). Differentiated RT between the predictive and real detective value (B), where x represents the
RT difference value (min) and y represents the accumulated frequency of lipids. The regressive relationship between reference RT and predictive RT
(C), where x represents the reference RT value (min) and y represents the predictive value (min). The distribution of both the mass range and RT from
different subclasses of phospholipids (D). x represents the RT value (min), and y represents m/z.
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ized lipids for predicting treatment sensitivity are still not well
understood. To investigate these persistent issues, we con-
ducted phospholipidomics using our established method in
sorafenib resistant HCC cell lines, specifically MHCC97H and
Hep3B. The overall workflow of building drug resistant cell
lines and the simplified processes of lipidomics are illustrated
in Fig. 4A. Initially, we performed principal component ana-
lysis (PCA) to analyze the data dispersion of each group based
on the lipidomic profile (Fig. 4B and Table S6†). The results
showed no outliers and negligible differences within groups.
However, there was a clear difference in clustering between the
control (C) group and the drug resistance (DR) group in both
cell lines (Fig. 4B). The orthogonal partial least squares-discri-
minant analysis (OPLS-DA) also clustered group C and DR for
either MHCC97H (Fig. 4C) or Hep3B (Fig. 4D). The volcano
plot, which combines the fold change (FC) analysis and
T-tests, allows for the intuitive screening of featured lipids
based on their statistical significance. The data were then pro-
cessed using volcano plot analysis, revealing a set of lipids
such as PG(16:0_16:0), PG(16:0_16:1), PA(16:0_16:0), PA
(16:0_16:1), PI(18:0_22:6), etc., which were found to be more
abundant in the DR group of MHCC97H (Fig. 4E).
Additionally, a majority of PC lipids like PC(18:0_20:4), PC
(16:0_20:4), PC(18:0_20:5), and PC(18:2_20:5) showed consider-
able decay after sorafenib resistance (Fig. 4E). In contrast, the
volcano plot from Hep3B showed a notable accumulation of
PC(18:1_20:4), PC(18:1_22:4), PC(16:0_20:4), PE(18:1_20:4), PE
(18:0_16:0), PE(18:2_22:5), etc., and a significant decrease in

PA(16:0_14:0), PA(16:0_16:0), PA(16:0_18:1), PA(16:0_18:2), etc.
during sorafenib resistance (Fig. 4F).

The distribution of phospholipids was analyzed in cell
extracts, and a total of 307 lipids were detected. Among these,
PE was found to be the most abundant, with a total of 110
lipids, nearly twice the amount compared to PC which had a
total of 59 lipids. The abundance of PG, PI, PS, and PA varied,
with the number of lipids ranging from 23 to 45. When com-
paring the total phospholipid abundance between the control
group (C) and the DR in the MHCC97H cell line, no significant
difference was observed (Fig. 5B). However, a significant
deficiency in phospholipid abundance was observed in the DR
group of the Hep3B cell line. Specifically, when analyzing the
individual subtypes of phospholipids, a decrease in PC and PI
abundance and an increase in PG, PI, and PA abundance were
observed in the DR group of the MHCC97H cell line (Fig. 5C).
In contrast, there was no significant divergence in the abun-
dance of these phospholipid subtypes in the Hep3B cell line
(Fig. 5D). Additionally, the fatty acyl residues in the phospholi-
pids were divided into saturated (SFA), monounsaturated
(MUFA), and polyunsaturated (PUFA) moieties. The degree of
unsaturation in the phospholipids of both DR groups of cell
lines significantly increased, as exemplified by an increase in
MUFA in the MHCC97H cell line (Fig. 5E) and an increase in
PUFA in the Hep3B cell line (Fig. 5F).

To further filter the co-regulated lipids or biomarkers,
OPLS-DA models were used to reanalyze the data from both
cell lines. The VIP values greater than 1 were considered stat-

Fig. 3 MRM validation for phospholipids. TIC of the representative subclass of phospholipids such as PC(18:0_18:3) (A), PE(16:0_20:1) (B), PG
(18:0_18:1) (C), PI(18:0_20:5) (D), PS(16:0_18:1) (E) and PA(18:0_18:2) (F). x represents the RT value (min), and y represents the offset intensity values
(cps).
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istically relevant. This analysis identified 183 lipids with VIP >
1 in MHCC97H cells and 181 lipids with VIP > 1 in Hep3B
cells. There were 109 lipids that were common to both cell
lines (Fig. 6A and Table S7†). Among these 109 lipids, those
with a correlation coefficient (p(cor)) greater than 0.6 or less
than −0.5 were considered to have a positive or negative associ-
ation with the model, respectively. As a result, 29 lipids
(Fig. 6B and Table S8†) were identified as co-upregulated, and
five lipids (Fig. 6C and Table S9†) were identified as co-down-
regulated in both MHCC97H and Hep3B cells.

The shared and unique structures plot (SUS-plot) was used
to correlate the two OPLS-DA models in order to identify
appropriate lipids for discovering biomarkers from sorafenib
resistant cells. The plot confirmed the previous findings,
showing that 29 co-upregulated lipids were located in the first
quadrant of the coordinate, while five co-downregulated lipids
were located in the third quadrant (Fig. 6D). This suggests that
these lipids share common characteristics, with either
increased or decreased abundance. In contrast, the lipids scat-
tered in the second and fourth quadrants exhibit unique fluc-

tuations (Fig. 6D). The p(cor) plot of OPLS-DA analysis from
both cell lines was used to confirm the co-regulated lipids at
specific angles of the curve (Fig. 6E). The overlapping lipid set
from enriched and decreased lipids in both sorafenib resistant
cell lines was then plotted, representing specialized lipid bio-
markers regardless of the cell line (Fig. 6F and G).
Additionally, the fatty acyl moieties in the 29 lipids were re-
analyzed, showing enhanced properties for either SFA, MUFA,
or PUFA in the two sorafenib resistant HCC cell lines (Fig. 6H
and I).

3.5 Clinical lipidomics validation

To validate our findings from in vitro experiments, we reviewed
previous research and unexpectedly came across a study that
analyzed the lipid profiles in plasma samples from 44 HCC
patients before sorafenib therapy. The aim of this study was to
understand the lipid profiles associated with the efficacy and
safety of sorafenib treatment.32 The results of the study indi-
cated that the levels of phosphatidylcholine, specifically PC
(34:2), PC(34:3), PC(35:2), and PC(36:4), were significantly

Fig. 4 Phospholipidomics of sorafenib resistant HCC cell lines. A simplified process of sorafenib resistant cell line construction and lipidomic ana-
lysis (A). PCA analysis of grouped samples (B) as indicated in the graph. OPLS-DA analysis of control and drug resistant MHCC97H (C) and Hep 3B
cell lines (D). Volcano plot of control and drug resistant MHCC97H (E) and Hep3B cell lines (F), where blue stands for downregulated lipids, gray
stands for non-significant lipids and red stands for upregulated lipids.
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lower in the responder group.32 This finding prompted us to
compare the 29 co-upregulated lipids from sorafenib resistant
HCC cell lines with the published data. Interestingly, we found
that seven lipids, including PC(32:1), PC(34:2), PC(36:2), PI
(34:2), PI(36:2), PI(38:4), and PI(40:6), exhibited reduced abun-
dance in drug responders (Fig. 7B), matching the lipids identi-
fied in the plasma samples (Fig. 7A). These results suggest that
these intersected lipids could potentially serve as candidate
biomarkers for predicting the sensitivity of sorafenib
treatment.

4 Discussion

In this study, we proposed a workflow that combines RT pre-
diction with MRM validation for LC-MS based phospholipido-
mics. We used the fatty acyl chain length or DB number and
the second degree polynomial regression to model the RT pre-
diction of six subtypes of phospholipids and five subtypes of
lysophospholipids. The relationship between RT and the
carbon chain length or carbon–carbon double bond was rep-

resented by coefficients k and λ, respectively. These coefficients
facilitated the construction of an RT fit curve with either
varying carbon chain length or unsaturation. We evaluated our
model by comparing the RT values obtained experimentally
with the predicted values, as well as using the QSRR
Automator, which demonstrated the excellent predictive capa-
bility of our model. To validate our model further, we per-
formed sequential MRM validation that integrated the frag-
mentation rule of phospholipids and scheduled MRM. This
validation involved two MRM transitions from different fatty
acyl residues and diagnosed signal interference.

To investigate the phospholipidomics of sorafenib resistant
HCC cell lines, we conducted experiments on two cell lines,
MHCC97H and Hep3B. The analysis revealed the accumu-
lation of unsaturated lipids in both cell lines after acquiring re-
sistance to sorafenib. Previous studies have shown that stear-
oyl-CoA desaturase-1 (SCD1) plays a crucial and rate-limiting
role in the synthesis of MUFA. In line with this, we found that
the expression of SCD1 was significantly upregulated in the
sorafenib resistant PLC/PRF/5 HCC cell line and patient-
derived tumor xenograft (PDTX) model.37 This suggests that

Fig. 5 The dynamics of phospholipids after sorafenib resistance. Different subclass of lipids detected in the method and its fraction (A). The total
phospholipid abundance from MHCC97H and Hep3B (B). The abundance of different subclasses of phospholipids in MHCC97H (C) and Hep3B (D).
The distinct SFA, MUFA and PUFA containing phospholipids from MHCC97H (E) and Hep3B (F).
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Fig. 6 Co-regulated lipid screening. Phospholipids with VIP > 1 from OPLS-DA analysis of both cell lines and their overlapped lipids as shown in the
Venn diagram (A). Phospholipids with p(corr) > 0.6 or <−0.5 from OPLS-DA analysis of MHCC97H (B) and Hep3B (C) and their overlapped lipids as
shown in the Venn diagram. The SUS plot of OPLS-DA analysis from both cell lines (D). The probability curve of lipids linked with their p(corr) coeffi-
cient, M1 and M2 refers to OPLS-DA analysis of MHCC97H and Hep3B cells, respectively (E). The shared upregulated (F and Table S8†) and downre-
gulated (G) phospholipids were sorted out from both cell lines after sorafenib resistance. The accumulated abundance of SFA, MUFA, and PUFA con-
taining co-upregulated phospholipids from MHCC97H (H) and Hep3B cells (I).

Fig. 7 Lipid biomarker validation from an independent data set. The co-upregulated phospholipids from this study and a previous study with
PMID:300062555 and intersected lipids are shown in the Venn diagram (A). The abundance of the co-existing lipids was re-analyzed in three
different groups (B) as shown in the graph. PD: progressive disease. PR: partial response, and SD: stable disease.
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SCD1 may also have a similar role in our sorafenib resistant
cell lines, as we detected an increase in the abundance of
MUFA or PUFA. Moreover, the inhibition of SCD1 was found to
mitigate the sorafenib sensitivity in HCC,37 indicating a poten-
tial combinatorial strategy of targeting SCD1 along with sorafe-
nib to combat HCC. Our in vitro experiments provided further
support for these findings.

In our study, we discovered that 29 co-upregulated and 5 co-
downregulated lipids were found in both models of the
OPLS-DA or SUS plot. These lipids were evaluated from an
external lipidomic dataset obtained from the plasma of sorafe-
nib pretreatment HCC patients,32 with the aim of predicting
sorafenib sensitivity. Out of these, seven lipids were found to
have reduced abundance in drug responders, which aligns
with our observation that these lipids were present in higher
concentrations in sorafenib resistant cells. This finding sup-
ports the potential use of these lipids as biomarkers for pre-
dicting sorafenib sensitivity. However, the underlying mecha-
nisms behind the increased abundance of these lipids and
how they can be manipulated to enhance the killing effect of
sorafenib are still largely unknown. Our results provide valu-
able insights into the lipid phenotype and may contribute to
developing strategies to overcome sorafenib resistance in HCC.

However, our proposed RT prediction modeling may also
have some drawbacks, such as overfitting and limited coverage
of metabolites, like metabolomics. Regarding overfitting, we
quantified the difference in RT between in silico and experi-
mental parameters, and found that the largest gap in RT was
less than 0.5 min. This value was considered acceptable,
especially when MRM validation was taken into account. To
improve the accuracy of RT prediction, we also explored the
use of iterative data to train the model, since the availability of
deuterated or authentic standards was limited. However, our
efforts were hindered by the inconsistent criteria used by
different labs. Additionally, the inclusion of a comprehensive
library of metabolites and corresponding standards would
undoubtedly enhance the training and prediction capabilities
of RT. Furthermore, the use of machine learning algorithms,
based on theoretical calculations using chemical structure for-
mulas like SMILE, has significantly accelerated the fidelity of
RT prediction and the discovery of novel compounds. Our
model simplifies the predictive process and demonstrates
good performance in RT prediction, making it a viable strategy
for customized phospholipidomics.

The understanding of lipid fragmentation rules is still
incomplete, and the identification of lipids using MRM is
complicated by the interference of multiple signals at different
sample contexts in lipidomics. This interference affects lipid
assignment in various ways. In the case of phospholipids,
there are two fatty acyl residues located either at the sn-1 or sn-
2 position of the glycerol backbone, resulting in the need for
two MRM transitions for target identification. This leads to the
generation of nearly a thousand ion pairs in one setting, which
increases the cycle time, decreases data acquisition, and
results in poorer peak shapes. To address this issue, scheduled
MRMs were employed instead of using a constant dwell time.

By incorporating one additional MRM transition in LC-MS
analysis, the peak annotation was corrected, and the confi-
dence in lipid identification was improved. It is important to
note that the multiplex information of lipids, which depends
on their own fragmentation pattern, cannot be easily trans-
ferred to other classes of lipids.

Overall, this study demonstrates the application of the fatty
acyl chain length or DB number as a model for developing a
lipidomics library. Using MRM validation in conjunction with
this workflow, it significantly strengthened confidence in tar-
geted lipidomics and provided comprehensive coverage of the
phospholipidome. Furthermore, the study generated RTs for
526 lipids by selecting a limited number of deuterated or auth-
entic standards. The determination of RTs greatly accelerated
scheduled MRM for high throughput analysis, with a differ-
ence of less than 0.5 minutes between measured and predicted
RT values. As a result, the utility of this workflow was demon-
strated in sorafenib resistant HCC cell lines, we found an
increase in MUFA or PUFA in sorafenib-resistant cells, with
seven co-upregulated lipids being identified and validated
using an independent data set. This workflow will be poten-
tially applied for RT prediction and lipid biomarker identifi-
cation in diseases.
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