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of RRAM with computing-in-memory

Chenyu Wang,a Ge Shi, a Fei Qiao, b Rubin Lin,a Shien Wua and Zenan Hua

The development of new technologies has led to an explosion of data, while the computation ability of

traditional computers is approaching its upper limit. The dominant system architecture is the von

Neumann architecture, with the processing and storage units working independently. The data migrate

between them via buses, reducing computing speed and increasing energy loss. Research is underway

to increase computing power, such as developing new chips and adopting new system architectures.

Computing-in-memory (CIM) technology allows data to be computed directly on the memory, changing

the current computation-centric architecture and designing a new storage-centric architecture. Resistive

random access memory (RRAM) is one of the advanced memories which has appeared in recent years.

RRAM can change its resistance with electrical signals at both ends, and the state will be preserved after

power-down. It has potential in logic computing, neural networks, brain-like computing, and fused

technology of sense-storage-computing. These advanced technologies promise to break the

performance bottleneck of traditional architectures and dramatically increase computing power. This

paper introduces the basic concepts of computing-in-memory technology and the principle and

applications of RRAM and finally gives a conclusion about these new technologies.
1 Introduction

Scientic research and social life bring vast amounts of data.
Researchers are constantly upgrading computing power to cope
with large amounts of information processing tasks. Within the
constraints of the von Neumann architecture, the dominant
approach to increase the overall system speed is to increase the
performance of chips. As semiconductor processing is
approaching physical limits, Moore's Law is about to expire.1,2

The number of transistors per unit area of a chip will no longer
increase signicantly. The storage wall and power wall created
by data migration have also limited the performance of
computers. There has not been an order-of-magnitude increase
in computing power.

Computing-in-memory technology integrates computing
and storage capabilities into a single unit. Data need not
migrate between the processor and memory. The technology
breaks the bottleneck of traditional computer architecture,
which is considered a signicant development trend for future
breakthroughs in computing power.3 W. H. Kautz4 of the Stan-
ford Research Institute rst proposed the concept of
computing-in-memory in the 1970s but was unable to imple-
ment it due to technical constraints. Early computing-in-
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memory solutions were usually based on mature CMOS
processes. The research is focused on the existing memory cell
circuits, including static random access memory (SRAM),
dynamic random access memory (DRAM), and Flash.5 The
technology can make logic operations, and the performance
and cost of the device are reduced compared with those of the
conventional component. However, with the advent of new non-
volatile memories and the progress of semiconductor process-
ing, computing-in-memory technology has been further
developed.

Advanced storage technologies include resistive storage,
ferroelectric storage,6 phase change storage,7,8 and magnetic
storage.9 Resistive storage is a current research hotspot. The
simple structure, high integration, low power consumption,
and high speed make it one of the advantageous candidates for
next-generation non-volatile memory. In 1971, the concept of
memristors was rst proposed by Professor Chua10 at the
University of California, Berkeley. It was not until 2008 that
a prototype of the memristor was successfully prepared by
Hewlett-Packard Laboratories.11 In the time that follows,
research studies focus on mathematical models,12 resistance
mechanisms,13,14 across-array structures, preparation process-
ing,15 and fabrication materials.16,17 The memristor used in
memory applications is called resistive random-access memory
(RRAM). It is considered the key to breaking through AI arith-
metic and big data, to meet high-speed computing and also to
meet low-precision, high-speed computing needs raised by IoT
and neural network computing. The computing-in-memory
Nanoscale Adv., 2023, 5, 1559–1573 | 1559
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structure is expected to replace von Neumann architecture
chips in many elds in the future.18

2 Computing-in-memory technology

The von Neumann architecture is characterized by the fact that the
processing and storage units are independent, and the two are
connected via a bus. However, traditional architecture has
encountered some problems. On the one hand, data migration
across the bus consumesmuch energy. The cost of multiplying the
two numbers is several orders of magnitude lower than that of
accessing them frommemory, creating a power wall.19On the other
hand, the difference in performance development between the two
presents a storage wall. Processor performance increased by 50%
per year compared to 7% per year for memory. The difference in
data processing speed has become approximately 250 times greater
than that in memory processing speed, as shown in Fig. 1.20 The
mismatch between the processor and memory results in slow
Fig. 2 The development of the computing structure.21 (a) von Neumann a
memory structure.

Fig. 1 Processor-memory performance gap.

1560 | Nanoscale Adv., 2023, 5, 1559–1573
processing and wasted resources. In addition, the performance of
a chip depends on the number of transistors. However, due to the
physical limits of semiconductor processes, the size of the tran-
sistor reaches its limit. As the size of the device shrinks, the
quantum and short-channel effects of the devices become
increasingly severe. Overly dense transistors make heat dissipation
more severe, and the power consumption of chips cannot be
effectively reduced. These problems not only limit the performance
of the chip but also have an impact on the accuracy and endurance
of the calculations. People are desperate for new solutions.

The concept of computing-in-memory was developed in the
last century, but the technology has not received much atten-
tion. The integration of computing power and storage units is
costly and technically challenging. Integrated circuits are
evolving at a rapid pace under Moore's Law. The needs of data
processing are far from its limits. However, with the increased
data volume and new demands for computing speed and
accuracy, computing-in-memory technology is back in the
rchitecture. (b) Near-memory computing structure. (c) Computing-in-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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spotlight. Computing-in-memory technology breaks through
the traditional computing architecture, eliminating the need for
a separate computing unit to process the data. The technology
can be divided into charge-based and resistor-based storage
technologies. Most of the charge-based storage technology is
based on adding a computational circuit to a conventional
memory cell, as shown in Fig. 2(b). For example, the SRAM
memory cell is the central cell in a CMOS-based memory circuit.
Simple logic circuits can be implemented by designing simple
peripheral circuits, and efficient neural network training can
also be achieved by SRAM across-array design. Resistor-based
storage technologies use memory as the core of integrated
circuits. The initial data for the system are the resistance values
of the resistor cells, while the input data come from external
electrical signals. The resistance value of each cell represents
the nal calculation result. Resistor-based circuits mainly use
new non-volatile memories, such as RRAM, PCM, and FRAM.
Advanced memory combined with an across-array structure
enables complex computations such as vector-matrix multipli-
cation, greatly accelerating computation speed and reducing
operational power consumption. Resistor-based storage tech-
nologies will be described in detail below.
3 RRAM
3.1 Memristor

In 1971, Professor Chua10,22 of the University of California at
Berwick introduced the memristor concept and then extended
its denition. He considered that a memristor is the fourth
fundamental circuit element in addition to resistance, capaci-
tance, and inductance. The memristor complements the gap in
the fundamental circuit relationship between charge and ux.
Its mathematical model is represented by the ratio of magnetic
ux to charge. The memristor resistance is numerically equal to
the ratio of the voltage applied to memory terminals at a given
moment to the current owing through it. In practice, however,
the value of a memristor is determined by the necessary amount
of current or ux owing through the memristor over time,
which is a non-linear resistive element with memory
characteristics.23

The prevailing explanation for the resistive principle of the
memristor is the wire lamentary resistive switching mecha-
nism. The wire lament mechanism assumes that the resis-
tance change of the device corresponds to the formation and
Fig. 3 The wire filament mechanism. (a) Initial resistance state (IRS). (b)

© 2023 The Author(s). Published by the Royal Society of Chemistry
rupture of wire laments within the material.24 In most cases,
a freshly prepared memristor usually exhibits fewer defects and
shows an initial resistance state (IRS), as shown in Fig. 3(a).
When a positive voltage is applied to the device, the conductive
defects in the resistive layer are connected to form conductive
laments. The device's conductivity is enhanced, showing a low
resistance state (LRS), as shown in Fig. 3(b). When a negative
voltage is applied to the device, the conductive laments break,
and the device's conductivity is reduced, resulting in a high
resistance state (HRS), as shown in Fig. 3(c). Some of the
memristors even have intermediate resistance levels or more
resistance levels.

Researchers used the resistive properties of resistors to
implement the calculation function. The memristor used in
memory applications is called resistive random-access memory
(RRAM). RRAM has high speed, high durability and multi-bit
storage capability. It meets the development requirements of
high capacity, high read and write times, faster read and write
speeds, and lower power consumption. RRAM is expected to
replace traditional storage devices to achieve a big boost in
computing power.
3.2 Structure of RRAM

The basic structure of a memristor is a sandwich structure
consisting of upper and lower metal electrodes and an inter-
mediate insulator resistive layer. RRAM is constructed as an
across-array structure to improve integration. Realization of
high-density and reliable RRAM is crucial toward development
of next-generation information storage and computing. The
structure can be divided into active and passive arrays. In the
active array, the RRAM forms an array with eld effect tubes.
The transistors control the reading, writing and erasing of
resistive elements and can effectively isolate adjacent cells from
interference. However, the active array design is complex and
not conducive to integration. In passive arrays, each memory
cell is dened by upper and lower electrodes formed by inter-
secting word and bit lines, as shown in Fig. 4(a). Passive arrays
are used in most high-density RRAM arrays, and passive arrays
are more conducive to the three-dimensional (3D) integration of
the chip.

The across-array structure of RRAM is one of the bases of its
fast calculations and responsible calculations. Employing a 3D
structure can make resource-expensive tasks into a manageable
size and provides substantial improvement to the speed and
Low resistance state (LRS). (c) High resistance state (HRS).

Nanoscale Adv., 2023, 5, 1559–1573 | 1561
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Fig. 4 RRAM across-array architecture and scaling.25 (a) RRAM across-array structure with a single memory layer. (b) Horizontal stacked 3D
across-array structure. (c) Vertical 3D across-array structure.

Nanoscale Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

3.
11

.2
02

5 
16

:5
8:

08
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
energy efficiency while running complex neural network
models. A broad range of applications can be envisioned with
further optimizations in the device performance and more
carefully designed on-chip peripheral analogue circuitry, even
though the current 3D design might not be the most scalable
architecture compared to its two-dimensional (2D) counterpart.
According to the stacking form, 3D RRAM can be divided into
a horizontal stacked 3D across-array structure (HRRAM) and
vertical 3D across-array structure (VRRAM). HRRAM is
composed of multilayer planar two-dimensional RRAM
Fig. 5 Different forms of RRAM. (a) 3D-HRRAM: a 3D memristor array w
The fabrication flows of a single 2D material based vertical RRAM. (c) Hig
integrated memristor circuits. (e and f): Flexible RRAM. (e) Flexible RRAM
devices based on polychord-para-xylylene. (g) 3D flexible RRAM artificia

1562 | Nanoscale Adv., 2023, 5, 1559–1573
superimposed by the fabrication process, as shown in Fig. 4(b).
VRRAM is made by rotating the conventional horizontal across-
array structure by 90° and extending it repeatedly in the hori-
zontal direction, as shown in Fig. 4(c).

Three-dimensional fabrication technology not only increases
the integration of the chip and greatly reduces the chip area, but
also increases the computing speed and brings newer applica-
tions. However, making 3D chips is still a very difficult process,
and only a few labs can make them. In 2022, Tang et al.26

fabricated a RRAM across-array using MoS2 and then
ith buried metal interconnects and logic circuits. (b–d): 3D-VRRAM. (b)
h-precision CIM scheme based on MLSS 3D VRRAM. (d) 3D monolithic
crossbar arrays with a Ti/PPX-C/Cu structure. (f) The flexible memory
l synaptic network using a low-temperature atomic layer.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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implemented a single three-dimensional RRAM cube by over-
laying two-dimensional MoS2 layers, as shown in Fig. 5(a). This
work paves the way algorithmically for the implementation of
two memristors in high density neuromorphic computing
systems. In the process, it is possible to integrate the prepared
2D RRAM into 3D successfully. However, 3D-HRRAM requires
critical lithography and other processes for each stacked layer,
and this overhead manufacturing cost increases linearly with
the number of stacks. The three-dimensional vertical structure
occupies a smaller area in the integrated array of the same
number of devices and is suitable for large-scale operations.
Huang et al.27 proposed a vertical architecture of RRAM design,
Fig. 6 Computing-in-memory realized by RRAM. (a) IMPLY logic and (b
logic circuit schematic. (d and e): MAGIC logic computation. (d) MAGIC
method. (f–i): Complex computation. (f) Across-array circuits for cases be
bit adder circuit with parasitic elements based on RRAM. (i) Digital full ad

© 2023 The Author(s). Published by the Royal Society of Chemistry
as shown in Fig. 5(b). The RRAM is composed of graphene plane
electrode/multilayer hexagonal boron oxide (h-BN) insulating
dielectric stacked layers, AlOx/TiOx, a resistive switching layer
and an ITO pillar electrode that exhibits reliable device perfor-
mance. The vertical three-dimensional structure combining the
graphene plane electrode with a multilayer h-BN insulating
dielectric can pave the way toward a new area of ultra-high-
density memory integration in the future. Q. Huo et al.28 re-
ported a two-kilobit non-volatile CIM macro based on an eight-
layer 3D VRRAM, as shown in Fig. 5(c). The chip is fabricated
using a 55 nm complementary metal-oxide-semiconductor
process. Scaling such systems to three-dimensional arrays
) NAND logic proposed by HP LABS. (c) The multi-functional boolean
two-put OR gates and (e) NAND/NOR gates using the convert VTM
yond the constraints. (g) Memristor-based quinary half adder. (h) Two-
der based on RRAM.

Nanoscale Adv., 2023, 5, 1559–1573 | 1563
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could provide higher parallelism, capacity and density for
necessary vector–matrix multiplication operations. Lin et al.29

successfully constructed an eight-layer array, as shown in
Fig. 6(d). The 3D array was fabricated on top of a silicon wafer
with a 100 nm thick thermally grown oxide layer. Researchers
programmed parallelly operated kernels into the prepared
RRAM, implemented a convolutional neural network and ach-
ieved soware-comparable accuracy in recognizing handwritten
digits.

In addition, RRAM, made of exible materials for particular
application scenarios, is also a hot topic. Kim et al.30 used PPXC
as a resistive switching layer and substrate to fabricate RRAM
exible across-arrays, as shown in Fig. 5(e). Researchers applied
them to neuromorphic accelerated computing to test their
performance with high electrical conductivity and durability.
Huang et al.31 proposed a kind of single-component polymer
RRAM based on polychord-para-xylylene, as shown in Fig. 6(f).
The device has excellent chemical stability and high CMOS
process compatibility as well as further reduced operation
current. Wang et al.32 successfully prepared a 3-layer exible
RRAM array by a low-temperature atomic layer deposition
technique to achieve high-density binary storage function and
multi-bit storage in a single device, as shown in Fig. 5(g).
Preparing exible devices opens up new possibilities for future
high-density, high-performance wearable applications.

A RRAM across-array can greatly compress the chip volume
and improve the computing efficiency and computing volume.
But the problem is also obvious: chip design and preparation
processes are difficult, every application needs to be custom-
ized, there is still a lot of room for development and there are
still unresolved problems.

(a) When writing and programming, current inevitably
passes through other resistive cells. Leakage current can inter-
fere with the accuracy of the information read when adding
unnecessary power consumption.

(b) Due to the fabrication process, the ion movement pattern
inside the device is somewhat random and not perfectly
uniform for each resist-variable cell.33

(c) When the device is operating, thermal crosstalk affects
the change in the resistance state of the surrounding resistive
cells—leading to inaccurate calculations. The effect of thermal
crosstalk even increases with increasing density.
4 Applications

RRAM is considered one of the outstanding candidates for
emerging storage technologies. It has low power consumption,
high speed computing, high density and non-volatile data
storage capability. RRAM has been applied in logic computing,
neural networks, brain-like computing, and fused technology of
sense-storage-computing.
4.1 Computing-in-memory

The simplest application is logic operations; the current appli-
cation of logic circuits implemented logic gate operations using
resistive cells instead of traditional transistors. HP LABS34 rst
1564 | Nanoscale Adv., 2023, 5, 1559–1573
prepared a physical model of RRAM in 2008 and implemented
IMPLY logic operations. The primary logic cell and truth table
are shown in Fig. 6(a). IMPLY and NOT logic can form
a complete logic set to complete all 16 logics. However, it is not
a beautiful operation, which destructs the input method
because the nal output of the implied logic overwrites the
original input value. Implementing other logic using IMPLY
logic also requires more steps, which is less efficient. Then, HP
LABS also proposed the 3M1R structure, as shown in Fig. 6(b). It
is an improvement to IMPLY, whose basic logic unit consists of
three resistive cells and a voltage divider resistor. The high
resistance state represents logic “1” and the low resistance state
represents logic “0”, where P andQ represent the input variables
and S represents the output variables. Based on the research
from HP LABS, more complex logic operations can be obtained
using RRAM. Dong et al.35 combined multiple logic resistors in
a single circuit to implement logic operations, as shown in
Fig. 6(c), which offers the possibility of implementing advanced
computing architectures. The study implements two-input or
multi-input AND, OR, NOR, and NAND operations and single-
input copy and NOT operations. In each logic gate, the circuit
uses non-volatile resistors of the RRAM as input and output
states, thus enabling stateful logic operations. In contrast to
several existing methods, this method generates a versatile state
logic circuit that can perform multiple state logic operations
simultaneously.

In addition to the structure proposed by HP LABS,
researchers connected RRAM in series and parallel. S. Kvatinsky
et al.36 proposed a memristor-aided logic (MAGIC) circuit that
uses resistive values as logical state variables, as shown in
Fig. 6(d). Under applied voltage control, the ve essential logic
functions can be achieved by connecting the RRAM in series
and parallel. This design approach allows the results of logic
calculations to be stored in a separate resistive cell, avoiding the
problem of data overwriting arising in IMPLY logic operation. F.
Mozafari et al.37 proposed a new memristor-based NAND/NOR
logic gate with a similar structure for general-purpose logic
gates requiring two different input voltages. The structure
consists of two input amnesia resistors and one output amnesia
resistor, as shown in Fig. 6(e). RRAM-based logic calculations
can reduce the computational complexity of the problem, as
well as reduce the amount of data being accessed by performing
the calculations within the across-array.

In recent years, the improvement of the technological level
and the progress of materials research have enabled the
successful preparation of larger RRAM matrices and the reali-
zation of more and more complex functions. Cui et al.38

proposed a family of NMOS-like RRAM gates. All gates are array
implementable, and the gate family logic is complete. NOR,
AND and NOR gates consume only one cycle during the
computation phase. The gate circuit saves half the number of
RRAM devices compared to its CMOS-based counterpart. By
using RRAN gates and across-array structures, complex logic
operations can be realized, as shown in Fig. 6(f). A. H. Fouad
et al.39 proposed a multi-valued logic adder, as shown in
Fig. 6(g). The study discussed the possibility of extending
a three-valued adder circuit to a multi-valued logic adder
© 2023 The Author(s). Published by the Royal Society of Chemistry
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theoretically. By exploiting the properties and dynamics of
RRAM, the circuit achieved the advantages of handling different
numbering systems, increasing density, and reducing process-
ing time. Siemon et al.40 proposed a multi-input memristive
switch logic, as shown in Fig. 6(h). This work enabled the
function X OR (Y NOR Z) to be performed in a single step with
three memristive switches. This OR/NOR logic gate increases
the capabilities of memristive switches, improving the overall
system efficiency of a memristive switch-based computing
architecture. N. Taherinejad et al.41 present a new architecture
for a digital full adder, as shown in Fig. 6(i). The circuit is faster
than existing IMPLY-based serial designs while requiring less
area compared to the existing parallel design.

In the latest studies, researchers hope not only to implement
logical operations, but also to implement complex mathemat-
ical analysis in RRAM across-arrays. Tian et al.42 realized
a hardware Markov chain algorithm in a single device for
machine learning. M. Teimoory et al.43 designed a 2 × 2
multiplier circuit, as shown in Fig. 7(a). The circuit requires only
sixteen resistive cells, eight transistors, and only one calculation
time step for the multiplication operation, which is of low cost.
B. Chakrabarti et al.44 demonstrated vertical monolithic
Fig. 7 Complex mathematical formulas realized by RRAM. (a) Logic desig
cross-sectional schematic of a single memristor. (c) Schematic of the ex
h-BN RRAM arrays. (d) Flow diagram for stochastic multivariable linear re
time-domain adder and winning class logic. (f) System architecture show
functional sub-blocks.

© 2023 The Author(s). Published by the Royal Society of Chemistry
integration of 3D RRAM crossbars on a foundry-processed 5 × 5
CMOS chip. The chip can realize dot-product operation, which
is the rst application of functional 3D CMOL hybrid circuits.
Xie et al.45 used h-BN RRAM across-arrays to demonstrate the
hardware implementation of dot product operation and the
linear regression algorithm, as shown in Fig. 7(b)–(d). Y. Hala-
wani et al.46 proposed an XNOR-based RRAM content address-
able memory (CAM) with an analog time-domain adder
function for efficient winning class computation, as shown in
Fig. 7(e). The chip had 31 times less area and about three times
less energy consumption than state-of-the-art RRAM designs. P.
Kumar et al.47 used h-BN as an electrolyte to implement the
fabrication of an across-array RRAM, as shown in Fig. 7(f), and
combined it with CMOS circuits to implement extreme learning
machine algorithms. With CMOS, circuits implement the
encoder unit and RRAM arrays implement the decoder unit. The
hybrid architecture performs well on complex audio, image and
non-linear classication tasks with real-time data sets.

These studies are of great signicance for further imple-
mentation of neuromorphic computing and machine learning
hardware based on RRAM across-arrays. The compatibility of
the above design with CMOS technology provides a new way for
n of the 2 × 2 multiplier. (b) Schematic of Au/h-BN/Ti RRAM arrays and
perimental setup for demonstration of basic dot-product operation on
gression. (e) Circuit designs of the proposed RRAM-based CAM, analog
ing a CMOS encoder chip and memristor decoder chip along with its
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the development of digital logic circuits. Introduction of RRAM
was presented as a solution to the fundamental limitations of
VLSI systems.
4.2 Neural networks and brain-like computing

In recent years, RRAM has been widely used in neural
morphological networks. Articial neural networks and all their
variants are the primary tools for machine learning tasks. The
continuous production of large amounts of data makes it
possible to train and operate articial neural networks
successfully. However, in order to achieve high inference
accuracy, neural networks usually require a large number of
parameters. The traditional structure of memory and
computing points makes the whole stage consume a lot of time
and energy but using RRAM to build neural networks is ex-
pected to solve this problem. RRAM has resistive properties and
is similar to synapses in neural networks, so the neural network
hardware and a neural network model based on RRAM have
intrinsic consistency. A single device can be used as a synapse
and can integrate storage and operation. A RRAM-based neural
network integrates computing and storage closely, eliminating
Fig. 8 Perceptron network based on RRAM. (a–c): Single-layer perceptro
pattern set. (c) 12 × 12 RRAM across-array circuit. (d–f): Multilayer perc
combined with the CMOS process. (e) 64 × 64 RRAM passive across-arra

1566 | Nanoscale Adv., 2023, 5, 1559–1573
data transmission between the processor and memory, thus
improving the overall system performance and saving most
system energy consumption. RRAM is well compatible with
CMOS processes and can be scaled up on a large scale through
cross-array structures. Through CMOS processes, functional
circuits are added to the periphery of RRAM, so that the system
can complete the calculation of a matrix in one operation, thus
playing an important role in high dimensional computation.

The perceptron model is an early neural network algorithm.
In the calculation process of the perceptron neural network,
matrix vector multiplication between the input information
vector and weight matrix consumes a lot of computing
resources. However, using RRAM across-arrays to realize matrix
vector multiplication in parallel in one step can greatly reduce
the energy consumption of the hardware neural network. The
RRAM across-array is used to store the synaptic weight matrix,
and the conductance at each crossing is used to represent the
weight value of a synaptic connection. MNIST image classi-
cation is modeled using a single-layer perceptron that is not in
situ trained and a large-scale multi-layer perceptron classier
based on a more advanced conductance tuning algorithm. M.
n network. (a) Top-level description of the network. (b) The used input
eptron network. (d) Double layer 20 × 20 RRAM across-array circuit
y circuit. (f) Programming Einstein image to (e) with a 5% relative error.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Prezioso et al.48 rst produced an across-array of RRAMs for
neural network computing. Researchers used a 12 × 12 RRAM
across-array to form a single-layer perceptron network to
recognize and classify black and white letters in 3 × 3 pixels, as
shown in Fig. 8(a). F. M. Bayat et al.49 produced two 20 × 20
RRAM across-array, as shown in Fig. 8(d), and integrated them
with discrete CMOS components on two printed circuit boards
to implement a multilayer perceptron (MLP) neural network.
The MLP network has 16 inputs, 10 hidden layer neurons, and 4
outputs, enough to classify 4 × 4 pixel black and white patterns
into 4 categories. Then, more complex array structures were
proposed based on previous research to realize much more
complex computing. H. Kim et al.50 developed a 64 × 64 passive
crossbar circuits with almost 99% working cross point metal-
oxide memristors based on the foundry-compatible fabrica-
tion process. The circuit has a relatively average error of <4%
when programming 4 K grey-scale patterns and an error of
nearly 1%. It is an essential step towards realizing a human
brain-scale integrated neuromorphic system.

The convolutional neural network (CNN) reduces the
dimensions by convolutional operation, reduces parameter
complexity, simplies complex problems before processing,
and greatly reduces the calculation cost. The convolutional
neural network based on memristor cross arrays mainly
consists of two parts: the convolutional operation part and the
fully connected layer part. On the one hand, the memristor
array can store convolution kernels and complete the matrix
vector multiplication of input information and convolution
kernels in one step, which greatly improves the computational
efficiency. On the other hand, the fully connected layer part of
a convolutional neural network is a multi-layer perceptron,
which can also be realized in parallel by using the memristor
cross array as mentioned above. However, CNNs have not yet
fully implemented hardware via a RRAM across-array. P. Yao
et al.51 implemented complete hardware for convolutional
networks based on RRAM array chips. The team used eight
arrays with 2048 RRAM to implement a ve-layer convolutional
neural network. The chip was two orders of magnitude more
energy efficient than an image processor (GPU) in processing
convolutional neural networks by comparison with conven-
tional neural network computation.
Fig. 9 Stochastic neural networks.52 (a) Stochastic dot-product circuit
Boltzmannmachine. (c) A bipartite graph of the considered RBM network
a 20 × 20 across-array).

© 2023 The Author(s). Published by the Royal Society of Chemistry
Stochastic neural networks introduce random changes into
neural networks, one is to assign transfer functions of the
stochastic process among neurons and the other is to assign
random weights to neurons. This makes stochastic neural
networks very useful in optimization problems, because
random transformations avoid local optimality. The key oper-
ation in stochastic neural networks is the random dot product,
which has become the latest method to solve the problems of
machine learning, information theory and statistics. Although
there have been many demonstrations of dot product circuits
and random neurons, there is still a lack of efficient hardware
implementation combining these two functions. M. R. Mah-
moodi et al.52 proposed versatile stochastic dot product circuits
based on nonvolatile memories for high performance neuro-
computing and neuro-optimization, as shown in Fig. 9. F.
Zahari et al.53 proposed an analogue pattern recognition with
stochastic switching binary CMOS-integrated RRAM.
Researchers prepared a random binary RRAM device based on
a polycrystalline HfO and have produced soware neurons.
Based on this, a random neural network is used for image
recognition. The convergence rate of this new learning algo-
rithm is very fast, which may signicantly reduce the power
consumption of the system. This study has potential applica-
tions in stochastic neural networks to solve MNIST pattern
recognition tasks.

Reservoir computing (RC) is a concept developed from
recursive neural networks (RNNs) that has recently been
successfully used to implement a wide range of tasks, such as
image model recognition, time series prediction, and pattern
generation. Researchers have successfully used memristors for
this purpose as well. Fig. 10 shows the concept of a memristor-
based RC system. The spikes collected from ring neurons are
used directly as inputs to an excitation memristor. The reposi-
tory space is further extended with the concept of virtual nodes
to help handle complex time inputs. A simple neural network is
used as the reservoir's readout layer to produce the nal output.
In 2020, Lu et al.54 looked at reserve pool arithmetic.
Researchers demonstrate a RC system based on RRAM, whose
states reect the temporal characteristics of nerve peak
sequences, successfully used to identify neural ring patterns,
monitor the conversion of ring patterns, and identify neural
and its applications in neurocomputing. (b) RRAM-based restricted
and its implementation (the red rectangle highlights the utilized area of
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Fig. 10 Schematic showing the concept of a memristor-based RC system for neural activity analysis.
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synchronization states between different neurons. This work
makes it possible to realize efficient neural network signal
analysis with high spatial and temporal accuracy. In addition,
researchers made a RRAM across-array based on WOx. They
used a circuit to form an array to recognize digits and increased
the noise, proving the anti-interference and stability of the
system's recognition, and expanded to a small reserve pool
composed of 88 memristors for handwritten digit recognition.
X. Liang et al.55 also applied RRAM to reservoir computing, an
articial neural network for efficient processing of temporal
signals, with the potential to have a signicant impact in the
eld of brain-like computing.

On the basis of the development of neural networks, the
concept of brain-like computing has been put forward. From an
Fig. 11 Brain-like computing. (a) Neural network operations using RRAM
nerve.

1568 | Nanoscale Adv., 2023, 5, 1559–1573
information technology perspective, researchers have
abstracted the way decisions are made in the human brain.
They connected it through multi-layered articial neural
networks to create a non-linear, adaptive computing model for
information processing. Wu et al.56 have been focusing on
research on brain-like computing for a long time and have
described the RRAM-based brain-like circuit in detail, as shown
in Fig. 11(a). By introducing articial dendritic computational
units with rich dynamic properties, the team constructed
a novel articial neural network,57 signicantly reducing system
power consumption while improving computational network
accuracy. Compared to traditional processes, the new system
has a 30 times reduction in dynamic power consumption, an
8% increase in accuracy, and an overall system power
implementation. (b) Biological afferent nerve vs. the artificial afferent

© 2023 The Author(s). Published by the Royal Society of Chemistry
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consumption downgraded by three orders of magnitude. Z. Wu
et al.58 built an articial sensory neural system implementation
scheme with habituation properties based on RRAM, as shown
in Fig. 11(b). The system used habituation as a biological
learning rule to build a habituated impulse neural network that
can be applied to robot autonomous cruising obstacle avoid-
ance. The neural network can be used to implement robot
obstacle avoidance functions and effectively improve robot
obstacle avoidance efficiency.

The application of RRAM-based neural networks is an
indispensable research direction in neuromorphic computing.
As a new type of synaptic device, the memristor realizes the
hardware mapping of the synaptic weight well by means of
multivalue modulation under pulse and can store the synaptic
weight matrix and realize in situ calculations. The parallel
matrix multiplication and addition capability of the across-
array structure of RRAM realizes the acceleration of neural
network computing and provides a solution for constructing
a new computing architecture.
Fig. 12 Fused technology of sense-storage-computing. (a) Schematic str
Three-dimensional schematic of the investigated optically readable pla
localization application with CMOS circuits. (e) A conceptual diagram of a
across-array acts as synapses to deal with binaural sound signals. (f) The
arrays and ECG electrode mounted onto the wrist. (h) Structure of a me

© 2023 The Author(s). Published by the Royal Society of Chemistry
4.3 Fused technology of sense-storage-computing

The human nervous system senses the physical world in an
analogue but efficient way. Researchers have been working on
using hardware to simulate human perceptual systems. Sensors
take signals such as light, pressure and sound and convert them
into electrical signals. The processor is used to analyze electrical
signals and simulate human sensory systems. However, tradi-
tional computing platform analysis speed is slow and precision
is not high. As a new type of memory, RRAM can be made of
materials that are sensitive to peripheral signals and can itself
be used as a sensor. In addition, RRAM can combine micro-
sensors with neural network computing. The sense-storage-
computing fusion technology based on RRAM brings a new
research direction for bionics technology.

Visual perception is made by using the effect of light signals
on RRAM or using the RRAM across-array as a processing
circuit, which can currently be used to identify numbers and
test light intensity. Emboras et al.59 rst discovered the change
ucture of ORRAM. (b) Schematic structure of an 8× 8 ORRAM array. (c)
smonic RRAM.59 (d) The common implementation scheme for sound
memristor-based neuromorphic sound localization system. The RRAM
conceptual diagram of haptic memory. (g) Image for 7 × 7 SS-RRAM
mristor for gas sensing applications.
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in light signal transmission in the waveguide during trans-
formation, which laid the foundation for visual perception
based on RRAM. Zhou et al.60 prepared a photo-resistive
memory, as shown in Fig. 12(a) and (b). The component can
convert light signals into electrical signals and store the data
briey. In conjunction with developments in neural networks,
researchers used RRAM as a synaptic node to enable more
advanced visual processing. Lorenzi et al.61 used an RRAM array
to recognize a 5 × 5 pixel binary picture. Sarkar et al.62 used an
RRAM-based neuromorphic circuit system and trained and
tested the system to successfully recognize basic Arabic
numerals. Not only digital numbers, but also visual recognition
of infrared, low light and images are currently being
investigated.

In terms of sound localization, researchers have localized the
location of sound sources based on the theory of interaural time
difference, where the time difference between the theoretical
sound arriving in the two ears is shown in Fig. 12(d). Gao et al.63

have a leading study in this area. The team fabricated a 128 × 8
array of memristors and proposed a new sound localization
algorithm. The devices were tested with pulses to simulate
sound signals, showing that the training accuracy and energy
consumption of the system built using the memristor array
were signicantly improved, representing a signicant advance
in auditory localization systems with memristors. F. Moro
et al.64 designed an event-driven object localization system
inspired by the owl auditory cortex using a combination of state-
of-the-art piezoelectric micromechanical ultrasound sensors
and RRAM. The system was more efficient and power-efficient
than microcontrollers performing the same task by several
orders of magnitude.

Haptic perception is mainly studied in terms of sensing
external pressure, where pressure data are converted into elec-
trical signals and stored in memory. The location of pressure
generation can be claried through an array mechanism of
resistive variable memory, as shown in Fig. 12(f). Park et al.65

used a exible RRAM array for ECG measurements, as shown in
Fig. 12(g). Researchers successfully demonstrated stable data
storage of cardiac signals, a damage-reliable memory triggering
system using a triboelectric energy-harvesting device, and touch
sensing via pressure-induced resistive switching.

As for smelling perception, the research started late, and the
system can identify a small type of gas. People use the combi-
nation of a gas sensor and RRAMmade of special materials and
use the storage array to store and process the data quickly, so as
to achieve the purpose of recognition. A. Adeyemo et al.66 used
an across-array RRAM as a gas sensor, as shown in Fig. 12(h).
Researchers used the HP LABS fabricated TiO2 based memristor
model in an attempt to improve sensing accuracy. The experi-
ment provides the basis for the research of smelling perception.
At present, the smell sensing system using RRAM has a long
sensing period, low sensing accuracy, single sensing gas, and
narrow application. Most systems have a small response gap
when identifying similar gases, which requires additional
amplifying circuits to be sufficient for classication, increasing
the structural complexity.
1570 | Nanoscale Adv., 2023, 5, 1559–1573
4.4 Other applications

RRAM has good switching and isolation characteristics for
high-frequency communications. In 5G communication, the
RRAM has 50 times the switching efficiency of other non-
volatile switches. At 6G operating frequencies, RRAM also
exhibits high isolation and has sub-nanosecond pulse switch-
ing, low BER and a high signal-to-noise ratio. M. Kim et al.67–69

worked on RRAM for high-frequency applications at the
University of Texas. RRAM made from MoS2 and h-BN is suit-
able as an energy-efficient RF switch, overcoming the limita-
tions of transistors and pick-and-place switches. Researchers
also predicted that RRAM could be used in mobile systems, low-
power IoT and terahertz beam steering. The unique switching
randomness of RRAM has important applications in informa-
tion security and can also be used to design chaotic circuits.
H. M. Ibrahim et al.70 have implemented a robust and light-
weight physically unclonable function (PUF) architecture using
RRAM, with implications for cryptographic key and security
application upgrades. In addition, P. S. Zarrin et al.71 proposed
a neuromorphic on-chip recognition of saliva samples of COPD
and healthy controls using RRAM. This is an application of
RRAM in the medical eld.
5 Conclusion and outlook

With the constraints of the von Neumann structure and the
physical limits of semiconductor processing, computers are
experiencing bottlenecks in their ability to process data. As
a new computing principle, computing-in-memory technology
embeds the computation capability into the storage unit. This
increases computation speed, reduces system power
consumption, and opens up more application possibilities.

RRAM is a new memory type with resistive and non-volatile
properties. The structure, mechanism and preparation of
RRAM have been the focus of attention, with research
continuing in in-memory logic operations, brain-like
computing and fused technology of sense-storage-computing.
However, research into RRAM still faces some challenges:

(a) RRAM has randomness. The characteristics presented by
memory resistors are not identical from cycle to cycle. There is
also variability in devices made from the same batch. The
preparation process of RRAM is being improved to try to solve
this problem. In addition, the addition of peripheral circuits to
the memristor array, the use of check methods and redundant
design are also used to reduce errors.

(b) The best materials for the resistive layer in RRAM are also
being screened. Metal oxides, 2d materials, emerging materials
and organics are currently used for the preparation of RRAM.
The materials used to prepare devices largely inuence the
performance of amnesic resistors. High resistance ratios, good
homogeneity and matching proven manufacturing processes
and equipment are the basis for judging the suitability of the
material. We need to develop new materials with innovative
approaches and explore the best material composition ratios
based on already well-dened material elements. Better mate-
rials will enhance the performance given to each application.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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(c) Mass production is almost impossible to replace most
conventional memories. Across-array circuits are still in the
small-scale laboratory stage. The preparation of memristors is
difficult, with only a few laboratories and processors meeting
the demand. The variety of materials used in the preparation of
memristors and the preparation processes involved each have
their own characteristics, and integration with existing mature
processes takes time. Complex functional applications require
customization. Different functions can be achieved by selecting
different memory resistor units.
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