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1. Introduction

Polymers can be engineered to exhibit responses to a diverse
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Advances in thermoresponsive materials have significantly impacted many biomedical fields. The unique
behavior of reversible phase transition close to the physiological temperatures makes these types of
materials a great candidate for a wide variety of biomedical applications including bioimaging, biosensing,
injectables, smart surfaces, adhesives, biomanufacturing, and tissue engineering. Thermoresponsive be-
havior, mainly lower critical solution temperature (LCST) can be easily tuned by shifting the balance
between hydrophobicity and hydrophilicity (e.g., by using comonomers or changing end groups) and
modifying the molecular weight and architecture of the polymer. Hence, synthetic and characterization
tools are critical in tailoring and precisely determining these properties. This review aims to show the full
scope of the journey of thermoresponsive polymers from benchtop to potential applications. We
especially intend to emphasize the effects of the structural heterogeneity of polymers on thermal tran-
sition and highlight the modern characterization techniques used to study thermoresponsive behavior. A
better understanding of these structural effects and benchtop tools can help us design and implement
more advanced materials for future applications in public health.

polymer and surrounding water molecules. Above LCST,
hydrogen bonding with water molecules is disturbed and the
intra- and intermolecular hydrophobic and hydrogen

variety of external stimuli including changes in temperature,'™
light,*® pH,'*"* magnetic fields,"”® electric fields,"”° ultra-
sonication,*®*' mechanical forces,”*** and many others.>*™®
Arguably, thermoresponsive behavior of polymers is studied
most extensively in these stimuli-responsive materials space.
The earliest works on thermoresponsive properties of poly(N-
isopropylacrylamide) (PNIPAM) were documented in the late
1960s.>%°°

Thermoresponsive polymers can undergo reversible phase
transition upon exposure to temperature change. Polymers
that show a lower critical solution temperature (LCST) behav-
ior in an aqueous solution are soluble below LCST due to

extensive hydrogen bonding interactions between the
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bonding interactions become more dominant, as a result, the
polymer becomes insoluble in an aqueous solution upon
heating.®® When water molecules are repelled from the
polymer chain at elevated temperatures, hydrogen bonds
(between water and polymer chain) are broken and new
hydrogen bonds are formed resulting in a change in enthalpy.
In addition, entropy increases as water molecules are no
longer constrained. Hence, based on Gibbs free energy
equation (AG = AH — TAS), phase transition from soluble to
insoluble polymer chains becomes spontaneous as the temp-
erature gets above the threshold value (LCST) due to so-called
“hydrophobic effect”.>*** PNIPAM chains, for example, are
soluble in water below its LCST due to the interactions
between amide groups on side chains and water molecules,
forming solvated random coils. At elevated temperatures,
side chains favorably interact with each other resulting in the
transformation from soluble coils to insoluble globules. The
temperature of the coil-to-globule transition is called the
cloud point temperature (T,) at which a phase transition
occurs from fully transparent to opaque solution (generally at

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic representation of (A) a polymer phase transition of PNIPAM in aqueous solution from a completely dissolved homogeneous state
(left, solvated random coil) to a two-phase demixed system (right, insoluble globule) and (B) the coil-to-globule transition with polymer solvation
through hydrogen bonding below the LCST and domination of the hydrophobic interactions above the LCST. Adapted with permission from ref. 34

and 40. Copyright 2022, RSC and 2020, Elsevier.

50% transmittance) due to the formation of stable polymer
agglomerates with a size larger than visible light (Fig. 1).**
The LCST is defined as the minimum value of the T, in the
temperature-concentration phase diagram.*® The LCST be-
havior of polymers in an aqueous solution can be tuned by
chemically incorporating hydrophilic or hydrophobic charac-
ter to the original polymer through copolymerization and end
group transformation/functionalization, modifying the
polymer architecture and molecular mass (e.g., weight
average molecular weight, M,, or number average molecular
weight, M,), and adjusting ionic strength (e.g., salt type or
concentration). The tunability of LCST makes the thermo-
responsive polymers ideal for use in physiological tempera-
tures, typically 35-40 °C range.>®*°

These polymers have gained significant attention in recent
years*'™*° due to their potential applications in several bio-
medical fields such as bioimaging,>® drug delivery,>>°
injectables,”” ®* smart surfaces,*””> adhesives,”® and tissue
engineering. However, the effects of the structural hetero-
geneity of polymers on thermal transition and modern charac-
terization techniques have not been systematically discussed
before. The precise determination of phase transition and
LCSTs of these novel materials play a critical role in bio-
medical applications, where tolerance for error is generally
infinitesimal. In this review, we aim to show the full scope of
the journey of thermoresponsive polymers from their synthesis
to biomedical frontiers. This review article (1) highlights the
most common thermoresponsive polymers such as poly(N-
alkyl acrylamide) and polyethylene glycol (PEG) derivatives; (2)
provides a brief summary of controlled radical polymerization
(CRP) techniques for synthesis and structural property control
of thermoresponsive polymers; (3) discusses the effects of
structural heterogeneity (e.g., architecture, molecular mass,
grafting density) on LCST; (4) uncovers modern characteriz-
ation tools for precisely determining thermoresponsive pro-
perties (e.g., LCST) and phase transition; and finally (5)
touches on the state-of-the-art biomedical applications of
thermoresponsive polymers with LCST transition.

77-80

© 2023 The Author(s). Published by the Royal Society of Chemistry

2. Thermoresponsive polymers and
their syntheses

2.1. Common types of thermoresponsive polymers

2.1.1. Poly(N-substituted acrylamide)s. Poly(N-substituted
acrylamide)s and their copolymers have received significant
attention due to the sharp phase transition and tunability
of this value through the modification of pendant and end
groups, incorporation of comonomers, or adjustment of the
concentration. The most explored and researched member
of this family is PNIPAM because of its LCST being quite
close to body temperature making it suitable for biomedical
applications. PNIPAM exhibits LCST around 32 °C, which is
readily between room and body temperatures. The cloud
point of PNIPAM decreases with increasing polymer concen-
tration in water. However, it possesses some inherent
issues, such as questionable biocompatibility®" and phase
transition hysteresis upon cooling (Fig. 2A).*> During the
transition regime, PNIPAM undergoes conformational
changes involving intrachain coil-to-globule transitions and
interchain self-association resulting in alteration in solubi-
lity and wettability. In this reversible phase transition
process, at the temperature above LCST, PNIPAM exists in
globular form. Most of the amide groups are covered,
resulting in dehydration, and consequently, the polymer
becomes more hydrophobic. Below the LCST, the extension
of PNIPAM chains to a coil form is driven mainly by re-
establishing the strong hydrogen bond interaction with the
surrounding water molecules, rehydrating, and regaining
hydrophilicity.®*%*

Numerous reports described the synthesis and use of (co)
polymers of PNIPAM with other functional comonomers such
as other acrylamides,?® (meth)acrylates,®””*® ethylene glycols,””
and pyrrolidines.®® In addition, PNIPAM-based crosslinked
hydrogel systems®"®° and brushes”>° were explored. Because
of its tunable LCST, PNIPAM or its copolymers have broad
application prospects such as medical diagnostics, drug deliv-
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Fig. 2 Plots of transmittance as a function of temperature measured
for agueous solutions of (A) a PNIPAM homopolymer (DP,, ca. 100; M,,/
M,, = 1.12) (red) and (B) a copolymer P(MEO,MA-co-OEGMA) containing
5 mol% OEGMA per chain (DP, ca. 100; M,/M, = 134) (blue).
Transmittance drops to 0% when the size of polymer aggregates
becomes larger than the visible light and the solution turns completely
opaque. Adapted with permission from ref. 85. Copyright 2006,
American Chemical Society.

ery, biomedical devices, tissue engineering, and separations.”
Thermosensitivity of poly(N-substituted acrylamide) derivatives
with the substituents on the nitrogen atom on the side chain
has also been studied.*® Poly(N-alkylacrylamide)s (PAMs)
such as poly(N-ethylacrylamide) (PNEAM), poly(N-cyclopropyl-
acrylamide) (PNcPAM),”> and poly(N-n-propylacrylamide)
(PNnPAM),”* and poly(N,N-dialkylacrylamide)s (PDAs) such as
poly(N,N-ethylmethylacrylamide) (PEMAM),** poly(N,N-diethyl-
acrylamide) (PDEAM),”* poly(N-acryloylpyrrolidine) (PAPy),”®
and poly(N-acryloylpiperidine) (PAPi) undergo thermal phase
transition in water. It was reported that the thermoresponsive
properties depend on the degree of hydrophobicity, bulkiness,
and flexibility of the substituents on the amide groups.>®>*7~%°
Fig. 3 shows the chemical structures and reported LCST or T,
values of PNIPAM copolymers and poly(N-substituted acryl-
amide) derivatives.

2.1.2. Ethylene glycol-based polymers. The literature con-
tains a wide range of poly(ethylene glycol)-based monomers
(i.e., monofunctional (meth)acrylic monomers with 5 or higher
ethylene glycol units on the side chain) that are polymerizable,
although LCST of ethylene glycol-based polymers are typically
around 80-100 °C making it unsuitable for bio-related appli-
cations.'® Yet, they have generated tremendous research atten-
tion, given their high biocompatibility and low toxicity.
Methoxy-terminated (or methyl ether) oligo(ethylene glycol)
(OEG) units are preferable due to displaying small or no hyster-
esis upon cooling (Fig. 2B) whereas hydroxy-terminated OEG
units are preferable as they have an OH group at the chain end
which can be modified to tune LCST.""'%* Lutz et al. studied
the LCST behavior of poly(2-(2-methoxyethoxy)ethyl methacry-
late-co-oligo(ethylene  glycol)methacrylate) (P(MEO,MA-co-
OEGMA,;5)) copolymers, exhibiting a similar or superior
thermoresponsive transition as compared to PNIPAM.*® These
P(MEO,MA-c0-OEGMA,5) copolymers showed a uniform and
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sharp thermal profile with heating/cooling cycles. However,
PNIPAM demonstrated a sharp transition upon heating and a
broad hysteresis in the cooling process (Fig. 2A). This hyster-
esis is potentially from intra- and intermolecular hydrogen
bonding within the dehydrated PNIPAM globules. On the
other hand, OEGMA-based copolymers do not possess inter-
molecular hydrogen bonding and hence show minimal hyster-
esis. Additionally, the LCST of P(MEO,MA-co-OEGMA,5) copo-
lymers is nearly unaffected by the change in salt concen-
tration, degree of polymerization, and polymer concentration
(Fig. 4).%° A variety of thermoresponsive OEGMA-based (co)
polymers for use in practical biological applications were also
highlighted by Lutz."*?

Polymers containing carbon-carbon backbones (e.g,
acrylic, methacrylic, styrenic) with short ethylene glycol side
chains (e.g,, mono-, di-, and tri-ethylene glycol) generally
demonstrate lower LCSTs in aqueous solution than polymers
with long ethylene glycol side chains (i.e., OEG)."**'® The
hydrophobicity of the polymer increases as the length of the
ethylene glycol units decreases due to the increase in the
overall percentage of the hydrocarbon backbone. For instance,
PMEO,MA with two EG units and PMEO;MA with three EG
units exhibit LCST around 26 and 52 °C, respectively. On the
other hand, POEGMAs with 4-10 EG units have transition
temperatures in the range of 60-90 °C. To tune the LCST, short
and long ethylene glycol (EG) (meth)acrylates can be copoly-
merized at different ratios of each monomer.'**"% Fig. 5
shows representative interactions between P(MEO,MA-co-
OEGMA,;5) copolymer and water molecules (top) and optical
transparency of the aqueous solutions at 25 °C and 45 °C
(bottom). Above LCST, P(MEO,MA-co-OEGMA,,5) copolymer
becomes completely opaque due to the aggregation of large
particles. Polymers can be decorated with ethylene glycol units
on the side chain with various main chains composed of poly-
methacrylate (POEGMA),'**'*° polyacrylate (POEGA),*> poly-
styrene (POEGSt),""" poly(vinyl ether) (POEGVE),"*? polynorbor-
nene (POEGNB),"** polyether (POEGE),"'*'" polylactide
(POEGLA),"**'"” polymethylene (POEGM),"*® polyphosphazene
(PBEEP),'**"*° and poly(amino acid)**"'** (Fig. 3). These
thermoresponsive polymers can be tailored as linear or
branched as well as three-dimensional structures.**'** In
addition, poly(ethylene oxide) (PEO) and poly(propylene oxide)
(PPO) and their copolymers with LCSTs varying from 20 °C to
85 °C contain EG units in their main chains and are commer-
cially available under the names of Pluronics, Poloxamers, and
Tetronics.***® Amphiphilic balance in OEG structure is the
main reason for the thermoresponsive property of these types
of polymers.**”*?8

The previous reports on thermoresponsive polymers are
dominated by PNIPAM and POEGMA derivatives. However, a
wide variety of other polymers demonstrated promising
thermoresponsive behavior in aqueous solution.'®**> For
example, poly(N-vinylcaprolactam) (PNVCL)"*™*® and poly
(oxazoline)s'*°** have been recognized as synthetic polymers
exhibiting LCST behavior.*® Similar to PNIPAM, PNVCL is
hydrophilic and soluble in water at room temperature, gradu-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Chemical structures of common thermoresponsive homo- and co-polymers and their reported LCST or cloud point values.

ally becoming more hydrophobic and eventually insoluble in
water when the temperature is raised from 25 °C to 35 °C.'**

Moreover, there are several examples

of thermoresponsive

© 2023 The Author(s). Published by the Royal Society of Chemistry

polymer-biopolymer conjugates to incorporate responsive be-
havior to the biopolymers such as cyclodextrin,"** enzymes,"*>
proteins,"*® or oligonucleotides'>* for target applications.
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Fig. 4 Molecular structures of ethylene glycol-based copolymer and
PNIPAM (top). Plots of measured cloud points as a function of (A) NaCl
concentration, (B) degree of polymerization (DP,,), and (C) polymer con-
centration (bottom). In all figures, cloud points of P(MEO,MA-co-
OEGMA,75) and PNIPAM are represented by blue dots and red squares,
respectively. Data in figures (A) and (C) were measured with a copolymer
P(MEO;MA-co-OEGMA,;5) containing 5 mol% OEGMA,;5 per chain (DP,,
ca. 100; M,/M,, = 1.34) and a homopolymer of NIPAM (DP,, ca. 100; M,,/
M, = 112). Adapted with permission from ref. 85. Copyright 2006,
American Chemical Society.

2.2. Polymerization techniques and property control

2.2.1. Solution polymerization. Thermoresponsive poly-
mers can be synthesized through several polymerization
methods such as atom transfer radical polymerization
(ATRP),** reversible addition-fragmentation chain transfer
(RAFT) polymerization,"*” nitroxide-mediated polymerization
(NMP),"*® ring-opening metathesis polymerization (ROMP),"*?
group transfer polymerization (GTP),"**'*° ring-opening
polymerization,'>" and anionic polymerization.'®* CRP tech-
niques (e.g., ATRP and RAFT polymerization) have been
explored to a great extent due to the availability of the mono-
mers and relatively simple reaction setup (Scheme 1).
Additionally, these techniques enable the synthesis of poly-
mers with controlled molecular mass, narrow molecular mass
distribution or dispersity (P below 1.2-1.3), high end-group

M
o
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fidelity (allowing block copolymer synthesis), and different
architectures (e.g., multi-block, star, comb)."'*'** In this
section, only ATRP™*™> and RAFT polymerization'>*™"*® to
yield thermoresponsive polymers will be covered to give the
readers a brief overview of these techniques and how to
control structural features.

Acrylamides and (meth)acrylates can be successfully poly-
merized through ATRP and RAFT polymerization.
Conventional ATRP can be used to polymerize most of the
(meth)acrylates. However, the ATRP technique needs to be
modified to be able to polymerize (meth)acrylamide-based
monomers with high yield and narrow dispersity. As a typical
methacrylate example, OEGMA was copolymerized with more
hydrophobic MEO,MA or poly(propylene glycol methacrylate)
(PPGMA) through conventional ATRP to decrease the LCST to
below 37 °C.%>'® Conventional ATRP requires a metal catalyst
(e.g., CuBr or CuCl), a ligand (e.g., linear amines or bipyri-
dines), and an initiator (e.g., a-haloester).'>® Several (meth)
acrylamides (N,N-dimethylacrylamide, N-tert-butylacrylamide,
and N-(2-hydroxypropyl)methacrylamide) were attempted to
polymerize through conventional ATRP. When linear amines
and bipyridines were employed as ligands in bulk or solution,
very low monomer conversions were obtained. The low conver-
sion can be attributed to the copper catalyst competitively
complexing with poly(meth)acrylamides. The use of 1,4,8,11-
tetramethyl-1,4,8,11-tetraazacyclotetradecane (Me,Cyclam) as a
ligand resulted in high yield in a short period of time, but the
polymerization was not controlled potentially due to the slow
deactivation and the loss of bromine end groups due to side
reactions, yielding high dispersity.">> Masci et al. reported a
successful ATRP of NIPAM using tris[2-(dimethylamino)ethyl]
amine (Me,TREN) as a ligand, ethyl 2-chloropropionate as an
initiator, CuCl as a catalyst in dimethylformamide (DMF)/
water (1: 1, v/v) at room temperature (Scheme 1A). The reaction
yielded a first-order kinetic plot with 92% conversion and dis-
persity of 1.19.'°° Supplemental activator and reducing agent
(SARA) ATRP in the presence of Cu’ and electrochemically
mediated ATRP (eATRP) of NIPAM were also previously investi-
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Fig. 5 Proposed mechanism for the temperature-induced phase transition of poly(MEO,MA-co-OEGMA) copolymers in aqueous solution. Adapted

with permission from ref. 106. Copyright 2007, American Chemical Society.
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gated. PEO-b-PNIPAM copolymers were successfully syn-
thesized with narrow dispersity and the % conversion between
43-95% by SARA ATRP and eATRP.'®’ Moreover, activators
regenerated by electron transfer (ARGET) ATRP'®? can be uti-
lized to synthesize thermoresponsive polymers from (meth)
acrylic and (meth)acrylamide monomers (Scheme 1A). ARGET
ATRP is a robust technique that is less sensitive to oxygen pres-
ence and requires Cu" catalyst and a reducing agent such as
tin(u) 2-ethylhexanoate (Sn(EH),) or ascorbic acid. For the syn-
thesis of PNIPAM, more active catalyst systems with a tetraden-
tate ligand such as MesTREN or tris(2-pyridylmethyl)amine
(TPMA) which is 10°-10° times more active than CuBr/bipyri-
dine complexes are necessary.'®> It should be noted that the
potential toxicity of residual transition metal catalyst contami-
nation is the key limiting factor for applications of thermo-
responsive polymers synthesized via ATRP. The use of more
active catalysts to lower the catalyst loading and more rigorous
purification for the removal of metals after polymerization is
critical for biomedical applications.'®**®> Precisely controlled
molecular architecture (topology, composition, functionality)
of polymers, hybrid materials, and bioconjugates can also be
achieved through ATRP."®*7°

RAFT polymerization has been widely used to synthesize
thermoresponsive polymers from various types of monomers.
RAFT polymerization can allow metal-free synthesis of these
responsive polymers; however, cytotoxicity of the chain transfer
agent (CTA) remaining at the end of the polymer chains was
reported.””*"”® The end group CTAs also need to be comple-
tely removed to prevent any complications.’”*'”* In early 2000,
a series of PNIPAM homopolymers were synthesized by using
benzyl and cumyl dithiobenzoate (Scheme 1B) in different
organic solvents (benzene and 1,4-dioxane) at 60 °C."7%'””

© 2023 The Author(s). Published by the Royal Society of Chemistry

Convertine, McCormick, and co-workers successfully polymer-
ized NIPAM through the RAFT process at room temperature. A
commercial trithiocarbonate RAFT CTA, 2-(dodecylsulfa-
nylthiocarbonylsulfanyl)-2-methylpropionic acid, along with
an initiator, 2,2'-azobis(4-methoxy-2,4-dimethyl-
valeronitrile) (V-70) was used to homopolymerize NIPAM in
DMF at 25 °C. PNIPAM homopolymers with M,, of ca. 50 000 g
mol ™" and dispersity of ca. 1.10 were obtained. These homopo-
lymers were then used as a macroCTA to yield block copoly-
mers. Near-quantitative block copolymer formation with
narrow dispersity was confirmed by size-exclusion chromato-
graphy (SEC)."”® The same research group synthesized thermo-
responsive N,N-dimethylacrylamide (DMA)/NIPAM di- and tri-
block copolymers via aqueous RAFT polymerization at room
temperature."””®  Overall, trithiocarbonate RAFT agents
(Scheme 1B) were reported as a more versatile CTA for more
activated monomers such as acrylamides.'®® RAFT polymeriz-
ation of various N-alkylacrylamide and N,N-dialkylacrylamide
derivatives was reviewed by Kakuchi et al. in 2022. Kanaoka
and co-workers synthesized PNIPAM hydrogels via a polymeriz-
ation-induced self-assembly process in which they employed
PDMA as macroCTA and a divinyl cross-linker. Their research
group also reported PNIPAM-based crosslinked hydrogel being
formed in a star shape and observed greater dispersibility
and uniform distribution of the star PNIPAM polymers at the
crosslinking point."®" Other thermoresponsive star archi-
tectures synthesized through RAFT process have also been
reported."®*'8°

Thermoresponsive polymers can also be made through
photo-polymerization methods. Photo-induced electron/energy
transfer (PET)-RAFT polymerization in the presence of a photo-
redox catalyst which transmits the captured light energy to the
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Fig. 6 Preparation of a thermoresponsive block copolymer brush-modified glass plate through ARGET ATRP. Adapted with permission from ref. 90.

Copyright 2020, John Wiley and Sons.

CTA has been widely used.'®® Photoiniferter (PI)-RAFT
polymerization, on the other hand, involves direct photolytic
cleavage of a CTA by the light, after which the procedure is
changed to available RAFT mode. Corrigan, Boyer, and co-
workers prepared PNIPAM homopolymers via PET-RAFT
polymerization. 2-(n-Butyltrithiocarbonate) propionic acid as a
CTA and 5,10,15,20-tetraphenyl-21H,23H-porphyrin zinc(ir)
(znTPP) as a photo-redox catalyst were used to polymerize
NIPAM in methanol under green LED light (4. = 520 nm)
and inert atmosphere. Polymers with narrow dispersity (b <
1.18) and M,, ranging from 6.3-66.2 kg mol~" were synthesized
for cloud point comparison.'®” Karpov and co-workers
reported dimethyl sulfoxide (DMSO) as the best solvent for
homopolymerization among other solvents (DMSO > tetra-
hydrofuran, THF > toluene) for photo-RAFT polymerization.
Amphiphilic random and diblock alkoxy (Ci,-Ci,) OEGMA
(with ca. EG units) and methoxy-OEGMA;, (1: 1) bottlebrush
copolymers have been synthesized by means of PI-RAFT
polymerization in different solvents. Moreover, the authors
performed an “on-off” experiment to confirm the easy switch-
ability of the process and pseudo-living mechanism of
polymerization.'®®

2.2.2. Surface-initiated polymerization. Grafting polymers
is beneficial to tune surface properties such as wettability, cor-
rosion resistance, and friction."®**"°" Polymer coatings on a
substrate can be generated by chemical bonding or physical
adsorption.'®> Chemisorption is a favorable strategy over physi-
sorption for biomedical application as it does not result in de-
sorption into a physiological environment and offer superior
chemical modification control."®® “Grafting-to” approach can
be utilized for chemical coupling between reactive end groups
of polymer and reactive groups on the surface.'**'°> Polymers
can be anchored to the surface this way by a chemical reaction
between the end groups on the polymers and functional
groups on the surface. The “grafting-to” entails synthesizing
polymer chains separately before attaching them to the
surface. The polymer chains or brushes can be grown in situ
from initiators that have been fixed to the surface in the “graft-
ing-from” method (as employed in Fig. 6). Among these syn-
thetic pathways, the “grafting-from” approach is considered an
efficient technique to precisely control the functionality,
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polymer grafting density, dispersity, and thickness of polymer
brushes (ie., grafting length)."**®® Moreover, controlled
surface-initiated (SI)-polymerization can be employed from
different surface materials, such as silicon, glass, gold, alloys
or metal-oxides, mica, graphene, cellulose, and nano-
particles.”®® A controlled polymerization is highly preferred in
order to provide closer control of the architectural features of
the resulting brush. Based on radical chemistry, there are
many Sl-controlled radical techniques:
SI-ATRP,**'?%*  SI-RAFT polymerization, SI-NMP,>%¢
SI-PET-RAFT  polymerization,®”>°® and  SI-PI-mediated
polymerization.”*® Nagase et al. demonstrated the synthesis of
a thermoresponsive cationic block co-polymer, N,N-dimethyl-
aminopropylacrylamide (PDMAPAM)-b-PNIPAM by SI-A(R)GET
ATRP from a glass plate as a useful cell separation tool
(Fig. 6).°° In addition, poly(N-(2-methacryloyloxyethyl)pyrroli-
done) (PNMEP) surface-adhered brushes were reported by
Teunissen et al. through SI-ATRP from silicon oxide-coated
silicon surfaces.?®' Notably, SI-ATRP has evolved to be a domi-
nant synthetic technique to prepare surface-initiated polymer
brushes because of simple experimental requirements, its ver-
satility, more uniform grafting length, and tolerance toward a
wide spectrum of functional monomers.

polymerization
204,205

3. Effects of structural heterogeneity
on LCST

A hydrophilic-hydrophobic balance in the thermoresponsive
polymer chains gives rise to changing their shape (i.e., random
coil to globule) in response to temperature change. To finely
tune the LCST of thermoresponsive polymers, several struc-
tural factors have been investigated including architectures,
compositions, molecular mass, dispersity, and grafting length/
density.

3.1. Architectures

The responsive properties can be manipulated by changing the
macromolecular architectures. Thermoresponsive polymers
with different macromolecular architectures, such as block,
cyclic, comb, bottlebrush, and star, have been synthesized

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3lp00114h

Open Access Article. Published on 29 2023. Downloaded on 06.11.2025 22:21:20.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Applied Polymers

using controlled/living polymerization techniques and the
structural effects on thermal phase transition have been
studied. Different polymer architectures used for thermo-
responsive polymer design (A-E) and multi-arm star and
hyperbranched copolymers with PEG side chains (F and G) are
shown in Fig. 7.3*'! For PEG-based polymers, the differences
in thermal behavior between block and gradient copolymers of
2-hydroxyethyl acrylate (HEA) and ethylene glycol methyl ether
acrylate (mEGA) were reported by Steinhauer et al.>'* The T,
was shown to be tuned between 0 °C and 80 °C for the block
copolymers and between 0 °C and 60 °C for the gradient copo-
lymers. Sun et al. studied a reversible polymer architecture
switching process between linear polymers and cross-linked
nanogels. By investigating multifunctional block copolymers
of acrylamide and ethylene glycol acrylate derivatives, they
found that linear structures showed sharp thermal transitions
while the crosslinked nanogels showed linear thermal tran-
sitions over a broad temperature range.** For other polymer
systems, the relationship between thermoresponsive behaviors
and architectures is also demonstrated. Cheng et al. prepared
a series of poly(3-ethyl-3-(hydroxymethyl)-oxetane) (PEHO)-star-
PEO and PEHO-star-poly(2-(dimethylamino)ethyl methacrylate)
(PDMAEMA) copolymers.”’* The LCST transition of the first
system is based on hydrophilic-hydrophobic balance and is
highly dependent on the degree of branching of the PEHO
core. EG-based polymers were synthesized in star-block archi-
tectures to produce thermoreversible hydrogels (thermogels or
hydrogelators). MEO,MA and OEGMA,,s were copolymerized
using a 4-arm star PEG ATRP macroinitiator. These star-block
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Fig. 7 Polymer architectures used in the construction of thermorever-
sible polymers: (A) Di-block, (B) ABA tri-block, (C) ABC tri-block, (D) 4
and 8-arm star-shaped, (E) graft copolymers. (F and G) Multi-arm star
and hyperbranched copolymers with poly(ethylene oxide) side chains.
Adapted with permission from ref. 3 and 211. Copyright 2020, John
Wiley and Sons and 2010, American Chemical Society.
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copolymers with an inner PEG core and outer block thermo-
responsive arms exhibited drastic changes in viscosity above
LCST. The star copolymers showed a reversible thermogelation
within the range of 35-42 °C over repeated heating/cooling
cycles as opposed to the linear block copolymer solutions
which only displayed a higher viscosity upon heating.”***"* Li
et al. synthesized dendrimers containing PEG in the main
chain, and OEG as a side chain.?'® With an aim to examine
how the length of the OEG side chain affects the thermo-
responsive behavior, the research group of Deng synthesized a
series of degradable copolymers with varying EG units from 1
to 3.>'7 Moreover, EG-based polymers exhibit a broad thermo-
responsive behavior in dendronized form. For instance, OEG-
based dendrons display hitherto unseen abrupt and rapid
transitions in aqueous solution with LCSTs varying from 27 to
65 °C.>1°

PNIPAM-based block copolymers and star polymers con-
taining hydrophilic or hydrophobic segments exhibit various
LCSTs (Fig. 3).>'®?*> A series of PNIPAM- and PDMA-based
double hydrophilic multiblock copolymer architectures with
hydrophobic dodecyl hydrocarbon end-groups were syn-
thesized through RAFT polymerization. It was shown that
incorporations of hydrophilic comonomer can increase the T,
of the block copolymer systems.?** Lang et al. prepared ethyl-
and dodecyl-terminated PNIPAM, PNnPAM, and PNcPAM to
