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Green nanoparticle synthesis at scale: a
perspective on overcoming the limits of pulsed
laser ablation in liquids for high-
throughput production
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Nanoparticles have become increasingly important for a variety of applications, including medical

diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The

development of nanoparticles with different compositions, sizes, and surface properties is essential to

optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry

approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases.

Despite these numerous advantages, the current production rate of this method remains limited, with

typical rates in the milligram per hour range. To unlock the full potential of this technique for various

applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour

range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser

ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters.

This perspective article explores these factors and provides a roadmap for increasing PLAL productivity

that can be adapted to specific applications. By carefully controlling these parameters and developing

new strategies for scaling up production, researchers can unlock the full potential of pulsed laser

ablation in liquids.
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1998), the Applied Optics Institute
(Poland, 2002), the Fernuniversität
in Hagen (Germany, 2003), and the
Purdue University (USA, 2004 and
2009). Her research interest

includes ultrafast optics and the synthesis of nanomaterials with
laser. Since 2017, she has co-led the Photonics research group
‘‘GROC�UJI,’’ and in 2022, she became a Full Professor.

Received 17th March 2023,
Accepted 19th May 2023

DOI: 10.1039/d3cp01214j

rsc.li/pccp

PCCP

PERSPECTIVE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

1.
08

.2
02

5 
15

:3
9:

06
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0003-4994-1859
https://orcid.org/0000-0002-7022-0960
https://orcid.org/0000-0001-6368-9659
http://crossmark.crossref.org/dialog/?doi=10.1039/d3cp01214j&domain=pdf&date_stamp=2023-07-11
https://rsc.li/pccp
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3cp01214j
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP025029


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 19380–19408 |  19381

1. Introduction

Nanoparticles have been utilized by humans for centuries, with
early examples dating back to the Roman Empire. The Lycurgus
cup, a piece of Roman glassware from the 4th century AD,
contains gold nanoparticles that provide a striking optical dichro-
ism effect. The cup appears green when lit from the front but red
when illuminated from the back, due to the interaction of light
with the gold nanoparticles. This ancient artifact provides a
remarkable testament to the unique properties of nanoparticles
and their potential applications.1,2 Since then, the field of nano-
technology has undergone tremendous growth. Nanoparticles,
with sizes typically ranging from 1 to 100 nanometers, exhibit
unique electronic, optical, and mechanical properties that differ
from their bulk counterparts. Applications of NPs stretch from
drug delivery and contrast agents for magnetic resonance in the
biomedical field,3–6 catalysts for the development of renewable
energy systems and environment remediation,7–10 for the photo-
and electrocatalytic application,11 such as the water-splitting
process,12 fabrication of solar nanofluids,13 properties enhance-
ment and smart materials printing by additive manufacturing,14,15

to the development of food packaging with antibacterial effects in
the food industry.16–18 The broad application spectrum that
nanotechnology has reached during the last decades has been
possible due to the unique physicochemical properties of the NP
compared to bulk materials. The increased surface area-to-volume
ratio, which exposes more active sites, is key to enhancing
catalysts’ response. The possibility of tuning the optical, thermal,
and conductivity properties depending on the particle size, surface
functionalization, and doping has given rise to the sensors’
development,19–21 advanced materials,22 and optoelectronic
devices.20,23,24

The dependence of the NPs’ properties on their physico-
chemical parameters represents a key advantage in many
applications. However, in the previous century, the synthesis

of NPs with controlled characteristics represented a major
challenge, limiting application development. Even nowadays,
with the appearance of novel materials and the continuous
innovation of the current nanomaterials’ functionalities, synth-
esis techniques represent a central pillar of nanotechnology
development, requiring green methods that offer material
versatility, size control, NP purity, controlled surface doping,
and in many cases, high productivity to address the industrial
demands.25

Nanoparticle synthesis techniques can be divided into two
groups, top-down and bottom-up approaches. The top-down
methods are based on the breaking of bulk material to achieve
nanometer-sized particles, including methods such as ball-milling,
sputtering, and thermal evaporation. Meanwhile, the bottom-up
approaches involve building NPs through the joint of their atomic
constituents, usually performed by chemical synthesis methods,
such as co-precipitation, sol–gel, hydrothermal, and chemical vapor
deposition methods. Laser ablation is typically considered a top-
down approach to the synthesis of nanoparticles since it involves
the use of laser energy to ablate bulk materials and create nano-
particles. Nevertheless, this method can also be considered a
bottom-up approach due to the subsequent NPs formation through
nucleation and growth processes of the material constituents
generated by the high-intensity pulsed laser interaction.

Laser ablation can be performed within a vacuum, gas, or
liquid medium.11 The production of nanomaterials by laser
ablation in a vacuum is mostly known as pulsed laser deposi-
tion (PLD), where the ablated nanomaterials are deposited onto
a substrate after ablation.26 This technique offers the versatility
to produce thin films with controlled elemental composition by
combining the ablation of different targets.26 Besides, the film
thickness can be controlled within the nano- to micrometer
range.27 Laser ablation can also be performed in a gas environ-
ment, either with a certain gas flow or in the air. In this case,
the method is usually aimed to modify the target material to

Carlos Doñate-Buendı́a
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achieve the desired structure and properties, since the NPs will
be re-deposited onto the surface of the target at a very fast rate.28

The production of nanomaterials using a laser in liquid is
usually named laser ablation in liquid (LAL). It is based on the
irradiation with a high-intensity laser beam (4109 W cm�2) of a
bulk target immersed in a liquid.29 In LAL, two situations are
generally differentiated depending on the laser source
employed. When a continuous laser is employed, the technique
is known as continuous wave laser ablation in liquid (CLAL),
while the methodology is known as pulsed laser ablation in
liquids (PLAL) if the source is a pulsed laser. Generally, the
research field has evolved towards the standard employment of
pulsed lasers, as the constant emission of light from the
continuous wave laser heats the target and induces the boiling
of the surrounding liquid. The boiling liquid scatters the
incoming laser beam to the target, making CLAL unfeasible
for continuous or large-scale NP production.

PLAL was first introduced in 1987 by Patil et al.30 through
the ablation of iron foils in water using a nanosecond laser and in
1993 by Fojtik and Henglein31,32 for their work on laser
synthesized-colloidal nanoparticles dispersed in a liquid. The
operational steps of PLAL are relatively straightforward; the laser
is directly shot onto a target fixed inside a liquid medium (Fig. 1).
The ablated material is collected in the surrounding liquid media,
avoiding user inhalation and safety risks, and directly producing
colloidal nanoparticles of the desired material in the selected
solvent. This technique gained popularity due to the possibility of
producing bare-surface – ligand-free NPs, which offer improved
catalytic activity, efficient conjugation, and higher affinity to
biomolecules.33–35 Furthermore, it is also possible to produce
complex structures through PLAL, such as hollow NPs36,37 and
core–shell NPs,38,39 which might require multiple steps in other
synthesis methods.40,41 Moreover, PLAL complies with green

chemistry principles.42 Most synthesis techniques require surfac-
tants, certain solvents, gas atmospheres, and pre-and post-
processing, such as stirring, heating, centrifugation, filtration,
and annealing, to produce NPs.43–45 Meanwhile, PLAL is usually
performed in an ambient atmosphere, pressure, and temperature
conditions, without the use of surfactants and hazardous sub-
stances, and with no or limited side products or waste
generation.46 Nevertheless, one critical drawback of this method
is the low nanoparticle production rate. With the increase in the
global population and its demands, the need for a more efficient
way to synthesize PLAL nanomaterials will grow. Production rates
achievable for oxide nanoparticles through the standard PLAL
processes using an oxide target, typically on the order of milli-
grams per hour,47–49 may be adequate for certain nanoparticle
applications in bioimaging, biomedicine, and sensing, where only
small amounts of nanoparticles are needed. However, increasing
productivity to the grams per hour scale for the variety of
nanomaterials produced by PLAL will reduce the synthesis cost,
and possibly lower the market price and increase the interest of
the NPs produced by this method.50 As an example of PLAL
productivity compared to high-yield chemical methods, the ther-
molysis of a metal oleate precursor has achieved a yield value of
40 grams of iron oxide NPs per batch.51 Meanwhile, PLAL
produces NPs in a scale of tens to hundreds of milligrams, which
has been extended achieving g h�1 productivities for other
metallic52 and ceramic NPs,53 and with a record of 8 grams per
hour for Pt NPs produced by Waag et al.54 in 2021.

The aim of this perspective article is to critically review the
current status of PLAL productivity and provide strategies to
continue upscaling the process. To understand the factors that
limit PLAL productivity and provide a clear roadmap to over-
come them, first, the PLAL technique principles will be
described. Besides, to avoid ambiguities, the production rate

Fig. 1 A schematic illustration of PLAL depicting the laser-irradiated target immersed in a liquid and the factors affecting nanoparticle productivity
categorized by its respective scientific field.
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or productivity will be defined. Afterward, the perspective aim
will be to enlighten the reader by providing responses to the
following fundamental questions defining PLAL productivity.
How does the employed laser source influence the productivity
in LAL? What physicochemical factors of the target and the
solvent are influencing PLAL productivity? How do those fac-
tors correlate? What are the current and upcoming strategies to
increase PLAL productivity to the demanded g h�1 scale?

2. The fundamentals of PLAL

The main tool of PLAL is a pulsed laser, that sends its laser
energy in packages (pulses) with a certain pulse duration or
pulse width (tpulse). The average power and peak power of a
pulsed laser can be calculated with eqn (1) and (2), respectively.

%P(W) = Ep(J)xf(Hz) (1)

Ppeak Wð Þ ¼
�P Wð Þ

f ðHzÞ � tpulse sð Þ ¼
Ep Jð Þ
tpulse sð Þ (2)

where %P is the average power of the laser, Ppeak is the peak power, f
is the repetition rate or number of pulses in one second, tpulse is
the pulse width or pulse duration, and Ep is the pulse energy. The
peak power is inversely proportional to the pulse width, hence, the
shorter the laser pulse duration the larger the peak power. In
comparison to continuous wave lasers, pulsed lasers with the same
average power can reach a significantly higher peak power, making
laser ablation more efficient by reducing material heating.

The process of material removal and nanoparticle formation
in PLAL involves a series of complex physical and chemical
interactions between the material, the laser, and the liquid.55–59

The interaction between the laser beam and the target induces
a fast phase transition between the target-liquid boundary,
leading to the formation of high pressure, temperature, and
density plasma containing ionized and atomized species.33,60,61

As the plasma decays at a fast-cooling rate, the surrounding
liquid absorbs the energy and it is transformed into a layer of
supercritical vapor containing the evaporated and dissociated
species from the liquid, namely the cavitation bubble.62 The
cavitation bubble is presumed to be the reservoir of solid
crystallization, i.e., the formation of the atomic cluster, and
primary and secondary particles.63–65 The cavitation bubble
might undergo expansion and shrinkage65 before its final
collapse, which releases the NPs to the surrounding liquid.58

Depending on the operating laser pulse duration tpulse, the
ablation mechanism differs as shown in Fig. 2.61 When a
nanosecond laser is employed, the bulk target absorbs the
energy and transfers it to the lattice, inducing energy release
by heating the target, which causes melting, vaporization,
bond-breaking, or defects formation that leads to material
removal. All these processes take place while the laser is still
irradiating the target. Meanwhile, when ultrashort pulses are
employed (in pico- or femtosecond regime), the heating, melt-
ing, and material removal occur at a different time frame due to
the electron–phonon coupling time being longer than the laser
pulse duration. These differences due to the pulse duration

Fig. 2 Schematic illustration of the laser ablation occurring after pulse irradiation of the bulk target immersed in a liquid for femtosecond (top) and
nanosecond (bottom) PLAL. Reproduced from ref. 61 with permission from IOP Publishing Ltd, copyright 2019.
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influence the lifetime and cooling rate of the plasma, which
leads to a unique plasma–liquid interaction, and thus, nano-
particle phase, size, and composition.61

A deeper understanding of the processes occurring at the
time scale that goes from the pulse interaction with the
material until NP ejection would help to select the optimum
experimental parameters for every material and liquid.66–68

This fact could lead to the desired nanoparticle’s size, shape,
composition, and surface coating, for example, the formation
of CoFe layered double hydroxide from the sequential ablation
of Co and Fe target in low concentration of (NH4)2CO3,69 which
unlocks potential applications of laser-generated NPs in
catalysis,70 medicine,71 additive manufacturing,72 and energy
generation and storage.73 Nonetheless, productivity has been
always one of the main limitations of the application of laser-
synthesized NPs. Their outstanding properties have been
mainly directed to applications demanding reduced NPs quan-
tities due to the low yield. Consequently, the search for novel
configurations and laser sources that permit an improved
efficiency of the process, as well as productivity increase, has
been one of the main research lines in the past years.53,54,74–76

Nowadays, it still represents a major goal of the field.

3. Definition and measurement of
nanoparticle productivity

The amount of NPs produced within a certain period of time is
defined as the production rate or productivity. Its value com-
monly lies within the milligrams per hour range, meanwhile, it
is important to achieve NPs productivity in gram per hour scale
to popularize this technology, reduce cost and move toward
industrial applications.

There are several strategies that can be employed to measure
the ablated mass: (1) gravimetric, (2) optical extinction, and (3)
analytical chemistry approaches.77 In the gravimetric approach,
the mass difference of a target before and after PLAL is measured
to be the total mass of NPs produced. A high precision balance is
usually employed, and the target should be dried from the liquid
beforehand to reduce artifacts in the measurement due to the
extra weight from the remaining liquid. The advantage of this
approach is the easy and undemanding labor, but is not suitable
for low productivities below the balance detection range, and the
target mass difference can differ from the amount of colloidal
nanoparticles produced if larger fractions of the target are
ablated. This is especially relevant for powder-pressed targets
where the compactness and porosity facilitate the detachment of
larger particles by the laser action. The second approach, optical
extinction, employs a spectrophotometer at the wavelength
range between 200–1000 nm to measure the intensity difference
of light passed through the liquid used as a reference compared
to the colloidal NPs. Based on the Lamber-Beer law, the absor-
bance of a dissolved substance is correlated with the colloid
concentration.78 Hence, the absorbance of the dispersed NPs in
the liquid can be linearly correlated to its concentration after a
calibration of the spectrophotometer for the given material and

solvent. It should be noted, however, that the concentration
determination could only be applied if extinction (which consists
of absorbance and scattering) is dominated by absorbance and
the scattering effect is insignificant. If the scattering effect is
significant, for example, in the case of big NPs sizes, the
absorbance and scattering elements should be separated before
one can determine the concentration through the extinction
method. In addition, size-dependent effects due to plasmonic
absorption cause a wavelength shift depending on the particle
size which may affect the calibration.79 Therefore, it is suggested
to build two types of calibration curves: (1) at the peak wave-
length of the surface plasmon resonance as a function of
nanoparticle size80 to estimate the size and simulate by Mie
theory if the scattering should be considered or can be avoided,
and (2) at a wavelength outside of the plasmon of resonance
where we have a linear dependence of the absorbance with the
concentration. Once the calibration curves are obtained, this
approach is more efficient than the gravimetric method since
the target does not need to be removed and placed for each
measurement. The drawback of this approach is the unreliability
for colloids at extreme concentrations (too high or too low) and
materials which easily agglomerate and sediment, such as
magnetic NPs.81–83 In the case of highly concentrated colloids
where the high absorption obscures the characterization, dilu-
tion of the colloid can be employed to reduce agglomeration
effects. Furthermore dilution increases colloidal stability while
bringing the absorption value to the linear regime of the
concentration calibration curve without reducing the resolution
of the concentration determination. Meanwhile, the approach to
use analytical chemistry techniques usually requires a dilution of
the sample, for instance, the inductively coupled plasma mass
spectrometry (ICP-MS), as the system is well suited for very low
concentrations. These techniques can be used to provide the
calibration curve required for optical extinction spectroscopy.
The drawback of this approach comes from the high price of the
equipment and the possible inaccuracies in the dilution process.

To obtain a reliable value of the gram per hour productivity
in an experimental procedure, long irradiation times of 1 hour
could be required to showcase the robustness and reliability.
Nevertheless, the productivity is commonly obtained by extra-
polating the ablated mass in minutes to one hour. Please note
that in this situation some factors that may affect the produc-
tivity, i.e., nanoparticle shielding, permanent bubbles, and
successive irradiation of the same area of the target, maybe
neglected in the extrapolation. For this reason, the minimum
ablation duration of 5 minutes is required to obtain a reliable
gram per-hour value while also accounting for the effect of
nanoparticle shielding,76 target depth variation, persistent
microbubbles,84 and scanning and repetition rate effects.54 It
has been shown that there is no major discrepancy in the
productivity between 5, 10, 15, and 30 minute ablation time
when using a flow chamber.53 Please note that depending on the
ablation chamber, an extrapolation from 5 minutes of ablation
to 1 hour ablation might not be accurate. For example, colloidal
concentration saturation (indicated by low transparency) will be
reached faster if the ablation is done in a batch chamber with a
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smaller liquid volume, leading to an ineffective ablation and
lower productivity overtime, thus, inaccurate results when extra-
polating from shorter ablation time to long term ablation.
Therefore, it is recommended to use a flow chamber with an
optimum flow rate and a constant feed of fresh liquid to avoid
colloidal concentration variation over time.

Other than the aforementioned mass per time unit (mass
productivity), we can also define productivity by the laser
parameters or material properties, such as laser power and
material density. Dividing the value of mass productivity by the
laser power results in ‘‘power-specific productivity’’ with a unit
of mg h�1 W�1, which defines the efficiency independent of the
laser power used to produce the NPs. Since the laser sources
employed in PLAL differ from one lab to another, it represents a
comparable value to facilitate the repeatability of the process,
however, other key laser parameters such as the pulse duration,
repetition rate, and scanning speed have to be considered when
transferring results to a new setup.85 The density-dependent
productivity is obtained by dividing the mass productivity by
the material density. Therefore, it is also called ‘‘volume
productivity’’ (usually provided as mm3 h�1). This approach is
useful to compare the productivity of different materials with
different densities since high-density materials usually show
higher mass productivity compared to low-density materials.86

Another way to define productivity is the ‘‘molar productivity’’,
obtained by dividing the ablated mass by the molar mass of the
material, which gives out the final units of mmol h�1. Since the
unit is in mole (defining a number of 6.022 � 1023 ions, atoms,
molecules, etc.) instead of molar (mole per liter), the terminology
of ‘‘mole productivity’’ would be more appropriate. This termi-
nology describes the number of atoms ablated from a target
within a period of time, which might be useful in the field of
reactive laser ablation in liquid to determine the stoichiometric
reactant amount and study its influence on the generated phase
of the NPs or the gas composition.

Despite many terminologies used to evaluate and define the
productivity of a PLAL system, there are too many factors
influencing this complex system. It is therefore implausible
to define only one measurement technique and one unit as a
standard in PLAL. The chosen measurement technique and the
unit will then depend on the feasibility of the experimental
procedure in the laboratory and the focus of the research itself,
whether it is to compare the productivity of different materials
or to compare a common material irradiated with different
laser systems. For the goal to scale-up PLAL and reach an
industry-relevant production, the simplest way to define the
productivity is the gravimetric approach combined with well-
calibrated optical spectrophotometry characterization of the
colloids to confirm the absence of large fractions of the target.
This way, it is possible to achieve good repeatability and
accuracy of the method, especially for large production of NPs.

Once the PLAL principles have been introduced, and the
productivity has been defined, the influence of the laser and
material parameters on productivity and strategies to increase
productivity will be discussed. In order to achieve the gram per
hour productivity, approaches such as developing new types of

chambers,74,87–89 bypassing the cavitation bubble,52,90 and
reducing the liquid layer thickness,88,91 have been sought. In
the following chapter, we will discuss the parameters related to
the NPs productivity starting from the laser fundamentals, i.e.,
laser fluence, pulse width, and laser wavelength, to the practical
point of view including the chamber design and target geometry.

4. Strategies to increase nanoparticle
production

The benefits from employing laser-synthesized nanomaterials
for catalysis,10–12,69,70 biocidal elements,92,93 bioimaging,94 and
modification of material properties such as the absorption for
additive manufacturing95 has already been proven. Nevertheless,
these processes demand not only large amounts of nanoparticles
but also cost-effective production processes. As lasers are easily
integrated into the production chain and their industrial use is
widely extended, the incorporation of PLAL is straightforward.96

The development of higher production and cost-effective pro-
cesses to boost the employment of laser-generated nanomater-
ials at a large scale represents one major challenge that
researchers working in this field are facing nowadays.97

A first thought on the possibilities for increasing productivity
in PLAL immediately leads to the study of laser-matter inter-
action. The first approach that can come to mind is to optimize
laser parameters by increasing laser power and repetition rate,
and find the optimum irradiation wavelength for the employed
material. Nowadays, there exist commercial laser systems oper-
ating at wavelengths from the UV to the IR able to achieve mean
power values of hundreds of Watts that allow obtaining huge
fluence values at the focal spot even operating at repetition rates
in the order of the MHz. However, above a fluence threshold,
limitations that depend on the scanning velocity,52 repetition
rate,53 pulse width,68 focusing conditions,98 interaction with the
liquid media,99 and target geometry appear.100 Consequently,
several parameters are involved, and their optimization turns
into a difficult task that even varies depending on the material,
liquid, and pulse duration.

4.1. Finding the optimal laser fluence and pulse duration

A fundamental parameter for nanoparticle production is laser
fluence. Its influence can be explained starting from the well-
established model for material processing in air.101,102 Depending
on the pulse duration, the ablation mechanism differs. In the case
where pulse duration is shorter than the electron cooling time,
typically pulses shorter than 1 ps, the strong evaporation regime is
produced and material removal is associated with the direct solid–
vapor or solid–plasma transition, avoiding melting of the mate-
rial. If the pulse duration exceeds the electron cooling time, the
released heat causes first the melting of the material surface and
its posterior vaporization or solidification. Following the results
obtained by this model,101–103 the ablation depth (L) can be
described in terms of the fluence:

L ¼ d � ln finc

fth

� �
(3)
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finc ¼
2Ep

pw0
2

(4)

Here, d is the effective penetration depth, finc is the incident
fluence on the target (which can be calculated by eqn (4)), fth is the
threshold fluence, Ep is the pulse energy, and w0 is the beam half-
waist (spot radius). This model of laser ablation in air can be used
to explain the relationship between ablated volume per pulse and
fluence by assuming a Gaussian-shaped laser intensity profile.
Integrating eqn (3), then substituting beam waist w0 with inci-
dence fluence finc based on eqn (4), to get eqn (5). The derivation
of this equation can be found in the ref. 104 and 105. Please note
that this equation cannot be directly implemented for PLAL, as the
presence of the liquid causes non-linear interactions, absorption,
as well as scattering, and shielding due to the cavitation bubble
and generated NPs. Nevertheless, this equation will help to under-
stand the relationship between ablated volume and incident
fluence, which is an important parameter in PLAL.

V ¼ Ep

2finc

� d � ln finc

fth

� �2

(5)

From eqn (5), the ablated volume per pulse exhibits a logarithmic
relationship with the incident fluence; the higher the fluence, the
larger the ablated volume per pulse. The incident fluence can be
increased by focusing the laser beam, increasing the laser power,
and reducing the repetition rate (to increase the pulse energy).
The fundamental parameter defining the ablation process regime
is the threshold fluence (Fig. 3). When the incident fluence
is below the ablation threshold, the NP yield is negligible.
When the incidence fluence reaches the ablation threshold,
the ejection of matter increases significantly by more than one
order of magnitude.106 After overcoming the ablation thresh-
old, increasing the incident fluence has a lower effect on the
ablation yield, and the ablation volume is determined by the
effective penetration depth.105

Above the ablation threshold, the effective penetration depth is
a key parameter to increasing the ablation volume. The penetra-
tion depth of a material is influenced by the pulse width and the
materials’ properties, such as reflectivity, absorbed wavelength,
and surface structure. An increasing pulse width results in a
decrease in the penetration depth.107,108 The penetration depth
can be classified into optical penetration depth and thermal
penetration depth. The optical penetration depth dominates in
the low fluence, ultrashort pulsed lasers (o1 ps) regime because
the pulse duration is shorter than the electron cooling time,
avoiding energy dissipation through heat transfer to the target
materials. Reduction of target heating results in a more efficient
ablation. Meanwhile, the thermal penetration depth is the
dominating factor for longer pulses (Z20 ps). When the pulse
duration is longer than the electron–phonon relaxation time,
usually a few picoseconds for metals,55 the energy received by the
material will be dissipated to the atom lattice of the material as
heat and subsequent melting, leading to a lower process yield.

In addition to the penetration depth, the ablation threshold
is also affected by the pulse width. A simulation for a 150 ps
laser versus a 15 ps laser (Fig. 3),106 found that the ablation

threshold is B20% higher for the longer pulse width (35 J m�2

at 150 ps) than the shorter pulse width (29 J m�2 at 15 ps). It is also
reported that the ablation yield of the 15 ps laser pulse is constantly
higher at all fluences above the ablation threshold compared to the
150 ps laser. Meanwhile, if the ablation is performed at a fluence
lower than the ablation threshold, the pulse duration does not
change the yield of the ejected species.106 Experimental results
confirm the ablation threshold variation with the pulse width
(100–4500 fs) for copper, aluminum, and steel.109

Based on the above discussion, we might consider using
ultrashort pulse lasers (femtosecond lasers) over picosecond and
nanosecond lasers for a higher production rate. Nevertheless, the
influence of pulse width on NP productivity by PLAL is not only
the ablation threshold reduction as in air, but also peak power
and intensity-dependent interaction of the pulses with the
liquid.110–113 Picosecond lasers are found to provide a suitable
subcritical peak pulse power for the ablation process in the liquid
medium, thus, generating the highest NPs yield per pulse and
per unit energy.112 The ultrashort femtosecond lasers, on the
other hand, trigger non-linear optical absorption, self-focusing,
and filamentation effects in the liquid medium as it reaches
supercritical peak pulse power, which affects the beam spatial
profile and generates energy losses, decreasing the overall

Fig. 3 Simulation of laser ablation of organic solids at different fluences
using two different pulse widths. Hollow data points represent the ablation
regime below the ablation threshold and the filled data points denote the
ablation at or above the ablation threshold. The graphs show that the
ablation using a shorter pulse width resulted in a lower ablation threshold
fluence. Reproduced from ref. 106 with the permission from AIP Publishing,
copyright 2000.
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productivity.112,114 The same trend is also observed for longer
pulse duration in the nanosecond regime, in which plasma
screening is attributed to be the main cause of productivity
reduction, besides the energy loss from thermal processes such
as localized heating and melting.112 It has been suggested that the
use of picosecond lasers is advantageous compared to femtose-
cond lasers if the generated thermal energy can be redistributed,
i.e., by using a liquid flow ablation chamber.114

Regarding the efficiency of ns and ps PLAL, a study by
Kohsakowski et al. (2018)115 compared the mass-, power-, and
investment-specific productivities of three different laser systems
for the ablation of gold, platinum, silver, and nickel in water. In
terms of absolute productivity depicted as mass per unit time,
(Fig. 4a), the picosecond laser system supported by the 500 m s�1

scanning speed polygon scanner52 achieved the highest value
compared to the nanosecond laser system. Nevertheless, as the
use of a polygon scanner reduced the laser power reaching the
target by half, thus the power-specific productivity is also reduced
by half, making clear that the scanning technology is one of the
main limits to overcome the barrier of PLAL productivity. For gold
and silver, the power-specific productivity is lower for the picose-
cond laser compared to the 10 ns-laser, while it is almost similar
for platinum and nickel (Fig. 4b). In addition, the investment-
specific productivity, which defines the mass of generated NPs
divided by time and investment cost (Fig. 4c), showed that the
10 ns-laser performed better than the 3 ps-laser for gold and silver
NP production by 11% and 15% in every 1000 h investment,
respectively. The absolute power and investment-specific produc-
tivities confirm that longer pulses, 40 ns laser source, lead to
lower productivity due to thermal interactions and plasma shield-
ing. Although the investment-specific productivity depends on the
target material, from the economic point of view, the considera-
tion of laser power and investment cost is crucial as even a small
difference can turn into a significant profit in the long run. In
addition, the lower initial investment cost of the 10 ns-laser at
around 100 000 h, compared to the approx. 500 000 h for the 3 ps-
laser, enables small-scale industries to begin investing in this
green method to produce NPs. Furthermore, both ns and ps lasers
can be complementary in terms of producing different material
phases, core–shell structures, or composites, making productivity
upscaling relevant in both cases.

The fluence defines the ablation regime, and the pulse
duration has been proved to play a key role by influencing
the threshold fluence of the material and the intensity that
determines the interactions with the liquid. However, the pulse
duration is not the only important factor to define the intensity
and fluence of the laser beam interacting with the liquid and
the target. The spatial focusing conditions define the incident
fluence and laser intensity during propagation, influencing
PLAL productivity. Placing the focal spot in front of the target,
i.e., in the liquid, leads to the laser mainly interacting with the
liquid in front of the target, inducing liquid breakdown and
scattering of the incoming laser beam. Depending on the laser
wavelength, focusing the laser beam in the liquid may also
induce fragmentation of the generated NPs that shield the laser
beam energy from reaching the target.76 Placing the focal spot

on the target surface is usually preferred to maximize the laser
fluence and get the maximum ablated volume. Nevertheless,
Waag et al.75 suggested that placing the focal spot slightly
behind the target (0.7–4.7 mm) increases NP productivity
compared to placing the focal spot on the surface of the target
(0 mm) (Fig. 5). The authors argue that the highest productivity
does not occur at the focal spot due to the minimized spot area
of the laser, which would be equivalent to performing the
process with a longer focal length or smaller diameter of the
laser beam before the lens. Thermal analysis of the liquid and
the target revealed that the target reached the minimum heating

Fig. 4 Productivity comparison of three different laser systems for the
ablation of Au, Pt, Ag, and Ni in water, adapted from ref. 115 with
permission from author, licensed under CC BY 4.0, copyright 2018. Each
figure indicates a different productivity calculation approach: (a) mass
productivity, (b) power-specific productivity, and (c) investment-specific
productivity. The asterisk (*) indicates that the data is reproduced from
ref. 52 with permission from IOP Publishing Ltd, copyright 2016.
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while the colloid reached the highest temperature under the
experimental conditions proposed. The temperature distribution
in the liquid and target is explained by the reduction of heating
effects by the proposed laser defocusing. The high temperature
of the liquid is caused by the heat released from the larger
number of generated NPs.75 Later results confirmed that the
material removal rate can be maximized by changing the focus-
ing conditions and varying the size of the beam waist.104

Overall, the spatial focusing conditions influence PLAL
productivity by affecting the fluence and intensity profile of the
beam at the focal spot and propagation through the liquid. The
focal length and beam diameter, directly affect the numerical
aperture and focal spot size, which completely modifies the laser
intensity during propagation as well as the fluence. The optimum
focal length and beam diameter depend on the target due to the
differences in the threshold fluence between materials, the liquid
due to the nonlinear threshold fluence and intensity, and the
pulse duration. The modification of the focal length within a PLAL
system is many times unfeasible since fast galvanometric scan-
ners are employed, and the f-theta lens exchange requires an
economical investment and sometimes difficult modification of
the chamber positioning. Consequently, for PLAL systems with
fixed optics, defocusing the beam appears as a straightforward
solution to achieve the optimum processing fluence.

4.2. Taking into account the nonlinear effects

The impact of pulse duration on the primary mechanism of laser
material removal has been previously discussed. Furthermore,
the width of the laser pulse, which affects peak power and

intensity, has been shown to have an impact on PLAL through
its influence on parameters such as cavitation bubble properties,
absorption, scattering, and target temperature. For example,
experiments on the laser ablation of metal targets in air showed
that material removal efficiency is increased as the employed
laser pulse width is shorter,116,117 due to the reduced thermal
interaction and more efficient use of the energy for material
removal process.114,118,119 This evidence points towards femto-
second lasers as an ideal tool for efficient material removal.

However, the nonlinear interactions that dominate the
ablation process at the femtosecond time scale also represent
a source of energy losses due to the generation of these phenom-
ena in the liquid prior to the interaction with the target.120

Besides, nonlinear effects like filamentation and self-focusing
not only produce energy losses but also modify the divergence of
the beam and so the focal spot position.98 This variation alters
the ablation fluence if the target is not conveniently realigned
and complicates the reproducibility of the experiment.98 This
fact is even more critical considering that the modification of the
focal spot position is power dependent, and so a variation of
the laser energy turns into a shift in the focal spot location.121

It should be noted that the appearance of this phenomenon is
not only related to the laser pulse width but also to the laser peak
power and intensity.112 The frontier between linear and non-
linear effects predominance is generally assumed to be in the
limit between ps and fs timescales.113,122 Nevertheless, para-
meters related to the material and laser properties should be
considered for every specific situation to obtain the threshold
value and evaluate the optimum experimental conditions.99

Fig. 5 Schematic illustration of how different focusing conditions affect the productivity: (a) focal spot on the liquid resulted in the lowest productivity, (b)
focal spot behind the target (near, 2 mm) resulted in the highest productivity, and (c) focal spot behind the target (far) resulted in the moderate productivity.
Ablation rate results are based on (d) extinction approach and h gravimetrical approach. Adapted from ref. 75 with permission from Elsevier, copyright 2019.
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The limitations related to the presence of a liquid medium
and energy losses due to the generation of nonlinear effects
restrict the application of fs lasers for nanoparticle production
upscaling.123 Then, as an intermediate solution to decrease
thermal interaction while avoiding strong nonlinear inter-
actions, ps lasers are commonly employed when production
upscaling is desired.74 Nevertheless, effective control of non-
linear effects produced in the liquid media is a promising path
towards PLAL production increase by the employment of high
power and high repetition rate femtosecond lasers. Recently,
the Simultaneous Spatial and Temporal Focusing (SSTF) tech-
nique has been proposed in PLAL as an alternative to conven-
tional single-lens focusing to address the problem of energy
losses due to the nonlinear effects interaction of femtosecond
pulses propagation through the liquid layer. The key idea of the
SSTF system is that a diffractive grating provides a spatial chirp
to the femtosecond beam, so the different spectral components
are separated and only recombine at the spatial focus of the
objective lens (Fig. 6a). This produces a significant increase in
the pulse width during its propagation in the liquid and,
consequently, the reduction of the nonlinear losses. However,
thanks that the grating is imaged into the sample by means of
an optical setup, the original femtosecond pulse width is
recovered over the target so keeping the desired high-
efficiency ablation of femtosecond pulses. This strategy for
beam delivery allows a reduction of a 70% factor of the non-
linear energy losses compared to the standard fs PLAL system,
resulting in a productivity increase of 2.499 (Fig. 6b).

4.3. Reducing liquid and nanoparticles absorption and
scattering via laser wavelength selection

Nonlinear effects are not the only interaction with the liquid
that influences productivity, linear interactions such as absorp-
tion, reflection, and scattering occurring both in the liquid and
the target need to be accounted for to maximize PLAL NPs yield.
The laser wavelength defines these processes, as each material’s
absorption, reflectance, and scattering depend on the wavelength
of the incident light.124–126 Higher absorption of the target at the

laser wavelength leads to a higher energy density delivered to the
sample and so the ablated volume increases. For example, for
laser ablation in air, if a material has a low absorptivity at
1064 nm, the amount of ablated material with an Nd:YAG
1064 nm laser will be lower.126

The optimum processing wavelength of the material can be
determined by spectrophotometry, hence defining the most
suitable wavelength for laser ablation in air. Nevertheless, the
absorption of the liquid and generated nanoparticles in the
laser ablation in liquid produce energy losses, requiring a laser
wavelength with low liquid absorption and high material
absorption.127,128 This key difference with ablation in air is
shown in materials such as Au and Ag where the maximum
ablation efficiency laser wavelength differs from ablation in
air.129,130 Scattering and inter- and intra-pulse absorption are
commonly found as the main hurdles to increasing PLAL
productivity. Intra-pulse absorption is related to the laser pulse
width, which is found for longer pulses in the ns regime and
above, as the pulse tail can be absorbed by the generated NPs
and plasma plume from the pulse front.127 The scattering and
inter-pulse absorption, on the other hand, are associated with
the extinction coefficient of the liquid and the generated colloi-
dal NPs, which affect the laser energy delivered to the target.

As reported by Intartaglia et al. (2014),131 the ablation of Si in
water using a UV laser (355 nm) resulted in lower productivity
compared to the ablation using a NIR laser (1064 nm) as shown
in Fig. 7. They observed two different regimes in the UV laser
ablation, termed transient and steady-state regimes, where the
productivity is higher during the transient regime (smaller
number of pulses, shorter ablation time) compared to the
steady-state regime (larger number of pulses, longer ablation
time) (Fig. 7b). TEM analysis shows that the smaller Si NPs size
is obtained with increasing ablation time, proving the photo-
fragmentation phenomenon.131 Meanwhile, the ablation using
a NIR laser (Fig. 7a) shows a steady ablation yield and the
particle size is also bigger than the UV-ablated Si NPs. These
effects are especially prominent if a batch chamber is used in
PLAL, where the generated NPs stay in the chamber after the

Fig. 6 (a) Experimental setup of the fs SSTF-PLAL system based on the spatial separation of the spectral components of an fs pulse that is only
recombined at the focal spot, returning to the initial fs pulse duration. (b) NP productivity as a function of the pulse energy for the fs SSTF-PLAL, standard
fs PLAL (COS), and analogous system to fs SSTF-PLAL without spatial separation of the spectral components (IOS). Reproduced from ref. 99 with
permission from Chinese Laser Press, copyright 2019.
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generation and shield the laser beam. The employment of a
flow chamber is thus recommended to reduce scattering and
absorption related to the generated NPs and to improve the
productivity. Selecting the laser wavelength with minimum
absorption and scattering by the generated NPs is crucial to
maximizing the laser energy delivered to the target. While UV
laser is more beneficial to produce smaller NPs due to the
fragmentation effect, the NIR laser is the most ideal choice to
obtain high ablation yield due to the low absorption by
generated NPs.

4.4. Bypassing the cavitation bubble

The optical phenomena occurring in the liquid are not the only
difference between laser ablation in air and PLAL. The presence
of the liquid and the laser interaction promotes the formation
of a cavitation bubble for each pulse interacting with the target.
This vapor bubble is formed when the local pressure drops
below the liquid’s vapor pressure; hence, the inside of the
bubble is filled with vapor. The cavitation bubble in PLAL is
formed due to the instant vaporization of the liquid exposed to
the heat of the plasma plume. The temperature of the plasma
plume was measured experimentally by capturing the optical
emission intensity of the plasma during the ablation of a target
using an ICCD camera with a resolution of 50 ns.60,132–135 The
obtained continuum spectra are fitted to the Planck equation to
obtain the plasma plume temperature.136,137 The ablation of
materials in water is reported to generate plasma plumes with a
temperature in the range of 4000–8000 K.132,133,135,137 Meanwhile,
another study of graphite ablation in water with a 5 ns resolution
shows a maximum plasma temperature of 25 000 K, which

reached 20 ns after the laser pulse interaction.138 After the
cavitation bubble formation and expansion up to the maximum
height, the cavitation bubble undergoes a shrinkage process and
finally collapses, releasing a shockwave to the surrounding liquid.
The lifetime and maximum height of a cavitation bubble depend
on many factors, including laser fluence,76 pulse width,76,139,140

number of irradiated pulses at the same spot,141,142 liquid
density,143 the thickness of liquid layer,144 liquid viscosity,145

target geometry,100 and liquid compressibility.146 Its maximum
height varies strongly with the pulse width, ranging from tens of
mm as in femtosecond tissue ablation,139 to several mm in
nanosecond ablation of alumina.140

The cavitation bubble’s lifetime and size strongly constrain
PLAL productivity. In continuous ablation PLAL, the first bubble
generated by the first laser pulse can shield the subsequent
pulses, hindering the laser energy that reaches the target mate-
rial. Two strategies have been proposed to bypass the cavitation
bubble (Fig. 8a). The first one is to temporally bypass the
cavitation bubble, which means that the subsequent pulse is
sent when the previous cavitation bubble already collapsed.90

This approach is only suitable for low repetition rate laser
sources, for example, if the lifetime of the cavitation bubble is
100 ms, the maximum repetition rate that can be employed is 10
kHz to temporally bypass the cavitation bubble.147 Nevertheless,
high repetition rate lasers with high pulse energy are desired to
increase PLAL productivity. Hence, the second proposed mecha-
nism, i.e., spatially bypassing the cavitation bubble, represents a
more feasible way to achieve industrial-scale PLAL production.
Spatial bypassing of the cavitation bubble can be achieved by a
high scanning speed of the processing pattern. The distance

Fig. 7 Laser wavelength influence on the productivity and particle size of Si ablation in water. (a) Ablation using a 1064 nm NIR laser shows steady
ablated mass as a function of a number of pulses (ablation time) in different fluences. The inset, indicated by the green arrow, shows the TEM image and
particle size distribution of Si ablated using a 1064 nm NIR laser. (b) Ablation using a 355 nm UV laser produces smaller Si NPs with increasing ablation
time due to photo-fragmentation. Insets, indicated by the blue arrows of the respective data point, show the TEM image and particle size distribution of
Si ablated using a 355 nm UV laser. Adapted from ref. 131 with permission from The Optical Society, copyright 2014.
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between pulses has to be at least equal to the cavitation bubble
radius so the subsequent pulse does not interact with the bubble
formed by the previous pulse. The suitability of this approach for
PLAL production upscale was confirmed by Wagener et al.
(2010),90 comparing the productivity of Zn ablation in tetrahy-
drofuran (THF) varying the inter-pulse distance and repetition
rate to study the influence of temporal and spatial bypassing of
the cavitation bubble in picosecond PLAL.90 In their setup, the
inter-pulse distance was kept constant for different repetition
rates, maintaining the number of pulses irradiation of the
sample (106 pulses) to obtain comparable productivity values.
At 10 kHz, increasing the inter-pulse distance up to 125 mm
enhanced the ablation efficiency. Then, a gradual decay of the
ablation rate is observed (Fig. 8b, hollow data points). The initial
productivity increase is related to the spatial bypassing of the
cavitation bubble combined with the incomplete thermal relaxa-
tion of the material irradiated by the previous pulse, leading to
trapped heat and a phase explosion as the dominant ablation
mechanism. Contrarily, for inter-pulse distance larger than
125 microns, the irradiated area has not experienced heat
accumulation due to the previous pulse, being thermal ablation
as the main mechanism instead of phase explosion, and gradu-
ally lowering the ablation rate.90 Temporal bypassing is achieved
at 1 kHz, with a low productivity variation for lower repetition
rates (Fig. 8b, filled data points). It is important to critically note
that when evaluating the size and lifetime of cavitation bubbles
with respect to productivity, the dimensions of a bubble induced
by a single pulse are being considered. Nevertheless, it is known
that these dimensions vary when multiple pulses hit a target.142

In a real NP production scenario, the laser power and
repetition rates are maximized while keeping the optimum
fluence in order to deliver the larger amount of pulses and
maximize the ablated volume. In this scenario, a fast-scanning
system is required to increase the inter-pulse distance and
increase the ablated area to ensure that the target has enough
time between successive scanning patterns to cool down. The
scanning speed becomes a fundamental parameter together

with the repetition rate and the cavitation bubble size for each
specific system to ensure cavitation bubble bypass. As an example,
for a cavitation bubble with an average radius of 100 mm produced
with a laser source operating at a 100 kHz repetition rate, the
minimum scanning speed required to completely bypass the
cavitation bubble is 10 m s�1. The galvanometer scanner technol-
ogy can reach 10 m s�1. Nevertheless, if the repetition rate is
further increased to the MHz range, scanning speeds of at least
100 m s�1 are required. As the number of delivered pulses
per second is critical for PLAL productivity, the required scanning
speeds reach the current technological limitations.

The galvanometer scanners are based on the mirror(s)
revolved with rotary motor(s) that deflect the input beam into
a designed pattern with micrometric precision.148 This working
principle limits the maximum speed that can be achieved by this
technology due to the inertia from the mass of the mirror(s) and
other moving parts.149 The fastest reachable speed of a galvan-
ometer scanner is less than 200 rad s�1.150,151 If the scanner is
paired with an f-theta lens with a focal length of 167 mm, the
maximum scanning speed at the working field is approximately
35 m s�1.152 In 2013, De Loor introduced a new scanning
technology based on the rotation of mirrors fixed on a polygon
wheel.150 The wheel rotates at a constant speed and the incom-
ing beam is deflected on the flat facet of the mirrors (Fig. 9a).
This polygon scanning technology offers a beam deflection
speed of up to B1000 m s�1.150,153 However, since the corner
of the polygon wheel will deflect the beam at uncontrolled
angles, the laser beam is shut off during this time and the laser
beam only irradiates the target within a certain percentage of the
duty cycle. This effect is more pronounced for small processing
patterns, requiring large patterns with lower spatial resolution
than the galvanometric scanners.148 Streubel et al. (2016)74

proposed for the first time the employment of a unidimensional
polygon scanner (500 m s�1) together with a galvanometric
scanner to achieve a 2D scanning of the target sample
(Fig. 9a). The fast scanning system was employed with a
500 W, 10 MHz, 3 ps laser source to maximize the number of

Fig. 8 Bypassing the cavitation bubbles. (a) Schematic representation of temporal and spatial bypassing of the cavitation bubble (reproduced from ref.
74 with permission from The Optical Society, copyright 2016) and (b) ablation per-pulse of Zn in tetrahydrofuran as a function of the interpulse distance,
depending on the bypassing mechanism. Filled data points are temporal bypassing by using a low repetition rate (1 kHz), while hollow data points
represent spatial bypassing (repetition rate of 10 kHz). The inset shows the ablation per pulse of the Zn target in air. Adapted from ref. 90 with permission
from American Chemical Society, copyright 2010.
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pulses per second by processing the target at 10 MHz achieving
fluences above the threshold fluence thanks to the high power
delivered.74 The fast scanning speed allows the bypass of the
cavitation bubble, reaching productivities as high as 4 g h�1 for
PLAL of Pt. A direct comparison of PLAL with a galvanometric
scanner (5 m s�1) compared to the polygon scanner (484 m s�1)
resulted in a difference up to 16, 7, and 11 times for the ablation
of Au, Pt, and Au90Pt10 targets, respectively (Fig. 9b).

In conclusion, PLAL upscaling requires faster scanning
technologies. Using high-speed polygon scanners is one of
the easiest ways to enhance NPs production.154 However, their
high prices, low precision demanding large scanning patterns,
and their duty cycle that reduces the initial laser power
employed in the target processing by a 50% factor, make it
difficult the implementation of this technology in every PLAL
system. Consequently, galvanometric scanners generally still
represent more economical and repost alternative for PLAL,
especially when fast galvanometric scanners reaching 30 m s�1

are employed.

4.5. Avoiding persistent microbubbles

The productivity of PLAL can be adversely affected not only
by cavitation bubbles and NPs in the laser path but also by
the formation of so-called persistent microbubbles during the
ablation process. Persistent microbubbles are spherical and
stable gas bubbles, generated from the collapse of the cavita-
tion bubbles. While a cavitation bubble lifetime is approxi-
mately 0.1–1 ms,145 persistent microbubbles can stay even as
long as seconds.135 Consequently, it is critical to understand the
liquid, target, and laser processing parameters related to the
lifetime of the persistent microbubbles in order to avoid their
presence that shields the laser beam and can even become a
safety issue when they stick to the chamber window, increasing
reflectivity and even leading to glass breakage by the high-
intensity laser source. Kalus et al. (2017)145 investigated the
formation of persistent microbubbles during the ablation of
gold in 11 different liquids with various viscosity, as shown in
Fig. 10a and b. The influence of the liquid viscosity over the
amount, cross-sectional area, size, dwell time, and ascending
speed of the persistent bubbles was evaluated. It was found that

higher liquid viscosities increased the size and dwell time of the
generated persistent microbubbles.145 As shown in Fig. 10b, the
ablation yield difference based on the liquid viscosity shows
a factor 3 reduction when the ablation is done in liquids with a
viscosity higher than 20 mPa s compared to liquids with a
viscosity lower than 1 mPa s. A different study86 revealed the
influence of the target material over persistent bubbles genera-
tion. Different targets were irradiated in water and the gas
formation (H2 and O2) was measured. The results show that
less-noble metal such as Al produces the largest gas volume,
followed by titanium, iron, and copper, respectively, while less
oxidation-sensitive metals such as Au, Pt, and Ag produce the
lowest gas formation (Fig. 10c). The authors suggest that the
standard reduction potential (E0) of these elements influences
the volume of gas formed. In the PLAL system, the elements with
negative E0 values readily react with water vapor to form oxides
and molecular hydrogen as a side product.86 The formation of
more gas bubbles for these types of elements results in a lower
ablation yield due to the shielding of the incoming laser beam
(Fig. 10d).86 Meanwhile, noble metals such as Au and Pt are less
prone to oxidation, thus, the gasses formed during the PLAL of
these elements are associated with the laser-induced breakdown
of the liquid molecules.86,155,156

Unlike cavitation bubbles, which can be spatially and tem-
porally located, thus allowing the implementation of bypassing
strategies, persistent microbubbles exhibit an unpredictable
evolution that limits their bypass. Consequently, liquid flow
strategies such as a high flow rate and good laminar flow represent
the best approach to remove the detached persistent bubbles.
Controlling the liquid flow by the chamber design becomes a
fundamental factor for PLAL upscaling since turbulences would
extend the retention time of these shielding bubbles inside the
chamber, resulting in a reduction of the process efficiency.

4.6. Knowing the effect of target morphology

The morphology of the target influences PLAL productivity
due to the different shapes, lifetimes, and dynamics of the
produced bubbles. These bubble dynamics influence NP for-
mation. Kohsakowski et al. (2016)100 studied 3 different target
geometries: wire tip, clamped wire, and bulk target, in relation

Fig. 9 (a) Schematic illustration of the ablation set-up using a polygon scanner (reproduced from ref. 74 with permission from The Optical Society,
copyright 2016) and (b) power-specific ablation rate comparison of a galvanometer scanner (red) to the polygon scanner (black) for different materials
(reproduced from ref. 54 licensed under CC BY 4.0, copyright 2021).
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to their bubble formation and dynamics for a single pulse
experiment (Fig. 11). Ablation at the tip of the wire results in a
23% shorter bubble lifetime compared to the ablation in a bulk
target, due to the springboard movement, which allows a larger
displacement of the bubble, as shown in Fig. 11b. This spring-
board movement also provides a larger displacement of the
bubble rebound from the target, compared to the clamped wire
and the bulk target (Fig. 11a and c, respectively), which showed
a longer duration of the bubble rebound attachment to the
target. Multi-pulse experiments were also performed to evaluate
PLAL productivity for these three geometries. Wire-type targets
(clamped wire and wire tip) showed a productivity increase
of up to 2.5 times higher compared to the bulk target. The
productivity increase is associated with the elasticity of the wires,
which can provide better bubble movement. Nevertheless, the
spring-like movement of the wire tip target does not increase
the productivity compared to the clamped wire target, due to the
limitation in the ablation set-up where the incident laser is
shielded by the bubbles rising upward. The authors suggest that
the productivity could be improved if the liquid flow is perpendi-
cular to the target which helps to transport the bubbles away
from the ablation area.

In a different study, the influence of the wire diameter on
PLAL productivity was evaluated for a silver wire target ablated
by a 10 ns laser. The highest ablation efficiency is found for a
wire diameter of 750 mm, resulting in a 2 times higher ablation
rate than the wire diameter of 1500 mm.89 Based on these two
reports, a wire target is an interesting target geometry to
increase PLAL productivity due to the changes in bubble
dynamics. The modification of the silver target geometry (wire
or bulk) does not influence the NP size distribution.89

Nevertheless, a wire target requires precise laser beam position-
ing to get the correct focalization of the beam on the wire
surface, and not all materials are available as wire shapes.
Hence, conventional targets in a form of a bulk plate or a
compressed powder pellet are still chosen over the wire shape
for easier beam positioning and availability.

Not only the shape but also the texture157 of the target’s
surface affect how the laser beam interacts with the target.
Nadarajah et al. (2020)158 studied the correlation between the
change of surface microstructure during picosecond PLAL with
the productivity of some metals and alloys, such as Fe, Au, Ag,
and their binary alloys. In the study, the formation of laser-
induced periodic surface structures (LIPSS) was observed on the
ablated surface of Au and Fe targets and their binary alloys,
while Ag does not show the formation of LIPSS (Fig. 12a).
Regarding the productivity, it is suggested that the formation of
LIPSS on the surface of some alloys affects the reflectivity, as
measured for the reflectivity of Ag50Au50 without LIPSS formation
that is 20% lower compared to the surface with LIPSS.158 Since
LIPSS stem from the linear polarization of the laser, using a
quarter wave plate to convert the linear polarization to circular
polarization was found to reduce LIPSS formation and increase
the productivity of the metal alloys tested (Fig. 12b). Nevertheless,
LIPSS is a material specific and fluence-specific phenomenon,
and the correlation of LIPSS to the PLAL productivity is still newly
explored, hence, further studies are required.

The compactness (degree of porosity) of the target should
also be considered to avoid biased results of the productivity
due to the removal of large parts of the target not contributing
to NP formation. Schmitz et al. (2016)48 compared the gravime-
trical and optical (extinction) techniques to measure the

Fig. 10 The influence of persistent microbubbles on the productivity. (a) The formation of persistent microbubbles and (b) the influence of liquid
viscosity on the productivity of Au ablation in the respective liquids. Adapted from ref. 145 with permission from the PCCP Owner Societies, copyright
2017. (c) The formation of persistent microbubbles in the ablation of different elements and (d) NPs productivity and power specific productivity for
different elements. Adapted from ref. 86 with permission from the PCCP Owner Societies, copyright 2019.
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productivity of targets with different porosity, namely micro-
powder-pressed targets (69, 76, and 87% density), a nano-
powder-pressed target (99% density), and a bulk target (100%
density).48 The micro-powder-pressed targets showed the highest
productivity in the gravimetrical approach compared to the
nanopowder-pressed and bulk targets. The absorption measure-
ments indicated that the absorbance values remained fairly
consistent across the three samples. However, the apparent
contradiction can be attributed to the formation of larger particles
in the micro- and millimeter range from the low-density targets,
which led to higher productivity values in gravimetric measure-
ments. The absorbance values, on the other hand, only represent
smaller particles, which were stable in the colloid during the
measurement. The bigger particles already settled at the bottom
in less than one minute, thus, did not increase the concentration
of the colloid. Hence, it is important to use densely packed
pressed powder or bulk targets to avoid biased result especially
when PLAL productivity is characterized by the gravimetrical
approach.

There is a significant correlation between the target mor-
phology and the productivity of the PLAL system due to its
influence on the bubble formation and the laser interaction
with the target and liquid. Cylindrical target such as wire is

shown to improve the productivity due to the spring-like movement
which reduces the bubble lifetime, but the small area makes it
difficult to align the beam. Moreover, the curved shape changes the
focusing condition within the ablated area, thus resulting in
uneven fluences. The plate and sheet types are the most commonly
used targets for ablation due to their flat surface and accessibility
from the manufacturing company. Employing the flat target is thus
recommended. Compact targets such as pressed powder with high
density and low porosity, or bulk metal and alloy targets should be
used in order to avoid the removal of larger particles.

4.7. Optimizing the ablation chamber design

The simplest ablation chamber design in PLAL is a glass beaker
or a cuvette where the target is placed either laying or standing
depending on the direction of the incoming beam (Fig. 13a).
This setup is sufficient for the production of NPs in a small batch,
but for larger production, the employment of these chambers is
no longer feasible. Due to the limited volume of the chamber, the
colloid becomes concentrated rapidly, which hinders the incom-
ing laser beam to reach the target. In addition, the NPs and
persistent bubbles that are formed scatter the incoming laser
beam since there is no liquid flow to remove them.159 Hence,
different chamber designs have been proposed to improve the

Fig. 11 Bubble morphology depending on the target geometry of (a) wire target clamped on both ends, (b) wire target clamped on one end, and (c) bulk
target. Adapted from ref. 100 with permission from the PCCP Owner Societies, copyright 2016.

Fig. 12 The influence of laser polarization on the laser-induced periodic surface structures (LIPSS) formation for picosecond PLAL of different targets.
(a) SEM images and (b) productivity increase with different laser polarization. Adapted from ref. 158 with permission from The Optical Society,
copyright 2020.
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PLAL production rate. Barcikowski et al. (2007)114 presented a type
of batch chamber with a magnetic stirrer to make the liquid flow
inside the chamber (Fig. 13b). The liquid flow inside the chamber
is aimed to induce target cooling during ablation and displace the
generated NPs away from the target to reduce laser shielding.
With this setup, the productivity of femtosecond laser ablation
is increased from 0.79 � 0.36 mg h�1 (stationary) to 3.0 �
0.4 mg h�1 (liquid flow). The authors also compared ablation
using a picosecond laser with higher pulse energy and repetition
rate, resulting in an NP production rate of 31.0 � 0.4 mg h�1

(liquid flow).
A different approach includes the liquid flow within the

chamber produced by the rotation of the cylindrical target
attached to a brushless motor, as shown in Fig. 13c.87 At the
same time, the rotating target drives away the generated NPs
from the vicinity of the target and increases the inter-pulse
distance reducing cavitation bubble shielding.87 The influence
of the rotation speed on the ablation rate was evaluated by the
colloidal optical extinction approach. The highest PLAL pro-
ductivity was found at the lowest rotation speed (300 rpm),
decreasing with the increasing rotation speed. Based on the
flow simulation results as shown in Fig. 14, increasing the
rotation speed leads to the formation of unsteady flows and
vortices in front of the target’s surface, which traps the bubbles
produced during PLAL increasing laser shielding.87 A similar
result, reporting lower ablation efficiency with the increasing
speed of the rotating target was reported for the ablation of
NiTi in water.160 In this case, the target rotated while the liquid
was poured on the ablation spot instead of rotating the target
immersed in the liquid, as shown in Fig. 13d. The authors

suggest that the high ablation rate with lower rotation speeds is
due to close pulse proximity and overlapping effects, which
might improve laser absorption of the next pulse.160

The next evolution in chamber design is a flow-through
chamber that allows PLAL with a continuous feed of fresh
liquid and collection of the generated colloid161 (Fig. 13e).
The liquid is pumped through the chamber where ablation takes
place, and the generated NPs are carried out of the ablation
chamber so that laser shielding is avoided. An optimum liquid
flow rate is achieved when the generated NPs are completely
removed from the ablation area, confirmed by monitoring the
productivity with increasing flow rates.53 An advantage of this
chamber is the capacity to extend PLAL without a colloid concen-
tration saturation and is only limited by the target drilling which
allows processing times of several hours even for thin (1 mm)
targets.52

Alternative flow chamber designs include a nozzle and a
wire feeder (Fig. 13f) to reduce the liquid layer thickness and
achieve long-term ablation by continuously feeding the target
material into the system.88 This novel system avoids the batch
chamber’s main limitation for PLAL large productivity, which is
the need to replace the liquid frequentlz as NPs concentration
reaches a saturation value that does not allow the laser beam to
reach the target. The flow chamber is more efficient than the
batch chamber, but focus readjustment is still needed due to the
depletion of the target’s thickness. Meanwhile, a wire target feeder
in a liquid jet setup provides the option to feed continuously the
target material while keeping the advantages of a continuous
liquid flow (Fig. 13f). Prospectively, this setup is proposed to be
more efficient, as there is no need to stop the ablation to change

Fig. 13 Type of ablation chambers in the LAL: (a) stationary batch chamber, (b) batch chamber with the liquid flow (reproduced from ref. 114 with
permission of AIP Publishing, copyright 2007), (c) batch chamber with rotating target (adapted from ref. 87 with permission from the PCCP Owner
Societies, copyright 2016), (d) flow chamber with a rotating target (adapted from ref. 160 with permission from SNCSC, copyright 2017), (e) flow-through
chamber (adapted from ref. 161 with permission from Elsevier, copyright 2017), (f) liquid jet with wire feeder (reproduced from ref. 88 with permission
from Elsevier, copyright 2017).
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the target and/or the liquid. Nevertheless, due to the small wire
size, the beam alignment takes longer and represents a major
challenge compared to the flow chamber bulk targets. In addition,
the stability of the wire feed system represents a challenge for
long-term ablation, as well as control of the incident laser fluence.
The advantages described and the easier handling and alignment
turn the flow through chamber design into the current standard
for PLAL upscaling.

Even though the wire feed setup presents some challenges, it
highlights another approach to increase PLAL production:
liquid layer reduction. It has been reported that decreasing
the liquid layer thickness from 8 to 2.5 mm improves the
PLAL productivity of an a-Al2O3 pressed target from 172 to
592 mg h�1.53 The authors suggest that absorption and scattering
of the laser energy by the generated NPs reduce the laser energy
deposition on the target’s surface. In a different work, it was
reported an optimum liquid layer thickness of 1.2 mm to get the
highest yield of Ge NPs in water, based on absorbance
characterization.162 The liquid layer thickness effect was also
evaluated in a flow chamber with a silver wire target. Different
nozzles were employed to create various liquid layer thicknesses.
The optimum productivity was obtained for a liquid layer thick-
ness of 0.5 mm (243 mg h�1). For a liquid layer thickness below
0.3 mm, the ablation showed low reproducibility, which is sug-
gested to stem from partial ablation in air and liquid ejection.

Following this idea, Monsa et al. (2020)91 proposed a strategy
to increase NP productivity by focusing the beam at the
meniscus interface of a tilted target, as shown in Fig. 15a. An
order of magnitude larger concentration of the Pd, Cu, and Ag
colloids in ethanol was reported.91 The comparison of the
colloids generated after 5 minute ablation at the meniscus
interface and 4 mm liquid layer thickness is shown in

Fig. 15b. It should be noted, however, that the optimum liquid
layer thickness depends on the material and the experimental
set-up (laser parameters, ablation chamber, target and liquid
properties, and focusing method) since higher intensities can
lead to vaporization of a thicker liquid layer and strong scatter-
ing of the beam.

The flow chamber reduced the liquid layer by a closed
chamber design and irradiation of the target through a glass
window. In this case, extra precautions must be taken to avoid
damage to the window glass. The high-temperature plasma
plume, shockwave, cavitation bubble, and nanoparticle ejection
can cause damage to the window glass if the distance between
the target and the window glass is too narrow. It is usually
recommended to have a distance of at least 3 mm to avoid
damaging the window; naturally, this value depends on other
parameters, such as pulse energy, pulse width, and focusing
condition. For the ablation without a window (open chamber),
the liquid layer thickness could be much lower, but keeping the
linear flow represents a major challenge if a large liquid flow
rate is employed. These turbulences in the liquid surface affect
the laser focusing on the target. Removing the liquid flow
allows a stable and thinner liquid layer, however, the effect of
the NP shielding due to the rapidly growing colloid concen-
tration represents a larger limitation for PLAL upscaling.

Many ablation chamber designs are proposed to increase
the productivity and improve the efficiency of the PLAL process,
nevertheless, the discussion related to the fluid dynamics
inside the chamber is limited. As the design of the chamber
strongly influences the liquid flow, an ineffective chamber
produces fluid turbulences which increases the retention time
of the NPs inside the chamber, giving rise to the NPs shielding
effect of the incoming laser beam. Producing ablation

Fig. 14 Numerical simulation of the liquid dynamics inside the rotating target chamber at different rotating speeds. The bottom panels show the
magnification of the region on the target surface and the grey rectangles represent the groves produced by the laser. Adapted from ref. 87 with
permission from the PCCP Owner Societies, copyright 2016.
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chambers with a laminar flow is needed to increase ablation
efficiency and the productivity. To produce a laminar flow, a
fluid dynamic simulation of the newly designed chamber should
be done prior to the production step, to analyze the formation of
turbulences and vortices. Studying different liquid viscosities
and the influence of species and effects generated by the PLAL
process, including the persistent gas, nanoparticles, heat trans-
fer, and the collapse of the cavitation bubbles, are some further
stages that can be done in this regard. In summary, the design of
an ablation chamber should be accompanied by an engineering
approach of fluid mechanical design, which addresses the short-
comings of the inefficient chamber in order to produce laminar
flow with minimum turbulence and vortices.

4.8. Continuous production, automatization, remote
monitoring, and control of the ablation process

One of the advantages of the PLAL process to produce NPs is
the option to perform continuous production. Unlike the wet
chemical synthesis methods where the NPs production is
commonly done in batches using a certain recipe with tight
control over reactants amount and synthesis conditions, con-
tinuous production in PLAL can be performed simply by using
a flow chamber, either with or without the recirculation of
liquid (loop) as shown in ref. 163 for the ablation of a gold
target using a nanosecond laser. The continuous production of
NPs in the industry is critical to reducing the cost, yet scaling
up the batches of chemical synthesis procedure is not as easy as
multiplying the amount of the reagents and increasing the
reactor’s volume. Various parameters such as the reactants
concentration, amount of catalyst and stabilizer, heating tem-
perature, stirring speed, and the duration of each process
should be optimized accordingly.164 Moreover, the properties
of NPs could possibly change during the scaling up, as the
nanoscale control is difficult at larger reactants quantity.164

To ensure both safety and economic efficiency, it would be
ideal for the implementation of PLAL in the industry to include

an automated system for controlling and remotely monitoring
the ablation process.165,166 As the PLAL process only requires
the operator for the first setup and periodical monitoring of the
status,166 the required automatization and remote controlling
include maintaining the optimum working distance,165,167 reg-
ulating the liquid flow,166,168 and controlling the laser.166

In terms of the automatic control of the working distance, the
utilization of acoustic emission as the input data to control the
working distance has been proposed. The acoustic emission is
considered more practical than the gravimetric approach where
the target has to be periodically removed, and it is also applicable
in a wide range of material composition, colloid concentration,
particle size, and shape,165 which prove its advantage compared to
the extinction approach discussed in Section 3. Definition and
measurement of nanoparticle productivity. A prior study by Zhu
et al. (2001)169 proved the correlation between material productiv-
ity in PLAL and the produced intensity of the audible acoustic
waves (sounds) measured by a wideband microphone. Afterward,
the following studies to use acoustic emission not only to monitor
the production rate of a PLAL process but also to control the
system were performed by another group.165,167 The system uses a
piezoelectric sensor to record the acoustic emission waveforms
during the PLAL process and the data is forwarded to a Field
Programmable Gate Array (FPGA)-based system coupled by
Discrete Wavelet Transform (DWT), which is able to perform an
online, real-time processing of the acoustic emission while redu-
cing the noise and accelerating the processing time (Fig. 16a). To
find and maintain the ideal working distance, an iterative search
algorithm is employed by finding the maximum acoustic wave
energy (amplitude) at various working distances. The system is
thus connected to a stepper motor, which can automatically
position the ablation chamber based on the received acoustic
emission data.165,167 Based on the comparative study with the
UV-Vis spectra, this system shows similar results as shown in
Fig. 16b,165,167 offering a reliable option for the automatic adjust-
ment of the working distance.

Fig. 15 Proposed strategy to increase productivity by ablating at the meniscus interface of the liquid layer and tilted target. (a) Schematic illustration of
the experimental set-up and the enlarged view of the beam at the interface of liquid-target, (b) the colloidal dispersions of Pd, Cu, and Ag NPs produced
at the meniscus interface (top) and liquid thickness of 4 mm (bottom). The production of NPs at the meniscus resulted in an order of magnitude higher
concentrations compared to the ablation at 4 mm liquid layer thickness. Adapted from ref. 91 with permission from IOP Publishing Ltd, copyright 2020.
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The automatization of the liquid flow is proposed by Free-
land et al. (2020)168 in order to produce NP colloids with a high
concentration using a semi-batch recirculatory flow system. The
common production step of NP colloids with high concentration
requires a separate post-processing step, such as magnetic decan-
tation, centrifugation, destabilization, or vaporization of the
liquid, which is time-consuming. By recirculating the liquid flow,
the concentration of NP colloid can be increased until the desired
value. The liquid flow control is operated through a LabVIEW
program which is connected to an automatic valve and peristaltic
pump.168 Unfortunately, there is no discussion on how the
automatization of liquid flow using the automatic valve is done.

Complete remote monitoring and controlling of a PLAL
system were built using the combination of a LabVIEW program
and a TeamViewer program (Fig. 17a).166 The LabVIEW program
is used to control the instruments by connecting them to the on-
site PC using a serial connector and several devices are controlled
by the PC, namely the laser, the pump, the interlock webcam, the
camera, and the XY-stage (Fig. 17b). Meanwhile, the TeamViewer
program is used to remotely access the on-site PC, either from a
smartphone or an off-site PC (Fig. 17b). With this online, remotely
controlled setup, the PLAL system can be accessed from any place
with an internet connection having bandwidth larger than 1–
0.1 Mbytes s�1,166 and the response time for shutting off the laser

Fig. 16 Real-time monitoring and automatic control of the working distance in the PLAL system, where (a) shows the experimental set-up and (b) shows the
comparison between the acoustic emission (AE) signal and UV-Vis spectra over time. Adapted from ref. 167 with permission from Elsevier, copyright 2019.

Fig. 17 Remote monitoring and controlling system. (a) Schematic representation of the system configuration, (b) controlled devices with in-site PC and
the screenshot of off-site controlling devices. Adapted from ref. 166 with permission from AIP Publishing, copyright 2019.
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is of 10�3 s.166 In case of the automatization, the system offers an
automatic shutdown when the colloid concentration, measured
by the interlock webcam coupled with color analysis software,
reaches the desired threshold value. The interlock webcam is also
used to gauge the liquid amount in the bottle, thus preventing
liquid spillover and running out of liquid.166 The set-up presents a
solution to the industrial needs where off-site controlling is
required, for example in the ablation process of dangerous
substances, such as radioactive materials. In addition to that,
it provides a more efficient and practical way to control the
PLAL process from anywhere, while the automatization
allows us to produce colloidal NPs with certain concentrations
and prevent undesired lab accidents, even without constant
human supervision.

The development of automatization, remote monitoring,
and off-site controlling of the PLAL process is necessary to open
the pathway of PLAL usage in the industry. Automatization offers
a faster task execution based on feedback systems, which results
in a more efficient and economical way compared to the manual
adjustment by labor workers. It also reduces the chance of
human error during the process, thus avoiding the chance of
laboratory and industrial accidents. The automatization to pro-
duce certain colloid concentrations and automatically stop the
laser system means that the expenses for labor workers could be
minimized. The remote monitoring and off-site controlling
provide us with the ability to control on-site experiments from
anywhere, which means that the operator does not need to be
continuously present nearby the PLAL system. The shown
configuration in this subchapter is still limited to a laboratory
experiment with a small production batch, but the system is
potentially applicable for the production of large batches of NP
colloids such as in tens or hundreds of liters. Coupled with an
injectable manufacturing process, the use of a high-power laser,
a fast scanner, a large and efficient ablation chamber, a con-
tinuous liquid flow, automatization, and a remotely controlled
system, the production of colloidal nanoparticles for industrial
application could surely be achieved.

5. Conclusion and outlook

We have conducted a thorough re-examination of the factors
that influence the productivity of PLAL. Based on the discussion
of the laser and target properties, it should be noted that several
parameters such as laser fluence and wavelength, the target
properties, and the focal length, among others, should be taken
into account in each experiment to comprehensively evaluate the
productivity of PLAL. Although it appears that productivity is
strongly linked to the material and architecture of the ablation
system, the PLAL method still holds high potential to be used
widely in industry. The advantages offered by PLAL over the
chemical synthesis method lies in the possibility to produce
various type of nanoparticles from bulk materials in a straight-
forward manner as it only requires a laser, a scanner, a chamber,
a liquid, and a target. To produce a different type of nanoparticle
composition, one can simply change the target, which varies

from metal, ceramics, and alloy to organic compounds. Meanwhile,
in the conventional synthesis method, each type of desired
nanoparticles requires new ingredients, reagents, catalysts, and
optimization of each physical treatment step (stirring, heating,
exposure to certain gas). The challenge with the low production
rate can be overcome by other means which are not directly
related to the material properties or laser parameters, such as
using a high scanning speed, a chamber with laminar flow and
small liquid layer thickness, and the use of additional optical
elements to change the beam profile. Besides, the gram-per-
hour production rate of NPs has been achieved for different
materials by increasing the interpulse distance and bypassing
the cavitation bubble.52–54,74,170

As a general guideline, higher productivities of PLAL can be
obtained by the utilization of high power and repetition rate
picosecond laser sources, which can mitigate nonlinear inter-
actions, in conjunction with a fast-scanning strategy to circum-
vent the cavitation bubble spatially. In addition to the laminar
liquid flow with a reduced layer, when feasible, it is advised to
use low-viscosity liquid to prevent the shielding of nano-
particles and eliminate persistent bubbles.

As we have shown, considerable efforts have been devoted to
enhancing productivity over the course of this century, resulting
in remarkable advancements of up to three orders of magnitude,
leading to outputs in the range of grams per hour. Nevertheless,
certain unresolved issues remain that require attention to facil-
itate further improvements.
� The automatization of the PLAL process. Automated

processes perform tasks much faster than humans and the
use of feedback systems allows for adjustments to be made on
the fly of the fabrication. By removing human intervention
from certain tasks, such as the focalization of the beam over the
target, the refill of the liquid, and the cleaning of the compo-
nents, variations due to human error can be minimized.
Furthermore, this decrease in the labor-intensive nature of
PLAL can save time in situations where production would
otherwise need to be halted and, as a result, potentially
reduced. Although some preliminary studies have been con-
ducted on monitoring and managing off-site fabrication,166

greater levels of automation will be necessary to enable the
broader commercialization of this technology.
� Enhance productivity across various pulse duration

regimes. Laser pulse width impacts the mechanism of synthesis
of the nanomaterial at multiple stages, as evidenced by large-
scale atomistic simulation,68 thereby influencing the nanomaterials
properties such as the morphology,171 the composition,38 the
atomic redistribution of metal domains,172 the oxidation and aging
effects,173 the shape,174 and the crystalline size domains175

among others. Using pulse widths in the femtosecond and
nanosecond range represents an approach to synthesizing
different nanomaterial properties without additional post-
production steps, which is interesting for industrial setup. As
an example, lattice heating and prolonged plasma exposure
from the nanosecond pulses can stimulate the phase transition
of the NPs, such as the reversible transformation between
nanodiamond and carbon-onion structure,176 the restructuring
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and surface decoration of RuO2 nanoparticles to RuO2@Ru/
RuO2,177 and the formation of carbon-based quantum dots with
either graphene or amorphous structure.178,179 The use of a
thermosetting polymer solution as the ablation liquid for
nanosecond PLAL can promote different core–shell
structures.38,180,181 In addition, femtosecond lasers allow to obtain
the atomic redistribution in bimetallic Au–Pd nanorods172 and
reshape gold nanorods with ultranarrow surface plasmon
resonances.174 Consequently, to achieve precise control of PLAL
nanomaterials, it is essential to improve productivity across
different pulse width regimes and not settle for high production
solely with picosecond pulses. Furthermore, it should be noted
that extreme pulse durations in the attosecond range have yet to
be utilized for generating nanoparticles in PLAL.
� The utilization of temporal pulse tailoring strategies. The

ability to manipulate the temporal profile of the laser pulse
enables the energy rate to be tailored to the specific material
reaction. Although various techniques have been used for tem-
poral beam manipulation, such as double-pulse laser
irradiation,147,182,183 or irradiation with a burst of pulses,184 there
is still room for improvement to maximize productivity. Some of
these techniques require further study, while others can be
introduced for the first time in PLAL, such as the conformation
of the temporal pulse envelope of ultrashort pulses.
� To use fluid mechanics simulations (CFD) to optimize the

nanomaterial ablation. Although different strategies related to
fluid dynamics have been developed to increase production
rate, as explained in the variations of the ablation chamber (4.7.
Optimizing the ablation chamber design), there is still room
for improvement. In this direction, CFD simulations can help
to optimize not only the chamber geometry but also the control
of turbulence, bubble removal, reduction of areas of nanopar-
ticle accumulation, and selection of suitable liquids based on
viscosity, density, and refractive index, among others.
� The implementation of smart beam delivery optical sys-

tems for controlling pulse the spatial distribution of the energy
over a target. Galvanometric scanners and polygonal wheels are
commonly used for beam delivery in PLAL. However, the focal
length of these setups is typically fixed, and this determines key
parameters, such as the numerical aperture, the fluence, and
the spot size that constrains the flexibility of the ablation
processes. Therefore, some flexibility in the beam delivery must
be considered for further improvements in productivity. Our
recommendation is to integrate advanced smart beam delivery
devices, such as the SSTF system that mitigates non-linearities,
into high-speed scanners. Additionally, dynamic (spatial light
modulators) or static (diffractive optical elements or freeform
optics) beam-shaping elements can be utilized. Given that the
current high-power laser used in PLAL exceeds the required
optimum energy for laser ablation by several orders of magni-
tude, parallel processing presents an efficient alternative to
reduce processing time.185 Furthermore, different spatial pro-
files at the focus can be designed186 to study how they affect the
laser-matter interaction and influence the ablated mass.
Finally, it is crucial for the PLAL scientific community to keep
abreast of the research that emerged in the last few years

regarding the use of smart beam delivery systems for focusing
through turbid media,187 as some of the devices developed for
other disciplines may be adapted for its use in PLAL.
� Artificial intelligence (AI) has the potential to enhance

productivity by optimizing the various parameters involved in
the PLAL process. Through the analysis of vast amounts of data
on target material properties, laser parameters, and liquid
media, AI algorithms can identify optimal conditions for nano-
particle synthesis, resulting in a more efficient, reproducible,
and productive PLAL process. Moreover, this advanced knowl-
edge of the optimal PLAL conditions can facilitate the rapid
scaling-up of production by minimizing trial-and-error experi-
mentation and will help to generate large-scale production to
meet the market demands.
� Although laser power and repetition rates have been

increasing, scanner technology remains a bottleneck in achieving
high ablation rates. Therefore, there is a need for improvements
in the current laser and scanning technology. All the improve-
ments in the laser technology or the high-speed scanning systems
will have a direct impact on PLAL productivity.

To conclude, as the global population continues to increase
alongside its corresponding demands, the imperative for more
efficient methods to synthesize nanomaterials will undoubtedly
intensify. In this regard, PLAL has emerged as a promising
approach with a myriad of applications, supported by a large
community of researchers who are actively pursuing the develop-
ment of eco-friendly technology. Continuously striving to enhance
PLAL productivity represents a crucial endeavor, as it has the
potential to make the green fabrication of nanomaterials more
affordable and accessible to a wider range of consumers, research-
ers, and industries. Moreover, such advancements will undoubt-
edly broaden the horizons of its potential applications.

Author contributions

Writing – original draft I. Y. K., C. D.-B., G. M.-V; writing –
review & editing I. Y. K, C. D.-B., G. M.-V, B. G; visualization
I. Y. K, C. D.-B; supervision C. D.-B, B. G.; project administration
C. D.-B, B. G.; funding acquisition C. D.-B, B. G.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation), grant num-
bers GO 2566/10-1 and GO 2566/14-1, and the European
Union’s Horizon 2020 research and innovation program under
the grant agreement No. 952068 (project LESGO).

PCCP Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

1.
08

.2
02

5 
15

:3
9:

06
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3cp01214j


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 19380–19408 |  19401

References

1 L. Kool, F. Dekker, A. Bunschoten, G. J. Smales, B. R. Pauw,
A. H. Velders and V. Saggiomo, Gold and silver dichroic
nanocomposite in the quest for 3D printing the Lycurgus
cup, Beilstein J. Nanotechnol., 2020, 11, 16–23, DOI:
10.3762/bjnano.11.2.

2 I. Freestone, N. Meeks, M. Sax and C. Higgitt, The Lycurgus
Cup—A Roman nanotechnology, Gold Bull., 2007, 40(4),
270–277, DOI: 10.1007/BF03215599.

3 A. K. Gupta and M. Gupta, Synthesis and surface engineer-
ing of iron oxide nanoparticles for biomedical applica-
tions, Biomaterials, 2005, 26(18), 3995–4021, DOI:
10.1016/j.biomaterials.2004.10.012.

4 Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson,
Applications of magnetic nanoparticles in biomedicine,
J. Phys. D: Appl. Phys., 2003, 36(13), R167–R181, DOI:
10.1088/0022-3727/36/13/201.

5 D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich,
P. C. Patel and C. A. Mirkin, Gold nanoparticles for biology
and medicine, Angew. Chem., Int. Ed., 2010, 49(19),
3280–3294, DOI: 10.1002/anie.200904359.
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F. Lusquiños and J. Pou, Silver Nanoparticles Produced by
Laser Ablation and Re-Irradiation Are Effective Preventing
Peri-Implantitis Multispecies Biofilm Formation, Int. J. Mol.
Sci., 2022, 23(19), 12027, DOI: 10.3390/ijms231912027.

7 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and
H. Dai, Co3O4 nanocrystals on graphene as a synergistic
catalyst for oxygen reduction reaction, Nat. Mater., 2011,
10(10), 780–786, DOI: 10.1038/nmat3087.

8 Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, MoS 2
Nanoparticles Grown on Graphene: An Advanced Catalyst
for the Hydrogen Evolution Reaction, J. Am. Chem. Soc.,
2011, 133(19), 7296–7299, DOI: 10.1021/ja201269b.

9 Q. Xiang, J. Yu and M. Jaroniec, Synergetic Effect of MoS2

and Graphene as Cocatalysts for Enhanced Photocatalytic
H2 Production Activity of TiO2 Nanoparticles, J. Am. Chem.
Soc., 2012, 134(15), 6575–6578, DOI: 10.1021/ja302846n.

10 J. Theerthagiri, K. Karuppasamy, A. Min, D. Govindarajan,
M. L. A. Kumari, G. Muthusamy, S. Kheawhom, H. S. Kim
and M. Y. Choi, Unraveling the fundamentals of pulsed
laser-assisted synthesis of nanomaterials in liquids: appli-
cations in energy and the environment, Appl. Phys. Rev.,
2022, 9(4), 041314, DOI: 10.1063/5.0104740.

11 J. Theerthagiri, K. Karuppasamy, S. J. Lee, R. Shwetharani,
H. S. Kim, S. K. K. Pasha, M. Ashokkumar and M. Y. Choi,
Fundamentals and comprehensive insights on pulsed laser
synthesis of advanced materials for diverse photo- and
electrocatalytic applications, Light: Sci. Appl., 2022,
11(1), 250, DOI: 10.1038/s41377-022-00904-7.

12 S. Naik Shreyanka, J. Theerthagiri, S. J. Lee, Y. Yu and
M. Y. Choi, Multiscale design of 3D metal–organic frame-
works (M�BTC, M: Cu, Co, Ni) via PLAL enabling bifunc-
tional electrocatalysts for robust overall water splitting,

Chem. Eng. J., 2022, 446, 137045, DOI: 10.1016/
j.cej.2022.137045.

13 R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda,
O. Mendoza-Yero, J. Lancis, J. E. Juliá and G. Mı́nguez-Vega,
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E. Cleve, D. Söffker and S. Barcikowski, Acoustic emission
control avoids fluence shifts caused by target runaway
during laser synthesis of colloids, Appl. Surf. Sci., 2019,
479, 887–895, DOI: 10.1016/j.apsusc.2019.02.080.

Perspective PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

1.
08

.2
02

5 
15

:3
9:

06
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.1039/c6cp07011f
https://doi.org/10.1002/cphc.201601231
https://doi.org/10.1088/1361-6463/acbaaa
https://doi.org/10.1007/s00340-022-07782-2
https://doi.org/10.1016/j.phpro.2014.08.092
https://doi.org/10.1016/j.phpro.2013.03.114
https://doi.org/10.1364/OL.38.002934
https://www.raylase.com
https://www.raylase.com
https://www.raylase.de/_Resources/Persistent/9/5/d/a/95da1035b2c564183914aa6c26c6f6e43f20044c/RAYLASE_SUPERSCANIV-15_en.pdf
https://www.raylase.de/_Resources/Persistent/9/5/d/a/95da1035b2c564183914aa6c26c6f6e43f20044c/RAYLASE_SUPERSCANIV-15_en.pdf
https://www.raylase.de/_Resources/Persistent/9/5/d/a/95da1035b2c564183914aa6c26c6f6e43f20044c/RAYLASE_SUPERSCANIV-15_en.pdf
https://doi.org/10.1117/12.2220112
https://doi.org/10.1088/1612-202X/abd171
https://doi.org/10.1016/j.apsusc.2018.09.224
https://doi.org/10.1007/s41981-021-00144-7
https://doi.org/10.1007/s41981-021-00144-7
https://doi.org/10.1016/j.apsusc.2020.145438
https://doi.org/10.1364/oe.28.002909
https://doi.org/10.1007/s00170-014-6625-6
https://doi.org/10.1007/s11665-017-2886-1
https://doi.org/10.1007/s11665-017-2886-1
https://doi.org/10.1016/j.jcis.2016.09.014
https://doi.org/10.1007/s00339-011-6557-z
https://doi.org/10.1021/acs.jpcc.9b10793
https://doi.org/10.1002/jccs.201700067
https://doi.org/10.3390/s18061775
https://doi.org/10.1063/1.5083811
https://doi.org/10.1016/j.apsusc.2019.02.080
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3cp01214j


19408 |  Phys. Chem. Chem. Phys., 2023, 25, 19380–19408 This journal is © the Owner Societies 2023

168 B. Freeland, R. McCann, G. Alkan, B. Friedrich, G. Foley
and D. Brabazon, Stable nano-silver colloid production via
Laser Ablation Synthesis in Solution (LASiS) under laminar
recirculatory flow, Adv. Mater. Process. Technol., 2020, 6(4),
677–685, DOI: 10.1080/2374068X.2020.1740877.

169 S. Zhu, Y. F. Lu, M. H. Hong and X. Y. Chen, Laser ablation
of solid substrates in water and ambient air, J. Appl. Phys.,
2001, 89(4), 2400–2403, DOI: 10.1063/1.1342200.

170 F. Waag, Y. Li, A.R. Ziefuß, E. Bertin, M. Kamp, V. Duppel,
G. Marzun, L. Kienle, S. Barcikowski and B. Gökce,
Kinetically-controlled laser-synthesis of colloidal high-
entropy alloy nanoparticles, RSC Adv., 2019, 9(32),
18547–18558, DOI: 10.1039/c9ra03254a.

171 C. Han, R. Wang, A. Pan, W. Wang, H. Huang, J. Zhang and
C. Niu, Morphology-directing transformation of carbon
nanotubes under the irradiation of pulsed laser with
different pulsed duration, Opt. Laser Technol., 2019, 109,
27–32, DOI: 10.1016/j.optlastec.2018.07.058.

172 M. Nazemi, S. R. Panikkanvalappil, C. K. Liao,
M. A. Mahmoud and M. A. El-Sayed, Role of Femtosecond
Pulsed Laser-Induced Atomic Redistribution in Bimetallic
Au-Pd Nanorods on Optoelectronic and Catalytic Proper-
ties, ACS Nano, 2021, 15(6), 10241–10252, DOI: 10.1021/
acsnano.1c02347.

173 K. Zhang, D. S. Ivanov, R. A. Ganeev, G. S. Boltaev,
P. S. Krishnendu, S. C. Singh, M. E. Garcia,
I. N. Zavestovskaya and C. Guo, Pulse duration and wave-
length effects of laser ablation on the oxidation, hydrolysis,
and aging of aluminum nanoparticles in water, Nanoma-
terials, 2019, 9(5), 767, DOI: 10.3390/nano9050767.
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