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A panoply of new tools for tracking single particles and molecules has led to an explosion of
experimental data, leading to novel insights into physical properties of living matter governing cellular
development and function, health and disease. In this Perspective, we present tools to investigate the
dynamics and mechanics of living systems from the molecular to cellular scale via single-particle
techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets
that are associated with forces, materials properties, transport, and emergent organisation phenomena
within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the
associated fields are outlined in order to support the growing community of researchers at the interface
of physics and the life sciences. Each section focuses not only on the general physical principles and the
potential for understanding living matter, but also on details of practical data extraction and analysis,
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Accepted 27th November 2022 theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective
describes living matter from a physical perspective, highlighting experimental and theoretical physics

techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in
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|. Introduction

Living organisms are incredibly complex systems, with different
aspects being well described by physics, chemistry, or biology;
however, no single classical discipline is sufficient to successfully
describe the dynamics and function of the entire organism,
including health and disease. To truly understand how living
creatures function, a thorough investigation combining tools
and insights from different disciplines is crucial. Stressing this
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the life sciences interested in the implementation of biophysical methods.

point is the fact that despite their biochemical composition,
the behaviour of all living beings is in large part governed by the
laws of physics and important insight into how biological
systems function can be gained through the analysis of their
physical properties.

Beyond advancing our understanding and treatment of
disease, biophysics has been instrumental in advancing our
understanding of biological systems, in particular the physical
phenomena governing certain biological processes. Significant
progress has been made over the past thirty years in studying
cells and cell compartments, either at the individual molecule,
cell, or tissue levels. These advances have demonstrated that
the behaviour of individual biological systems may differ from
the average collective behaviour of these same individuals in a
group. One example is the structure of the cells cytoskeleton, an
interconnected network of proteins and filaments that link a
cell’s nucleus to its membrane.' This structure’s mechanical
characteristics are not only a consequence of the mechanical
properties of the individual biopolymers, but also react to
extracellular stresses, demonstrating a collective cellular
response to the properties and signals of the external environ-
ment. Recent studies® have clearly shown that biophysical
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Fig. 1 Physical properties of cells originate from their molecular components and are responsive to both intracellular and extracellular events. Living
organisms are composed of tissues, which themselves are composed of cells in close proximity to one another. Cells living in such tissues transmit forces
intracellularly via a number of mechanisms. (a) Forces from the extracellular environment are sensed by cells through membrane proteins which relay the
force to the cytoskeleton through attachments, triggering biochemical responses. (b) The cytoskeleton, composed of protein filaments such as actin
polymers and/or microtubules, can transmit physical forces throughout the cell, serve to correctly position the nucleus in the cytoplasm, including during
cell division, and allows cells to adjust their material properties, potentially in response to their exterior environment. Protein motors, such as myosin V,
actively transport materials along the cytoskeleton filaments. (c) Cargo, such as vesicles or proteins, can diffuse or be actively transported by molecular
motors through the crowded cytoplasm. (d) Physical forces can be transmitted through the nuclear membrane via the LINC complex. This complex is
attached to the cytoskeleton and pierces both nuclear membranes, thus transmitting forces to the lamin proteins that act as nuclear structural
components. (e and f) Force measurement techniques tracking the movement of micro- or nano-scopic particles can be used to quantify material
properties inside cells or measure forces exerted by cells. Examples of such techniques include optical tweezers (e) and traction force microscopy (f).

methods, based on the observation of single particles, can be
used to measure not only the forces exerted on cells, but also
how cells respond to these forces, or even exert microforces
within the cells, thus uncovering differences in disease states
with clinical implications. Diseases themselves have a strong
impact on the biomechanical properties of cells® and on
intracellular material properties and trafficking.* Fig. 1 gives
an overview of relevant physical phenomena within cells, where
dynamics and material properties play a tremendous role, and
it also depicts two biophysical methods capable of quantifying
such properties.

It is challenging to detect and quantify the complex physics
occurring in and around living cells. An emerging and promising
way to address this challenge is by using single particle
techniques to directly measure biomechanical properties of
living cells, e.g., their microrheological properties. This branch
of rheology applies microscopic means of measuring the
mechanics both within and without the cellular environment,
thus providing critical information on biophysical phenomena
affecting cell behaviour and function. As the wider field of
single molecule tracking in biology and biophysics has already
uncovered significant amounts of important information, as
exemplified by 3D single-molecule active real-time tracking
(3D-SMART) to measure DNA or protein diffusion,” here we
narrow the discussion to single and multiple particle tracking
and their relation to rheology and particle diffusion. A plethora
of particle-based methods, experimental and theoretical, exist
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to measure, analyse, and quantify the dynamics and mechanics
of living systems, each with its own strengths and limitations.
This range of choice can be overwhelming, the terminology
imprecise, and, in the worst case, interpretations may be flawed
if one is not aware of the limitations of the methods used. Here,
we review particle-based methods, experimental and theoretical,
relevant for studying soft- and living matter with the aim of
providing enough information to enable both physical and life
scientists to critically apply and evaluate the methods. We not
only introduce passive particle tracking and microrheology
methods, but also methods which actively disturb biological
systems by mechanical forces and, through the system’s
response, provide information about the biomechanical proper-
ties of the system. In this way, we aim to contribute to the fields
of biology and physics, and encourage further quantitative
exploration and understanding of the living organism.

Il. Measuring biomechanical forces

Cells and tissues are subject to biomechanical forces, both
from external sources and from within. These biomechanical
forces play an immense role in controlling cell adhesion, tissue
morphogenesis, and development,® as well as in disease, such
as the spreading of cancer.” Cells can sense the stiffness of their
surrounding environment through a signalling pathway called
mechanotransduction.” This mechanical sensing can be

This journal is © the Owner Societies 2023
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mediated by integrins, found in the membrane of cells.® In
addition, cells adapt their mechanical properties to their
environment® and the differentiation of stem cells is directed
by the mechanical properties of the extracellular environment.*®
The mechancotransductive signalling pathway is not only sensi-
tive to force amplitude, but also to direction: for instance, it was
demonstrated that fibroblast cells could detect an oscillating
force applied to the scaffold on which they were grown, orienting
themselves perpendicular to the direction of oscillation."
Hence, force is a decisive factor in biological decision-making,
and presumably the impact of mechanobiology has expanded
during evolution.'” Despite the progress made in understanding
the link between external mechanical forces and cellular pro-
cesses, there remain many open questions to be answered.'®
Therefore, the measurement of biomechanical forces, preferably
in a non-invasive manner and inside living organisms, is an
important step forward in understanding proper cell function
and control mechanisms.

To understand the nature and role of biomechanical forces,
specific methods are needed that optimally allow for: (i) force
quantification, (ii) application in vivo in a nearly non-invasive
manner, and (iii) probing across a wide range of time scales.
One can distinguish between forces measured at the surface of,

a) Traction force microscopy

View Article Online

Perspective

or within a cell, tissue or organism, necessitating penetrating or
observing through a barrier such as the cellular membrane.

Advances in technology have led to the creation of numerous
means of measuring the microrheology of living cells and tissues
using single particle techniques.

A. Traction force microscopy

Traction force microscopy (TFM), see Fig. 2(a), is a useful
method to quantify cell-generated forces."*™'® TFM allows for
measurement of the forces that cells exert on a substrate. This is
done by tracking the displacement of fluorescent marker beads in
the substrate, most often in the form of a soft, elastic matrix, on
which cells are grown, thus allowing direct observation of cellular
forces exerted on the matrix. The matrix must be optically
transparent enough to allow for the observation and tracking of
the embedded fluorescent markers. Common scaffolds include
polyacrylamide (PAA) or polydimethylsiloxane (PDMS), though a
wide variety of biocompatible materials, such as hydrogels,
are used.

Traction forces exerted by the cells can be derived mathe-
matically by first expressing the force-displacement relation via
a Green’s function, in the most general case expressed as a
tensor.'* While valid only for small forces, this regime is typically

¢) Biofunctionalised microdroplets e) Magnetic Tweezers
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Fig. 2 Single-particle tools to quantify forces in biological systems. (a and b) Traction force microscopy (TFM) measures cellular forces exerted on a
substrate either by observing the movement of fluorescent molecules embedded in the substrate (a), or by the bending of columns under the cells (b).
(c) Biofunctionalised microdroplets quantify forces exerted on them by surrounding cells by measuring their deformation. Using mathematical models
and computational methods, the strains on individual cells or cellular components can be calculated. (d) Optical tweezers (OT) are formed by tightly
focusing a laser beam, thus being able to trap a particle, an organelle, or a molecule. OT are an excellent and nearly non-invasive tool to measure forces
and probe material properties at the nano- or micron-scale, even inside living organisms. (e) Magnetic tweezers (MT) apply a magnetic field to magnetic
particles inserted into cells. The resultant motion of the particle can be used to either exert or measure forces, or to apply a twisting motion. (f) Atomic
force microscopy (AFM) brings a microscopic cantilever close to a material surface. Using a photodiode to measure the movement of a laser deflected off
the back of the cantilever, it is possible to quantify nanoscopic movements of the cantilever. Affixing a bead on the cantilever allows for force
measurements in soft matter.
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suitable for the forces exerted by cells on their substrate. This
approach is commonly referred to as an inverse problem: while
the resultant marker displacement on the substrate is measur-
able, the applied cellular forces are unknown. Mathematically,
the displacement field u(r) is related to the traction force field
T(r') through the Green’s function tensor G(r,r')

u(r) = Jg(r, r)T(r')dr'. )

1. Boussinesq approximation. The simplest way to tackle
the inverse problem and solve for the Green’s function is to use
a thick substrate. Under these conditions, cellular traction
forces decay before reaching the substrate edge, allowing for
the use of the Boussinesq solution.'* Alternatively, if a thick
substrate is not experimentally feasible, the Green’s function
for finite substrate thickness can be used.'”'®

In many cases, TFM is performed in 2-dimensional systems
where the Green’s function can be expressed as a convolution:
G(r,r') = G(r —1'). For a sufficiently thick isotropic elastic
material with Young’s modulus E and Poisson ratio v, the
Boussinesq solution for such a system gives

J[-p)

~(1+v) (v + (1=v)||r|]* vxy
( )_TfEllf||3 (wcy vy?+(1 —V)||r||2)7 )

where ||r|| = y/x2 + »2. The Green’s function given in eqn (2) is
invertible, permitting the inversion of eqn (1) to solve for the
traction forces applied by cells on the substrate.

Historically, to measure the cellular forces using TFM, two
images of the substrate are made: one with the cell attached,
showing bead displacement caused by the cells, then a second
of the same area where the cell has been detached chemically,
usually via trypsin which degrades cell adhesions."® Computer
software is then used to compare the two images and determine
the bead displacement u(r). Modern techniques avoid taking two
images by printing a grid pattern of beads into the substrate,
allowing bead displacement to be directly determined using only
one image.”>*" As the parameters E and v are already known for
the substrate used, T(r’) can be readily calculated using computa-
tional software. TFM has been successfully used to measure
stresses/forces in: rat cardiac cells grown on substrates mimicking
normal and diseased tissue,”> human induced pluripotent stem
cells under a variety of conditions,” and mouse embryonic
fibroblasts (MEFs) under applied shear stresses.”*

Alternatively, traction forces can be calculated from the
bending of micro-scale®®?® or nano-scale®” pillars grown on
cell culture substrates, see Fig. 2(b). Similar to TFM, described
above, the positions of the fluorescent pillar tips on which cells
are grown are tracked over time. These pillars are assumed to
be elastic, and deformations assumed to be small, allowing
for the application of linear elastic theory. In this case, the
magnitude of cellular forces applied at each tip may be calcu-
lated from the tip displacement via

F=—Ar, (3)
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where E is the material’s Young’s modulus, I is the moment of
inertia of the pillar, L is the length of the pillar, and Ar is the
measured displacement of the pillar tip. Different pillar geo-
metries have been used, from circular®®?® to hexagonal,®”
though other geometries could be employed, requiring only a
change in the equation for the geometry-dependent I. Using
these pillars, both the forces exerted by cells®® and cell layers can
be detected.?® Micropillar studies have also been used to demon-
strate which nucleo-cytoskeletal proteins are responsible for
nuclear deformation.*® Additionally, as the tip’s radius a scales
with Evia E oc a’, the sensitivity range of this technique is quite
vast, permitting the detection of a wide-range of forces.

B. Deformation microscopy

A similar technique called deformation microscopy has been
used to quantify forces at the tissue level, which is also
particularly suited for investigations at longer time scales.
Here, the deformation of biofunctionalised microdroplets, see
Fig. 2(c), can be recorded and used to measure forces.’" In this
technique, the curvature of a droplet surrounded by cells can be
related to the forces these cells apply to the droplet. Specifically,
the stress ¢ applied by a cell in the direction normal to a droplet
with spherical coordinates 0 and ¢ is

(0, ) = p. — p; + 2pH (0, ¢), (4)

where p, and p; are the external and internal hydrostatic
pressures of the droplet, y is the droplet’s interfacial tension,
and H is the droplet’s local mean curvature at the surface.*
These microdoplets must be of a similar size to cells, possess
ligands to which cells can adhere, and be fluorescently labelled
in order for their shape to be measured. Furthermore, only
partially embedded microdroplets can be used to calculate both
isotropic and anisotropic forces exerted by cells as this is the
sole means of measuring the tissue pressure: fully embedded
microdroplets only permit anisotropic force measurements to
be made.?' Thus, deformation microscopy is most useful when
applied to measure forces in cultured cells or epithelial tissues,
though in certain cases, anisotropic force measurements in
cells can provide some information, as is the case for spatial
inhomogeneities caused by cell movement during embryonic
development. Microdroplets have been useful in spatiotem-
poral studies of developing tissues, specifically to measure
forces in tissues during embryogenesis.*” For more information
on this technique, we refer the interested reader to Gomez-
Gonzalez, et al.,'® or Campas, et al.*'

Deformation microscopy has shown potential for intra-
cellular and intranuclear force mapping,*'** shedding light
on both the biomechanical processes in and around cells, and
on local mechanical stresses. Combining deformation micro-
scopy with high-resolution microscopy techniques has allowed
for dynamic strain mapping in individual cells, such as for
contracting cardiomyocytes placed on either soft or stiff
polydimethylsiloxane (PDMS) substrates.* Such a combination is
particularly useful when seeking to measure forces during cell
migration. However, the possibility of interplay between these

This journal is © the Owner Societies 2023
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detection methods and observed cell behaviour cannot be ignored.
TFM, for example, employs very soft hydrogel matrices with
Youngs moduli in the kPa regime; at this stiffness, the sub-
strate material itself might interfere with the cell due to
mechanosensory processes.®® Another nearly non-invasive
means of investigating local mechanical disturbances in biolo-
gical systems is by focused-light-induced cytoplasmic streaming
(FLUCS).*” FLUCS can be used to observe active microrheology,
similar to intracellular viscoelasticity characterisation methods.

C. Optical tweezers

Optical tweezers (OT), see Fig. 2(d), are a technology based on a
tightly focused laser beam and with the capacity to reach inside
living cells,® or even inside living organisms.?” OT can actively
apply controlled forces or perform quantitative force measurements
in a nearly non-invasive manner. To minimise physiological
damage, however, the laser power should be kept as low as possible
and the wavelength in the biological transparency window. An
optical trap exerts a harmonic force on the trapped object:

Ftrap = —KX, (5)

where x is the distance from the equilibrium position and x; is
the spring constant characterising the optical trap in the i-
direction, typically determined through a calibration measurement.
Notice that eqn (5) holds in each translational direction and the
elements of the tensor k usually differ from one another.

Optical tweezers based on a tightly focused near-infrared
Gaussian laser beam can trap particles with a larger index of
refraction than the surrounding media, for instance, micron-
sized polystyrene spheres (to which molecules can be specifically
attached), metallic nanoparticles, or endogenously occurring
organelles such as lipid granules.*® The positions visited by
the trapped particle, x, can be found by video microscopy or by
focusing the back-scattered light from the laser beam onto a
quadrant photodiode, with the latter method having the great
advantage of higher time resolution (up to MHz) and easier data
acquisition.

One can also estimate the forces without prior calibration of
the trap stiffness using the so-called momentum method*® by
collecting and analysing the forward scattered light; this has
the advantage that, e.g., the geometry of the particle does not
need to be known. Recently, optical tweezers were combined
with light-sheet microscopy to measure 100 pN-range tension at
cell-cell junctions.*® The pN forces exerted by standard optical
tweezers can even induce large-scale cellular reactions, such as
calcium transients in neuroblastoma cells.*"

In practice, optical tweezers are often implemented by
tightly focusing a laser beam through a high numerical aper-
ture objective.*” Silica or polystyrene are among the most
commonly used materials for optically trapped particles with
typical sizes ranging between the 0.2-5 pm.** However, also
even smaller metallic nanoparticles can be optically trapped.**
A small linker, such as antibody-antigen or streptavidin-biotin
pairs, can be used to chemically affix the bead to the researcher’s
molecule of interest.*”> As the tracer bead may interact with the
molecule of interest, in particular proteins, a double-stranded

This journal is © the Owner Societies 2023
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DNA linker can be added between the small linker and molecule
of interest to increase the distance between them, reducing
possible interactions. If the spring constant, x, is known, the
force exerted by the optical trap can be determined by measuring
the tracer’s displacement with respect to the centre of the trap.
Such measurements are useful to quantify the mechanical proper-
ties of living systems, including at the single molecule level.

D. Magnetic tweezers

Magnetic tweezers (MT), see Fig. 2(d) and (e), can exert or
measure forces, both intra-cellularly*>*” or on the surface of
cells.*® Magnetic tweezers allow for application and measurement
of larger forces (up to nN) than optical tweezers (hundreds of
pN regime). Magnetic tweezers measurements are made by
introducing magnetic particles (either superparamagnetic
beads or ferromagnetic nanowires) into a target region and
applying magnetic field gradients to either exert or measure
forces within cells, or by twisting magnetic particles specifically
attached to molecules. Such beads experience a force deter-
mined by

1
EV(mmaX -B), forstrong magnetic fields

F= ©)
—AV‘B‘27

for weak magnetic fields
20

Here, V is the volume of the magnetic particle, u, is the
magnetic permeability, B is the magnetic field, y is the mag-
netic susceptibility of the particle, and my,,, is the maximum
possible magnetic moment induced by the magnetic field on
the particle. The magnetic particle’s susceptibility can be
u—1
t+2
assuming that it is scalar in this first estimation. The equations
to determine the forces for strong and weak magnetic fields are
Vi
Ho
mally used in such experiments are composed of aggregated
magnetic nanoparticles their shape may not be isotropic and
they can also be subject to a torque I' = m x B, where m is the
magnetic moment of the particle.

Similarly to optical tweezers, to use magnetic tweezers, the
magnetic particle must be chemically bonded to the molecule
of interest, whose opposite side is chemically bonded to a
surface, typically a glass coverslip in a flow cell placed onto
an inverted microscope.’ Historically, the magnetic field was
generated by placing two magnets on opposite sides of the
bead, though multiple magnets can be used to create stronger
magnetic fields, and thus apply stronger forces. Rotating these
magnets induced rotation of the bead and the molecule to
which it is attached. Typically, the magnetic field must be
dynamically adjusted, requiring the use of electromagnets. As
the magnetic field B may be determined from the geometry,
number, and positions of the magnets, and m,,y, V, and y for
the bead are known, the force exerted on the bead may be
calculated. Other implementations of magnetic tweezers using

calculated from its relative permeability pu, via y =3

equivalent when my,, = < )B. As magnetic particles nor-
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a cylindrical magnet have also been used, which has the
advantage of allowing stretching forces to be applied, while
also uncoupling stretching from rotational torsion.>® Magnetic
tweezers can be used to measure forces associated with protein
unfolding, and have shown that ligand binding mechanically
stabilises this process.”® DNA supercoiling, describing the
under- or over-twisting of DNA helices has been shown to drive
transitions to uncommon DNA secondary structures, such as
Z-DNA, DNA cruciforms, or DNA unwinding.”” The possibility of
both stretching and rotating DNA using magnetic tweezers
makes them highly suited to study such phenomena.’® Recent
advances in magnetic tweezers technology have also allowed for
the precise application of piconewton forces to beads implanted
in cells, allowing for the determination that the nucleus stiffens
upon force application, and that the actin filaments are princi-
pally aligned along the major nuclear axis.*®

A similar method to magnetic tweezers is 3D-magnetic
twisting cytometry (3D-MTC), which applies local mechanical
stresses to living cells by twisting magnetic particles in a rotating
magnetic field.>® This method is suitable for investigating, e.g.,
the mechanical response of cells to specific receptors.

E. Structured illumination light sheet microscopy

Structured illumination microscopy is a type of super-resolution
microscopy which uses different excitation patterns to illuminate
a sample, then recombines them computationally to produce an
image.”* Light sheet microscopy (also called Selective Plane
Ilumination Microscopy, or SPIM) is a similar technique to
widefield inverted microscopy, save that the sample is illumi-
nated from the side. This geometry is advantageous: standard
widefield microscopy illuminates not just the part of a sample in
focus, but also fluorophores not in the focal plane, increasing
the background in the observed sample. Light sheet microscopy
uses a cylinder lens in the illumination path to stretch the laser
light into a thin line, which is then used to illuminate the
sample.’® Combining the illumination patterns used in struc-
tured illumination microscopy with a light sheet microscope
allows for very high resolution in even widefield images, allowing
for highly accurate tracking of quantum dots.>®

The wide variety of techniques presented here present
several means of measuring tissue, cellular, or subcellular,
forces and/or rheological properties. The information gleaned
from these techniques can provide valuable insight into how
cells interpret and transmit extracellular signals, or into sub-
cellular structures such as DNA or proteins. In the following
section, we will discuss in-depth material properties measured
by these techniques.

lll. Determining materials properties

Living organisms are made of tissues, cells, or molecules, with
highly varying properties. Tissues or cells can be designed to
withstand forces (e.g., in bones) or to be compliant, allowing
them to easily pass through narrow spaces, such as a blood cell
through a blood vessel. A tissue’s material properties govern its
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ability to deform and determine how the tissue reacts to
external stresses. Materials properties also determine the fluidity
and stiffness of a biomaterial, as well as its reaction towards
externally or internally generated forces.

Certain materials have a texture which changes when stress
is applied and this change depends on the frequency with
which the stress is applied. One example is ketchup which
becomes ‘runnier’ when shaken. Living organisms are to a large
extent composed of such matter and it is thus crucial to take
into account the frequency-dependent response when describing
the properties of living matter. For cellular movement accom-
panying organ development, the relevant time scales may be on
the order of hours, or even days. On the other hand, the time
scales relevant for the dynamics of biopolymers constituting the
cytoskeleton is on the order of milliseconds.>” Hence, the time
scales relevant for biological function vary dramatically, and the
materials properties change accordingly; a cell may appear
rather rigid on short time scales but quite compliant on longer
time scales.

A. Review of basic mechanics

For a detailed discussion of materials properties in a biological
context, it is helpful to recall basic mechanics. Determination
of a material’s properties typically involves applying a force F
and measuring the resultant deformation, or vice versa. As
samples may vary geometrically from one another, and forces
are usually only applied to one surface of a sample, it is

common to describe the applied force using the stress ¢ = 7

where 4 is the surface area onto which a force is applied. As the
force may be applied longitudinally (through either stretching
or compression), or transversally (e.g., shear), ¢ itself is a
tensor. Depending on how the stress is applied geometrically,
and to control for different sample sizes, sample deformation is
characterised by the strain . Like stress, strain is a tensor with
each component defined as ¢; = ¢; = 0u;/Qj + Ou;/0i, where u
describes the displacement field of the sample, including both
displacement of the object and its deformation.

1. Isotropic elastic material: Young’s modulus and Poisson
ratio. One of the simplest ways of describing a materials
properties is by Hookes law, relating the stress, g, linearly to
the strain, g via the 4th-order elasticity tensor. For most
practical purposes in soft-condensed matter physics, this can
be reduced to a formulation based on Youngs modulus, E:
¢ = Eg. This equation assumes an isotropic material, and that E
is scalar. The tensorial nature of the stress-strain relation can
be readily seen in practice by applying pressure, or stress, to a
small area of an elastic substance. While the elastic material
compresses in the direction of the applied stress, there are also
longitudinal strains on the material, pulling it from the sides
towards the applied pressure. For experiments where the
sample is uniformly compressed, or stretched, along one axis
across all of the material, this equation becomes one-
dimensional, giving ¢ = Ee. Youngs modulus describes a
materials response in the direction of the applied stress, a
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relation that is only valid in the regime where the response is
elastic and linear, which is typically true for small strains or
stresses.

Materials properties can also be determined by applying
forces in directions other than perpendicular to a given material’s
surface. In particular, the orthogonal responses to a stress that
maintains an isotropic material’s volume, termed shear, are
described by the shear modulus G. Experiments to determine G
apply stresses by deforming one surface in a direction perpendi-
cular to that of its normal vector, while maintaining a constant
volume. As with E, measurements of G are only practically possible
in the regime where the material’s response is linear and elastic.

While the direction of the material’s response may differ
between G and E, both these properties measure the fundamental
“stiffness” of the material, and are thus related. Assuming the
material is isotropic, this can be seen through

E=2G(1 +v)=3K(1 — 2v), (7)

where K is the bulk modulus, a measure of a material’s
resistance to compression, and v is Poisson’s ratio.>® Poisson’s
ratio describes a material’s response in directions orthogonal
to that of an applied stress. Eqn (7) provides a convenient way
to calculate any of the three materials properties E, G, or K for a
sample from another one, given that the sample’s v is known.
The latter can be determined for a material by stretching it, or
compressing it, along a certain axis, and calculating

degrans

V= — (8)

)
dglong

where dégans and dejong are the changes in the material’s size
transverse and longitudinal to the applied deformation, respectively.
Unlike a shearing test to determine G for a material, a material
could undergo a change in volume during an experiment to
determine v.

2. Viscoelasticity

(a) Frequency dependent viscoelastic modulus. Soft-matter and
biological materials, however, typically possess both elastic and
viscous, or viscoelastic, properties; the response of such systems
is thus highly dependent upon the time scale of the applied
stress. The viscoelastic properties of cells originate from their
molecular constituents where the cytoskeleton and nuclear
matrix act as elastic components, while the dense packing
of the cytoplasm creates a highly viscous environment."* To
characterise viscoelastic systems it is convenient to use the
time-dependent shear modulus G(¢) which is defined such that:

G = lim G(1). 9)
1—00

This equation summarises the idea that the long-time shear
response G of a material may be different from that on shorter
time scales. This can more readily be seen when observing the
flow of certain viscoelastic materials, such as whipped cream,
after they are deformed: on short time scales, these materials can
maintain a certain shape created through a deformation, while
at long time scales they relax, losing their shape. One way of
sampling how a material behaves across different time scales is
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to apply an oscillatory shear o( f) to it at different frequencies f
(or angular frequencies w), and measure the compliance of the
medium (how much it deforms under stress), y( f), or vice versa.
These frequency-dependent viscoelastic properties can be con-
veniently expressed through the complex shear modulus, also
called the dynamic or complex shear modulus:

G*(f) =G'(f) +iG"(f).

G*(f) is a sum of two parts: (i) a real part, G/, termed the storage
modulus and quantifying the material’s elastic response, (ii) an
imaginary part, G”, termed the loss modulus and describing the
dissipated energy, or viscous response, of the material. These

moduli also do not oscillate in phase with one another; this
"

(10)

time lag is characterised by tan(o) = % This time lag char-

acterises how elastic or viscous a material is: for § ~ 0, the
stress and strain are in phase with one another, such as for
perfectly elastic materials, while for 6 ~ n/2, the stress and
strain are the furthest out of phase with one another, a
characteristic of viscous materials. G*( f) and its two compo-
nents are commonly measured in bulk for a material using a
rheometer. For a detailed derivation of these properties and
how to measure these, we refer to the book by D. Boal for more
details on the complex shear modulus and viscoelastic proper-
ties of living organisms.”

(b) Linear response theory. The frequency-dependent response
of a material at thermal equilibrium is equally well described by
the positional power spectrum, #( f), which can be calculated
through a Fourier transformation of the thermally driven posi-
tional time series of a tracer particle, x(f). There is a 1-to-1
relation between 2( f) and G*( f) because the Fourier transform
of the stochastic thermal force, F( f), and the Fourier transform
of the position of the particle, x( f), are related through linear
response theory:*°

x(f) =W NES), (11)

where y( f) is the compliance of the medium, describing its
deformation under a certain, not too large stress.®

(¢c) Generalised Stokes-Einstein equation. To relate this
compliance to the viscoelastic properties of the medium,
consider the classical generalised Stokes-Einstein relation for
a tracer particle of radius r in a fluid with viscosity #(¢) at any
given time ¢. As previous forces affecting the system determine
the state of the material at all future times, the memory
function {(¢) is commonly used. To simplify calculations of
viscoelastic properties, Mason and Weitz assumed that the
Laplace transform to the viscosity was related to the memory

{(s)

function by 7(s) = G Where s is the Laplace frequency.®* For
such a system, the dynamic shear modulus in Laplace space is
~ N kgT
G(s) =sn(s) = —=— 12
(5) = 50(s) = oo (12)

where (#(s)) is the mean squared displacement.®® Applying the
Fourier transform to eqn (12), and assuming that the angular
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frequency w = 2nf is related to s by s = iw, the Generalised
Stokes-Einstein relation is obtained,

1
.

G'(f) =G (1)
where y( f) is the compliance of the medium.** As the system can
be described through linear response theory, the Kramers-Kronig
relation, coupling a complex system’s real and imaginary compo-
nents, may be applied, thereby showing that the scaling properties
of G’ and G" are identical to the scaling properties of Z( f),*%** as
described below. There exist many different versions of such
mechanistic models to describe more complex materials®>*® and
viscoelastic properties for materials with long-range memory effects
were successfully modelled by fractional-order models.*”"*°

Physical models of viscoelasticity employ viscous or elastic
components placed in series and/or parallel with one another.
These models use a ‘dashpot’ to illustrate viscous components, and
a spring for the elastic components. Of these models, the most
basic include a dashpot in series with a spring (the Maxwell model),
or a dashpot in parallel with a spring (the Kelvin-Voigt model).*®
Applying a stress to a material that follows the Maxwell model
(Maxwell material) initially stores the applied energy in its elastic
component, which is slowly dissipated by its viscous component.
For materials that follow the Kelvin-Voigt model (Kelvin-Voigt
material), a suddenly applied stress is initially greatly resisted by
the viscous component, a resistance which decreases over time as
its elastic component undergoes a slow compression.

In practice, a convenient way to quantify the viscoelastic
properties of a material at thermal equilibrium is by tracking
an inert tracer particle placed within it, as illustrated in Fig. 3a.
First, the time series of the positions visited by the tracer
particle should be measured, potentially by video microscopy
or by tracking using optical tweezers. Then the positional time
series is Fourier transformed and from this the positional
power spectrum calculated.

For biological viscoelastic materials, there exists a frequency
regime, typically 300 Hz < f < 6000 Hz, where thermal
fluctuations dominate over active processes®” and which is still
below the filtering effect of a typical photodiode.”® In this
frequency interval, the experimentally obtained power spec-
trum is observed to scale with frequency and can be fitted by:”*

P(f) o f .

In such regimes, the scaling exponent, o, carries information
on the materials properties of the viscoelastic system and hence
also the properties of the surrounding medium (see also
Section IV):

o = 0 The particle is restrained or even immobilised by the
surrounding medium.

0 < a < 1 The subdiffusive regime, where the particle
diffuses more slowly than in a purely viscous medium. Here,
lower values of « indicate a more elastic medium and values
closer to unity indicate a more viscous medium (if there are no
active processes in the observed frequency window).

1 The particle exhibits Brownian motion, and the
surrounding medium is purely viscous.

(13)

(14)

o =
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Fig. 3 Materials properties such as viscoelasticity can be measured using
tracer particles. (a) The positions visited by a tracer particle (green ball) can
be measured using a focused laser beam to form an optical trap (see also
Section I1), and used to quantify the materials properties of a sample, such
as the polymer solution shown here. (b) Power spectrum as a function of
frequency of an optically trapped tracer particle in a 50% Matrigel
solution.”* Inset: The position of the particle as a function of time. (c)
Extracted complex shear moduli for a tracer particle in a 50% Matrigel
solution calculated on the basis of the same data as shown in (b). Inset: The
loss tangent, tan(d) = G”/G’, a measure of how solid- (G"/G’ < 1) or fluid-
like (G"/G" > 1) the viscoelastic material is.

o > 1 The particle undergoes superdiffusion, moving faster
than it would by thermal diffusion in a viscous medium, ie.,
active processes propel the particle.

The real and imaginary parts of the complex shear modulus
G*(f) scale with frequency in the following form:

G'(f) ~f*

(15a)
G"(f) ~f* (15b)
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permitting the materials properties to be calculated from the
power spectrum through f*.°>”> Note that both G’ and G” scale
with f* only for polymer networks in the frequency range below
the molecular high frequency cut-off and above the character-
istic mesh relaxation time.*°

An example of how any material’s viscoelastic properties can
be quantified, both living or non-living, is given in Fig. 3. In this
example, a tracer particle (a micron-sized polystyrene bead) is
embedded in a Matrigel possessing viscoelastic properties. The
experiment is described in detail in ref. 73 which outlines the
properties of the Matrigel as a function of polymer concen-
tration and how this affects organoids growing in the matrix.
Fig. 3a demonstrates the experiment with the green dots
signifying the polystyrene tracer particles, of which one is
optically trapped. The forward scattered laser light is picked
up by a quadrant photodiode operating at 22 kHz and located
close to the back focal plane. The inset in Fig. 3b shows the
positions visited by the tracer and the main figure shows the
power spectrum as a function of frequency calculated from the
positional time series on a double-log plot. Consistent with
eqn (14), there exists a frequency regime within which 2(f)
scales with frequency (red line). At frequencies below this
regime the tracer particle feels the restoring force from the
optical trap and at frequencies larger than this regime the
photodiode exerts a filtering effect.”” Due to these experimental
limitations, a scaling relation can only be confirmed in a certain
frequency window, this frequency window being relevant for
describing polymer dynamics.>” Within this frequency window, a
fit (red line in Fig. 3b) returns o = 0.71, indicating that the tracer
exhibits subdiffusive motion (see above and Section IV), as
expected for a polymeric matrix. Fig. 3c shows the storage and
loss moduli as a function of frequency, calculated from the data
in Fig. 3b and using the relations described in this section.

As living systems are dynamic in nature, their non-equilibrium
materials properties are of importance. Non-equilibrium stress
properties within cells can also been measured via force spectra,”*
demonstrating that the changing stress properties within the cell
can be separated from thermal fluctuations. Using this technique,
it has been shown that cells can adapt to changing external
stresses, adjusting their intracellular stress. Further use of force
spectra could provide more much needed insight into intracellu-
lar non-equilibrium dynamics.

(d) Microrheology. Using a microrheological methodology as
illustrated in Fig. 3 and in combination with endogenously
occurring lipid granules as tracer particles, it is possible to map
out the viscoelastic properties of living biological systems, such
as cells, using optical tweezers. By doing so, anomalous
diffusion®® as well as weak ergodicity breaking” (see below)
has been demonstrated within living yeast cells. And recently,
using this technique invasive cancer cells have been shown
more capable of adjusting to the stiffness of their environment
than non-invasive cells.” Also, microrheological quantification
of the materials properties of the basement membrane in
combination with mathematical simulations have shown that
Net4 softens the mechanical properties of native basement
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membranes, thereby decreasing cancer cell potential to trans-
migrate this barrier, and thus finding that the stiffness of the
basement membrane is a key determinant for metastases
formation.”®

(e) Crossover frequency and solid/liquid transition. One inter-
esting property of many viscoelastic materials is that, depending
on the time scale/frequency at which they are observed, they may
behave more like a viscous liquid than an elastic solid, or vice
versa. The point at which a viscoelastic material transitions from
viscous liquid to an elastic solid is called the crossover fre-
quency, and is typically defined as the frequency at which the
values of G’ and G” are equal to one another. At frequencies
below this crossover frequency (long time scales), these visco-
elastic materials behave more as viscous liquids. As the frequency
is increased, the material begins to have more elastic properties,
until the crossover frequency is reached where the elasticity of the
material makes it act more as a solid than a viscous liquid (shorter
time scales).

For emulsions of two different kinds of liquids or materials
in which one is not miscible or soluble in the other, the
viscoelastic properties (G’ and G”) are significantly different,
and can be described by the liquid droplet model. As the
materials are immiscible with one another, one will form
droplets embedded in the other. Such a material’s viscoelastic
properties are a function of the droplet volume fraction ¢ in the
emulsion, with materials having low droplet ¢ behaving as a
viscous liquid, and those with high droplet ¢ acting as an elastic
solid.”” In materials of moderately high ¢, G’ is fairly constant for
low frequencies, and G” dropping with f until intermediate
frequencies, with the behaviour resembling that of an elastic
solid.”””® At higher frequencies, however, G’ scales with /%, while
G" rises with f, eventually surpassing G'.”” In other words, the
liquid droplet model states that at low frequencies, as the droplets
cannot be mixed with the surrounding material, the material acts
as a solid. Once high frequencies are applied, equating to vigorous
shaking, the droplets shrink in size or are destroyed altogether,
and can be forced to mix in with the surrounding material,
allowing it to behave as a viscoleastic liquid. As some biological
components are immiscible with one another, as is the case with
cell or nuclear membranes in living systems, the liquid droplet
model can help describe their viscoelastic behaviour.

B. Atomic force microscopy and other viscoelastic
measurement techniques

Atomic force microscopy (AFM, see Fig. 2e) is another excellent
tool for measuring materials properties. Using a sphere of
radius R affixed to a cantilever lacking a tip, an AFM can
measure Young’s modulus, E,”° or the complex shear moduli
G’ and G"®° of a viscoelastic material, such as cells. The
cantilever is slowly lowered until the sphere indents the sample
a distance Ah, bending the cantilever a distance d.”>®*' Assuming
the measured samples contain an elastic component, forces F
measured using such a system can be related to £ and the
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Poisson ratio, v, of the material or cell using the Hertz model®"
4vR E
F=—Y—_— p 16
3 1—12 (16)

While seemingly straight-forward, for soft materials such as cells
(0.1 kPa < E < 100 kPa) it is critical that an appropriate
indentation depth ¢ is used: for very small or very large values
of 6, measurements of E using eqn (16) are inaccurate.?' Recent
advances in analytical methods have enabled the determination
of the rheological properties G' and G” directly from raw
experimental data.®* This technique has been successfully inte-
grated with AFM: by applying a step-strain indentation to
samples using a bead affixed to a cantilever, Chim, et al., were
able to measure the local viscoelastic properties of gels, and even
cells, using AFM.*® Results using this technique for a polydi-
methylsiloxane (PDMS) gel and polyacrylamide gel-like solution
were compared to those obtained with a rheometer, showing
reasonable agreement between values of G’ and G” between both
methods.

Magnetic tweezers (see Section II) are another excellent tool
with the capacity for measuring viscoelastic properties on a
sub-cellular level: magnetic tweezers can be used to probe the
materials properties within cells and tissues, such as the
viscoelastic properties of individual fibroblasts,®* the viscosity
of fly embryos,* or the stiffness in mouse blastocysts.*”

On larger length scales, viscoelastic properties of entire cells
can be assessed by microfluidics-based real-time deformability
cytometry. In this methodology, a cell is squeezed through a
microscopic channel while measuring its deformation.®® This
type of equipment has been successfully used, for instance, to
measure how blood cells change their viscoelastic properties
upon differentiation,®” and to demonstrate how neuronal cells
change their mechanical properties through reprogramming
and differentiation.®® Although in principle the response is only
observed at one frequency (the inverse of the deformation
time), this type of study does allow for comparisons between
different materials. This is also true for studies based on optical
stretchers where the so-called ‘“compliance” is measured,
which has been used to investigate the viscoelastic properties
of glial cells®® and cancer cells, relating viscoelastic properties
to invasive potential.®

C. Experimental consideration of sampling time vs. frequency
response

For optical tweezer experiments seeking to measure viscoelastic
properties, the frequency response can depend upon the sam-
pling time. By calculating the Allan Variance,”" the noise in
optical tweezers setups can be quantified and one can deter-
mine the optimal measurement time, measurement frequency,
and detection scheme, thereby providing a qualified choice of
these parameters.

D. [Illustrative example

To provide a more concrete example of how to calculate the
different materials properties, consider a sample of material
with known Poisson’s ratio ». One means of measuring its

1522 | Phys. Chem. Chem. Phys., 2023, 25, 1513-1537

View Article Online

PCCP

materials properties is via AFM, as shown in Fig. 4. Here, a bead
of known radius R is glued to an AFM cantilever with no tip via
an epoxy, and its spring constant k is measured. The bead is then
brought into contact with the material, and pushed in a distance d.
This results in the bending of the cantilever a distance A%, caused
by a force of |F| = kAh. Applying the Hertz model (eqn (16)), the

3F (1-17)
WR FE
softer materials, and biomaterials in particular, the measured E is a
function of d until a certain indentation depth; to obtain the true
value for Young’s modulus of such a material, d must be increased
until a plateau is observed in calculations of E.5' The shear
modulus G can be calculated from the value of E using eqn (7),

Young’s modulus is calculated as £ = . Note that for

resulting in G = 3—F M Alternatively, the bulk modulus
g _gﬁd3/2(l+y)' Y,
F  (1-17)

K can be calculated via K = m m

IV. Characterising transport and
organisation

Self-organisation, in particular in living matter, emerges from
an intimate interplay of transport processes, passive and active,
on many length and time scales, along with a multitude of
chemical reactions. Prominent examples of dynamic self-
organisation phenomena range from dynamic protein gradients
in single cells”®°° and in vitro assays””*® over compartmentalisa-
tion of biochemical reactions® or active arrangements of cellular
organelles,'®™% up to organised fluid dynamics of tissues during
development, e.g., in zebrafish and fly embryos."®*'%” In the
context of organismal development, mechanical cues, materials
properties (see Section III), and the interplay with biochemical

Fig. 4 Example measurement of elastic properties using AFM. A material

of known Poisson'’s ratio v is indented by a sphere of radius R attached to

an AFM cantilever. The cantilever has a spring constant of k (calculated

before the experiment), and is bent by a distance Ah, indicating a force

|F| = kAh. Applying the Hertz model from eqgn (16), the Young's modulus is
3F (1—17)

calculated as E =——
4R &P
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gradients have been of prime importance (see ref. 108-113 for
some examples).

Relating to the previous sections, we here focus on funda-
mental and generic aspects of transport in the self-organisation
of living matter. Due to its global appearance and generic
character, we concentrate on thermally driven or active diffusive
motion as its epitomisation. In particular, the current section
discusses known facts and current challenges of diffusional
transport by first outlining relevant theory and second relevant
experiments before highlighting some crucial aspects of the
interplay between transport and (bio)chemical reactions in self-
organisation processes.

A. The Gaussian probability density function

Ever since Robert Brown’s vivid account of the jittery motion of
microscopic particles derived from pollen and rocks, diffusive
processes have been the focus of statistical physicists. Starting
with the seminal works of Einstein'* and Smoluchowski,'*®
“Brownian motion” has become an overarching statistical
description for non-equilibrium phenomena in all areas of
physics, physical chemistry, and even financial mathematics.
Langevin’s formulation in terms of a stochastic differential
equation connected diffusion to Newtonian mechanics in the
presence of effective, random forces."'® Today, massive
advances in microscopic techniques and the ability to fluores-
cently tag and monitor submicron tracers or even single
molecules, make it possible to garner single-particle trajec-
tories at nanometer-resolution in complex environments such
as living matter.""”

The mathematical description of Brownian motion is often
called “universal”, as the mean squared displacement (MSD)
(1) = [* _r*P(r,1)dV = 2dK;¢ fully defines the Gaussian
probability density function (PDF), i.e., the propagator of the
diffusion equation, in d dimensions

P(r,1) = (4nK 1)~ exp (—%). (17)

Here, K; is the diffusion coefficient with units m* s~ *. The PDF
is used as a measure of the likelihood of a particle being at
position r at time ¢, while the particle’s MSD is the expected
squared distance travelled by a particle subject to Brownian
motion relative to its initial position. For spheres with radius R
in a fluid of viscosity #, i.e., d = 3, at thermal equilibrium the
familiar Stokes-Einstein result K; = kgT/(6myR) holds. Similar
relations K; oc 1/R.¢ were also shown to hold for the momentary
diffusivity of fluctuating proteins in water,"'® for drum-shaped
proteins of radius R.g in crowded membranes,'"® and in general
for sufficiently large membrane domains."*>"*" The Gaussian
law, (eqn (17)), with time-linear MSD (r*(¢)) = 2dK;t holds as long
as the diffusing particle moves unbounded and interaction-free
in unconstrained space. Allowing for interactions, the picture
becomes already considerably more complex. When specialised
proteins search for a specific DNA target sequence, for example,
they switch intermittently between three-dimensional diffusion
in the cell (or the nucleus) and one-dimensional diffusion along
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the often randomly coiled DNA,"**™*** thereby significantly
improving the search efficiency over a simple diffusive process.
Similarly, particles may intermittently bind to a surface, e.g., a
cellular membrane, which alters the overall diffusion
statistic'**™*® and mediates the escape through a small opening
in the surface."”*>"*°

On the other hand, restricting the available space for simple
diffusion, e.g., by randomly placed (almost) immobile obstacles,
may not only decrease the transport coefficient K; but can result
in strong deviations from the Gaussian law (eqn (17)), and even
in a local confinement (“corralled diffusion”). Indeed, in more
complex and/or non-equilibrium systems, such as in biological
fluids, gels, or membranes, the simple laws of diffusion are no
longer applicable, and are thus non-universal.'*”*?7:1317134 [ the
following paragraphs we discuss two specific showcases of non-
universality of diffusion.

A frequent observation, especially in soft and living matter,
is that of “Brownian yet non-Gaussian” diffusion.***” Here,
the MSD still grows linearly in time, but the PDF of step lengths
deviates from the anticipated Gaussian law (eqn (17)), often
displaying exponential tails. One possible explanation for this
phenomenon employs a heterogeneous ensemble of trajectories,
e.g., when monitored particles have different radii, as encoun-
tered for commercially available tracer beads. As a result, while
each trajectory has its well-defined diffusivity K;, the ensemble
of trajectories of different particles is characterised by a distribu-
tion p(K;) of diffusion coefficients. The non-Gaussian behaviour
of the averaged PDF P(r,f) then emerges from a superposition
of individual Gaussian contributions from each trajectory,
with the particular features of P(r,t) depending on the exact
shape of p(K;)."*>'*® This “superstatistics”’*® reproduces the
widely observed exponential forms of P(r,) for exponential
shapes of p(K;)."*° Thus, by simply lumping together all steps
from all trajectories, deviations from the anticipated Gaussian
behaviour may be created due to ensemble heterogeneity in an
otherwise homogeneous environment.

Heterogeneity within individual trajectories can be empha-
sised by normalising each trajectory by its root-mean-squared
step length, eliminating any impact of the ensemble of particles.
If the resulting P(r,¢) still deviates from a (standard) Gaussian
(eqn (17)), then K;-heterogeneity within individual trajectories
can be deduced (as illustrated in Fig. 5a). Several reasons may
account for such an observation, e.g., spatially and/or temporally
varying viscosities or effective local mobilities may alter a
particle’s step length while it explores its surrounding. Alterna-
tively, particles may switch stochastically between different
mobility states, such as via a transient coupling to stationary
structures or processive molecular motors."*°™**> Even the radius
of the tracer particle itself may grow or shrink, e.g., by ongoing
multimerisation, especially when using fluorescently-labelled
biomolecules,'**™*** or via conformational fluctuations.'*® Such
cases can be effectively modelled as “diffusing-diffusivity” pro-
cesses, assuming that the diffusion coefficient becomes expli-
citly time-dependent, Ky(£), and varies stochastically.'**"*¢7'48 Ag
a result, the MSD grows linearly in time with a constant effective
diffusivity as prefactor, while the displacement PDF starts with
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Fig. 5 Transport observables and measurement artifacts. (a) The PDF of normalised increments, P(y), from trajectories of quantum dots in the cytoplasm
of living cells (blue symbols) deviates from the anticipated standard Gaussian (red dashed line), indicating significant diffusion heterogeneity of individual
trajectories; data from ref. 142. (b) The TA-MSD of a single trajectory with exactly known positions follows the anticipated power-law scaling (black circles
and dashed line). Both static and dynamic localisation errors (blue diamonds and red squares, respectively) induce considerable deviations for small lag
times. Left inset: Visited positions during image acquisition, responsible for a dynamic localisation offset. Right inset: Camera image of a single immobile
particle whose position can only be determined via static localisation error. Data from ref. 153. (c) The PSD of individual subdiffusive telomer trajectories
(red and blue lines) follow the predicted FBM scaling (black dashed line). Inset: Normalised fluctuations, A, of individual PSDs from the ensemble mean
feature universal distributions, P(A), depending upon dimension (black 1D and red 2D trajectories, respectively); data from ref. 154. (d) Velocity
autocorrelation functions of subdiffusive quantum dots in the cytoplasm of living cells. The anti-correlation peak agrees with the FBM prediction with an
anti-persistent memory. Instantaneous velocities were determined between frames separated by At (black circles), 3At (red diamonds), and 5At

(blue squares). Data from ref. 142.

exponential tails (or more general shapes'*®) and crosses over to
an effective Gaussian at times longer than an intrinsic correla-
tion time."?>'*¢"1*% Alternatively, quenched spatial disorder may
give rise to non-Gaussian behaviour.">* ">

B. Anomalous diffusion

Here, we discuss anomalous diffusion, as introduced in Section
I and using the same scaling exponent, «. Anomalous
diffusion is conventionally defined by a nonlinear scaling of
the MSD, often assuming a power-law form

(P(t)) ~ Kt

(18)

where K, represents the generalised diffusion coefficient. K, has
the physical dimension m s~ The coefficient K, depends on
the details of the specific physical process behind the observed
motion. For instance, in long-range correlated dynamics, such
as for viscoelastic anomalous diffusion, the exponent o is

1524 | Phys. Chem. Chem. Phys., 2023, 25, 1513-1537

related to the power-law exponent of the noise autocovariance
function. Or, o emerges for the MSD of random walk processes
with scale-free distributions (1) ~ t3/t"™ of waiting times t
between successive jumps with 0 < o < 1 and finite variance
o> of the jump lengths, K, = /,°/[2¢3]. Generally K, is propor-
tional to the strength of the driving noise. For instance, in the
mentioned processes with waiting times K, oc kgT, where kg is
the Boltzmann factor and T temperature."”>

A prominent example is stochastic motion fuelled by a
Gaussian yet power-law correlated noise, such as in viscoelastic
systems. Depending on whether the system is at equilibrium
and subject to a fluctuation-dissipation relation or not (intrin-
sically, biological cells are very far from equilibrated systems),
the resulting motion is governed by the generalised Langevin
equation'®®'*” or fractional Brownian motion.'”® This beha-
viour is in fact closely related to the viscoelastic nature of many

complex systems, e.g., in lipid bilayer membranes,**® worm-like
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micellar solutions,'® or in crowded media like biomimetic
fluids™®" % or the cytoplasm of cells.*>'%*%® Notably, viscoelastic
yet non-Gaussian processes have also been analysed. 467169170
Another class of systems is described by continuous-time random
walks, composed of two, possibly heavy-tailed, PDFs governing the
random jump lengths and waiting times of this process."”* For
instance, scale-free immobilisation times dominate the motion of
membrane proteins'’> and insulin granules.'”® Numerous other
anomalous diffusion processes exist.*>'**'7%17> Ag discussed in
Section III, normal diffusion implies o = 1. We mention that
measured MSDs do not always follow a unique power-law trend
across the entire measurement. Instead, cross-over behaviours
occur, and normal diffusion with o« = 1 may emerge as an
intermediate-asymptotic behaviour.’*® Such a situation is demon-
strated in Fig. 5b which shows the time-averaged MSD (TA-MSD) of
a subdiffusive trajectory of a simulated FBM (black circles). The
dynamics follows the anticipated subdiffusive power-law scaling
(r*(1)) ~ ™. Moreover, as demonstrated here, errors in the
localisation of the tracer particle may spoil the power-law behaviour
of the MSD. Thus experiment-inherent static or dynamic localisa-
tion errors induce significant perturbations (blue and red symbols,
respectively): while the finite number of photons per frame intro-
duces statistical position uncertainty in the associated raster image
(¢f right inset), particle movement during this finite acquisition
time smudges the visited loci (cf’ left inset). For large lag times t in
sufficiently large systems, a crossover to normal diffusion (o = 1,
dash-dotted line) is frequently observed at times beyond some
crossover time scale. Finally, finite systems such as biological cells
eventually enforce a crossover of the MSD to a constant plateau (o =
0) due to an asymptotic confinement of tracer particles. Notably,
even at stationarity in a bias-free environment, the particle PDF
does not necessarily need to have the same amplitude everywhere,
as, e.g., for Brownian motion, but may increase or decrease close to
boundaries."”®"”” Closing this brief overview, we want to emphasise
that the effects of additional system-inherent noise may also need
to be considered, e.g:, created by the long-term motion of cells with
tracking particles, or by drift in the experimental apparatus. Such
noise may partially mask some of the actual physical processes
underlying the diffusive motion of tracked particles.'”®'%'

The existence of so many relevant physical processes, all
characterised by the same scaling (eqn (18)) of the MSD,
presents a major challenge for the analysis of (experimental)
data: how can we infer the true physical process governing the
observed systems from the measured data? Apart from simply
characterising the system, this information is also vital to
predict secondary and coupled processes, such as chemical
reactions or diffusion-mediated relaxation dynamics, and even-
tually also emergent phenomena like pattern formation, a topic
which is discussed further in the following section.

C. Combining transport and reactions - crucial aspects of
self-organisation

On the most fundamental level, transport impacts cellular
organisation by bringing reactants closer together, such as
for proteins, whose interaction triggers downstream events
like gene expression or large-scale cellular motion. Yet, like
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the classical Michaelis-Menten scheme for enzymes and sub-
strates, most cellular reactions, and even complex signalling
networks, can be formulated and analysed in terms of concen-
trations as sets of ordinary differential equations (ODEs).'#>183
Spatial information might be considered here by restricting
certain reaction steps to separated vessels that exchange mate-
rial with some kinetic rate. Hence, transport events are lumped
into effective (pseudo) rates and all particles are assumed to be
well-mixed (in their respective vessel) at each instant of time.
However, this approach fails miserably if the number of reactants
is low. At this condition, the dissociation event in a Michaelis-
Menten scheme does not, for example, lead back to a well-stirred
mixture, but rather towards a diffusion-driven rebinding of the
same substrate molecule to its corresponding enzyme, an inter-
action favoured over all competitors.'®* As a consequence, the very
same enzyme can act on substrates in either a processive or
distributive fashion, depending on the actual concentrations and
transport coefficients."®> In fact, considering diffusion-driven
rebinding for the MAPK pathway (which communicates a signal
from the cell surface to the nucleus), this rebinding erases the
toggle-switch behaviour that had been predicted by ODEs.'®*

Subdiffusion of the fractional Brownian motion (FBM) type
can further enhance rebinding events,'**"'*® and may even lead
to fractal kinetics."®>*° Notably, the crowded state of cells not
only influences reactions by altering diffusive transport and
rebinding, but it also stabilises associated states (e.g. protein
adsorption to target membranes) in a very general way by
rendering the immediate surrounding volumes inaccessible,
i.e., hampering dissociation.'**

Given that transport significantly impacts information pro-
cessing at the most fundamental level, it is mandatory to focus
not only on ODEs and apparent kinetic rates, but also to
thoroughly consider and quantify transport when aiming to
understand cellular self-organisation.'®**** Thus, considering
both the experimental and theoretical limitations and chal-
lenges becomes even more important.

On larger length scales, diffusional transport is key for
the emergence of spatial concentration patterns that facilitate
intracellular self-organisation, tissue organisation, and
embryonic development.’®® A prime example in this context
are reaction-diffusion systems with an activator and an inhibi-
tor, whose antagonistic and nonlinear reaction terms can lead
to the emergence of stationary spatial patterns when diffu-
sional mixing is sufficiently poor (see Fig. 6 for an example).'®
Such spatially non-uniform steady states are named “Turing
patterns”, in honour of A. M. Turing. By now, many similar
pattern formation systems have been observed experimentally,
and a multitude of pattern forming systems formulated math-
ematically. These include, but are not restricted to, scenarios
that invoke depletion effects instead of inhibition, advection in
addition to diffusion, or the conservation of particle numbers,
showing temporal oscillations instead of a stationary spatial
pattern. Unfortunately, a Babel-like state has emerged over the
years in the literature: at times, any kind of gradient formation
is simply named a Turing pattern, while at others already well-
known phenomena are coined with new and fancy names.
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Fig. 6 Transport involved in self-organisation. (a) One-dimensional
reaction-diffusion system (known as Schnakenberg model) that develops
a stationary Turing pattern over time (activator concentrations highlighted
in colours). A necessary condition is that the activator and its antagonistic
inhibitor possess vastly different diffusion constants. (b) If diffusional
transport of activator and inhibitor are too similar, the pattern disappears,
and a well-mixed homogeneous state emerges.

Given that a detailed but often neglected nomenclature on
patterns was developed decades ago in the field of nonlinear
dynamics (see, for example, ref. 197), it would facilitate com-
parisons between studies if the existing physical nomenclature
was used instead of re-inventing (or renaming) the wheel.

An impressive amount of data has emerged over the years
that clearly demonstrate the interplay between transport and
reactions in living matter self-organisation on many length and
time scales. Patterning in reaction-transport systems has been
observed, for example, in the syncytium stage of developing
flies,"*®'° for the division machinery of Escherichia coli bac-
teria in vivo®> and in vitro,””*® and for morphogen patterns that
govern the embryogenesis of vertebrates.”’°>°> A particularly
well-studied example for transport-induced pattern formation
is the PAR protein gradient in the zygote of Caenorhabditis
elegans.’°° Here, two antagonistic PAR protein species, sup-
ported by diffusive and advective intracellular transport, build a
gradient that determines not only the distinct biochemical fate
of the emerging daughter cells, but also sets the anterior-
posterior body axis within the first cell division. The decisive
role of directed transport in this example has recently been
demonstrated in an elegant experiment>®? in which infrared
light created a counteracting flow within the zygote that flipped
the gradient. Subsequent patterns (e.g. concentration and
mobility gradients for MEX-5 and PIE-1 proteins®*®>*°%) are
triggered by this initial patterning, including even the conden-
sation of membraneless organelles into so-called p-granules in
the posterior daughter cell.>°>>°¢

Taken together, it appears fair to say that vital self-
organisation phenomena in living matter rely crucially on
transport processes: unambiguously revealing and naming
them is of the utmost importance to obtain a quantitative
understanding of living matter. The next subsections discuss
important measures for this endeavour.

D. Time-averaged moments and ergodic behaviour

The most informative way of monitoring transport in complex
media is by acquiring single-particle trajectories, ie., time
series of particle positions r(¢) from time ¢ = 0 to ¢t = T (the
“measurement time”’); the numerous experimental challenges
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associated with this approach are discussed below. Commonly,
time series r(¢) are first evaluated in terms of moments, {|r(¢)|?)
of (integer or fractional) order g, with each g providing infor-
mation about the system; e.g.,, ¢ = 2 for the MSD. While
ensemble-averaged moments (like eqn (18)) are typically easier
to obtain in analytical calculations, the availability of individual
particle traces in experiments advocates the use of time-
averaged moments™'732174

(i + K)A?) — r(iAD)], (19)

for a time series of positions (i) labelled i = 1,..,N, where T =
NAt and t = kAt is the lag time. This expression also highlights

that averaging in 09(t) becomes increasingly poor as © — T,
where individual fluctuations of trajectories become dominant.
We note that a widespread method—chopping up a long time
series into short segments and then evaluating as an ensemble
of trajectories—works well for stationary processes. Yet, for
non-stationary dynamics, such as processes with scale-free
immobilisation times, this segmentation introduces spurious
correlations.

Using time- and ensemble-averaged moments, a central
aspect of the system can already be analysed: the system is

considered ergodic when T/lirrgoéq—(r) = (|r|(z)). A system is said
to be ergodic in a practical sense when a point (such as a
particle) within the system will eventually explore all possible
positions and states within it in a uniform, random way. While
ergodicity is often tacitly assumed to hold, many stochastic
processes do indeed violate this premise. Analytical expressions
for ensemble- and time-averaged moments therefore need to be
calculated and tested individually''”*3*2072% for experimental
data. This becomes even more important when considering that
some processes eventually become ergodic, but only with different
convergences of time- and ensemble-averaged quantities."''3*'7*
“Weak ergodicity breaking”,"*® ie., disparity between time and
ensemble averages MSDs, reveals important clues about the
underlying system, and hence must be thoroughly probed. An
important indicator is also the magnitude of the fluctuations

of the amplitude d¢() for finite 7 from one trajectory to another,
i.e., to which degree a process is reproducible between different
realisations. The PDF of these amplitude fluctuations and its
variance, the “ergodicity breaking parameter”,"*>**” have been
demonstrated to be reliable ways to identify the underlying
stochastic process.!'”132207:208 A related feature of non-
stationary dynamics, such as those based on scale-free waiting
time processes, is so-called ‘“aging”, resulting in an explicit
dependence of all observables on how long the process, or the
experimental measurement itself, has been running,''”32207-209

E. Power spectral density

Complementing the analysis of moments, the power spectral
density (PSD) of individual position time series can also be
exploited (see Section III). Fourier-transforming a d-dimensional
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trajectory leads to the PSD’s k-component (k = 1,2,...,d),

2

1 k T
ST =730 ||, nar]. 20

j=1

where f denotes the frequency. The sum takes into consideration
the k-component contribution of the d-dimensional trajectory
x(t) = {x1(2),%5(¢),. . ., x4(t)}. The classical PSD yu( f) is the long-time
ensemble average u(f)= Tlgrolo (Sq(f,T)). Given that single-

particle tracking experiments often cannot provide sufficiently
many, and long, individual trajectories, it is pertinent to work with
eqn (21). Detailed analyses for Brownian and fractional Brownian
motion demonstrate that the power-law decay Si(f,T) ~ 1/f* is
preserved in individual PSDs. In addition, similarly to the ampli-
tude variations of the TA-MSD from one finite-time trajectory to
the next, the PDF Py(A) of fluctuations of the PSD’s amplitude A for
different trajectories from the same ensemble show a character-
istic behaviour, which has also been verified with experimental
data,"®**'%?'?> a5 shown in the inset of Fig. 5c. The two curves
correspond to the case of k = 2 of the two-dimensional measure-
ment (red curve and symbols) and the one-dimensional projection
(black curve and symbols). For details on the mathematical form
of Py(A) see ref. 154, 210, 213 and 214. It is also possible to extend
this analysis to random-diffusivity processes, and different
processes, with and without ageing, can be distinguished by the
specific form of PiA), even if the scaling exponent f is the
same,'?*?10213:214 Recently it was demonstrated that the coeffi-
cient of variation of the PSD is a robust measure for anomalous
diffusion in the presence of static and dynamic errors.**

F. First passage times

Another relevant piece of information allowing for close-up
viewings of a system are first-passage times, for instance how
long it takes a lipid molecule to escape a given radius around its
initial position.'>® While valuable information is often already
contained in mean first-passage times,*'®>'” reconstructing
their entire PDF unveils additional information, such as the
distance between the initial position and the target, target
reactivity, or the physical dimension of the accessible
volume.'*>"*?'® Notably, in many cases this PDF is wide,
and individual realisations show a considerable scatter in their
first-passage times.>'® Similar to this is the growing shell
technique developed in ref. 220.

G. Velocity autocorrelation function, VACF

Another method to analyse time series is through the correla-
tion functions of successive steps,*> often referred to as the
velocity autocorrelation function (VACF):

1

(S ) i ) i) — 0]

i=1

(21)

where the instantaneous velocity is the step length within the
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considered time interval kAt, while /At is the lag time. The
VACF probes in particular the (anti-)persistent memory kernel
in random processes, allowing, for example, a pronounced anti-
correlation to be observed for subdiffusive fractional Brownian
motion,"*? as visualised in Fig. 5d. Indeed, pronounced anti-
correlations in the VACF are found for subdiffusive motion in
crowded dextran and worm-like chain micellar solutions,***'®* in
intracellular ~ fluids,"*>'*7'¥?*12>*  and  in lipid bilayer
membranes."> The autocorrelation function of squared incre-
ments, on the other hand, can reveal stochastic switching between
different mobilities, with and without a non-Markovian memory
kernel,'*>?%>

More recently, automatic classification approaches based on
Bayesian statistics'®>*?® and deep-learning algorithms.??”"23*
have been introduced to dissect possible transport models with
a given set of trajectories. Another means of extending analysis
tools is through the combination of physical data analysis with
mathematical time series analysis.>*>*** The power of such
analyses was highlighted in the recent AnDi (Anomalous Diffusion)
community challenge, in which given time series from simulations
and experiments had to be analysed. The performance for model
identification and parameter estimation was presented in ref. 230.
Future AnDi challenges are already planned.

In summary, a broad palette of analysis tools is already
available to extract the transport model underlying experimen-
tally acquired data. However, it should be kept in mind that in
order to make a claim about the different key features of
available models, it is not sufficient to measure just one
quantity but rather a combination of several data-derived
observables. Key information is often encoded in the fluctua-
tions of observables such as the time-averaged MSD, the single
trajectory power spectra, first-passage times, etc. Moreover, the
different shortcomings and uncertainties of experimental data
acquisition must be considered thoroughly in this context, as
described below. Awareness of the non-universality of diffusion
in complex systems such as living biological cells is necessary
in order to meaningfully analyse data, and not simply assign
some essentially meaningless parameters.

H. Experimental approaches and challenges in quantifying
transport

Quantification of diffusive transport, especially in living matter,
often relies on light microscopy techniques with high spatio-
temporal resolution. The most versatile approach is single-
particle tracking (SPT), the rapid imaging of a sparse set of
particles and determining their individual trajectories from a
time series of images.>**">%¢

Prior to data acquisition, the choice of imaging technique
for SPT must be carefully considered in relation to the problem
of interest: phase contrast versus fluorescence, widefield versus
confocal, and so on. Each method has strengths and weak-
nesses in terms of acquisition time, potential phototoxicity,
and other parameters. The most widespread imaging technique
in the realm of living matter is fluorescence microscopy, for
which a broad palette of genetically encoded or artificial
fluorophores is available for in vivo imaging.**”>** In most
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cases, experiments are reduced to rapid, two-dimensional
fluorescence imaging, where particle positions are determined
only in the imaging plane. To this end, epi-fluorescence, total-
internal reflection, confocal, or lightsheet microscopy can be
used, all of which allow for an acquisition speed in the range of
at least ten frames per second. While two-dimensional image
acquisition is straightforward and rapid, gaining information
about the third dimension requires considerably more effort
due to its slow speed, reduced resolution and increased
amounts of data to be processed. Neglecting motion in the
third dimension to improve temporal resolution, however,
requires that motion along the different spatial degrees of
freedom are not coupled, i.e., that the two-dimensional trajec-
tory contains all relevant information and is more than a lossy
projection of the real motion. Probing the validity of this
assumption, e.g., by testing whether the remaining two spatial
degrees are uncorrelated, is rarely done, but would improve the
grounds of the subsequent analysis.

Having recorded a potentially meaningful image series, a
number of quality controls must be made before a more refined
analysis in terms of MSDs, PSDs, etc. can be performed. First
and foremost, drift and fluctuations of the microscopy stage
and/or the entire specimen need to be removed. Correcting for
this global centre-of-mass motion might require additional SPT
experiments on fixed cells, or tracing either cell adhesion areas
or even endomembranes to eventually reveal the relative
motion of tracer particles. While fixation may be useful for
some controls, it is important to notice that for experiments
investigating cellular dynamics or transportation phenomena,
fixed cells cannot be used as fixation destroys any biological
activity.

A challenging next step involves identifying the labelled
particles in each frame and combining their frame-wise positions
to trajectories; failure to do so results in mixing up particle
identities within a single trajectory, leading to an erroneous
analysis. Often, the image contrast has to be enhanced locally,
e.g., by bandpass filtering, to highlight local intensity maxima.
Then, the maxima in each frame have to be assigned to a set of
moving particles by some probabilistic measure. Many algorithms
for SPT evaluation are available for the community, such as plug-
ins for Image]/FIJI, or even as source codes for IDL/Matlab. Which
to pick for data evaluation is a nontrivial decision, a choice which
may be guided by a comprehensive comparative study.”** It is
evident, however, that all of these algorithms have internal
degrees of freedom that potentially introduce artifacts to the
extracted positions. For example, allowing for blanks in a trajec-
tory and simply interpolating the missed position is not good
practice, even though many tracking algorithms do just this.
Using interpolated, basically diced positions might render trajec-
tories more Markovian, ie., existing memory effects within a
trajectory are deliberately diminished, hence altering correlation
functions like the VACF.

Even when carefully performing all of these steps, one ought
to bear in mind that all particle positions inevitably have static
and dynamic localisation errors®*>>*® that require careful
consideration in subsequent analyses. First, the position for
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even an immobile particle can only be determined with an
accuracy dependent upon the number of acquired photons ()
as ~ 1/,/my; this static localisation error is basically the usual
standard error of the mean. Second, recording an image to
determine a particle’s position takes a finite time during which
it is in constant motion. As a result, the particle’s position is
smudged, creating a dynamic localisation error. Both localisa-
tion errors will affect the MSD and the VACF,>*® suggesting a
different scaling exponent « and/or an altered (anti-) correlation
in the VACF. Even worse, both localisation errors can induce
opposing artifacts and it is a priori unclear which of the two will
be dominant or if they even cancel each other out. For example,
the static localisation error adds a positive offset to the
MSD,**¢**% \whereas the dynamic localisation error effectively
adds a negative offset,>*>**® compare Fig. 5b. It turns out that it
is possible to circumvent this issue in the MSD when using a
resampling approach of the very same trajectories,'>® which
typically allows for a more stable determination of the scaling
exponent o. At the same time, one needs to be aware of the
finite length of experimentally determined trajectories,
frequently in the range of N = 100 positions per trajectory.
With short trajectories, for instance, the apparent scaling
exponents derived from time-averaged MSDs feature a fairly
wide distribution that hardly reveals the properties of a random
walk.'>® Often, all averaging procedures discussed in the pre-
ceding section are hampered by finite-size effects when dealing
with experimental data. Concurrently, mean-maximal distance-
based analyses may be profitable.”*’

Taken together, the transportation measures discussed
above can only be applied to experimental data with the caveat
that they have been derived assuming long trajectories and per-
fectly known positions. In order to derive meaningful analysis tools
for experiments, this uncertainty and the aforementioned super-
imposed noise need to be carefully taken into consideration.'” 8
We mention that additional challenges may be posed by the precise
experimental protocol, e.g;, when temperature or ATP concentra-
tions are modified during the experiment,>® or when the action of
poisonous substances decay over time.>*

Besides SPT, a number of ensemble-based measurement
techniques for quantifying transport are available. These are
good alternatives especially in less dilute systems in which
individual particles may not be distinguishable from one another.
It is important to note that they do not provide individual
trajectories, instead reporting only on the MSD and assuming,
more or less tacitly, spatial homogeneity. Frequently employed
techniques are fluorescence recovery after photobleaching
(FRAP)*>*>* and fluorescence correlation — spectroscopy
(FCS).>>*>°® FRAP determines the half-time of diffusion-driven
fluorescence recovery in a region in which dye molecules have
been photobleached, whereas FCS relies on monitoring the
fluctuations of stationary fluorescence signals to determine the
mean residence time of particles in the focus. Complementary to
both, a scattering technique called differential dynamic micro-
scopy (basically small-angle dynamic light scattering) has been
introduced and applied more recently.”**>%* If and to what extent
these different methods provide comparable results to SPT, and
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determining which is the most accurate in quantifying transport
within a given system, is a nontrivial task (see, for example,>** 2%’
for some comparative studies). Compared to SPT, however,
ensemble-averaged techniques provide significantly more limited
information: inferring the actual nature of the transport process
from these data is typically more than challenging.

V. Conclusion

Progress in quantifying and understanding living matter
depends on novel experimental and theoretical methods to
dissect the impact of different biological, physical, and
chemical key factors and to uncover the underlying biological
mechanisms. This Perspective focuses on how tracking single
tracer particles enables quantification of materials properties,
bio-mechanical forces and transportation mechanisms relevant
for living organisms. A critical aspect when comparing such
data obtained by different experimental platforms, or even
from the same platforms but by different research groups, is
to identify and use comparable experimental parameters, and
similar data analysis strategies and to be critically aware of the
limitations of the experimental methodology. Successful
progress in quantifying and understanding dynamical and
biomechanical properties of living systems is thus critically
dependent on a mutual agreement between biologists and
physicists to standardise their methods based on single particle
tracking, on the use a common nomenclature, and on striving
to achieve comparable data mapped in a universal language
across disciplines. This Perspective is intended to provide a
first and stimulative step towards harmonising experimental
and theoretical approaches based on single particle tracking
techniques at the interface of physics, chemistry, and the life
sciences. Such inter-disciplinary harmonising effort is needed
to exploit the emerging experimental platforms, including, e.g.,
super-resolution and light-sheet microscopy, and to advance
our quantitative understanding of living matter.
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