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Unrestricted cell death can lead to an immunosuppressive tumor microenvironment, with dysregulated

apoptotic signaling that causes resistance of pancreatic cancer cells to cytotoxic therapies. Hence,

modulating cell death by distinguishing the progression of subpopulations under drug treatment from

viable towards early apoptotic, late apoptotic, and necrotic states is of interest. While flow cytometry after

fluorescent staining can monitor apoptosis with single-cell sensitivity, the background of non-viable cells

within non-immortalized pancreatic tumors from xenografts can confound distinction of the intensity of

each apoptotic state. Based on single-cell impedance cytometry of drug-treated pancreatic cancer cells

that are obtained from tumor xenografts with differing levels of gemcitabine sensitivity, we identify the

biophysical metrics that can distinguish and quantify cellular subpopulations at the early apoptotic versus

late apoptotic and necrotic states, by using machine learning methods to train for the recognition of each

phenotype. While supervised learning has previously been used for classification of datasets with known

classes, our advancement is the utilization of optimal positive controls for each class, so that clustering by

unsupervised learning and classification by supervised learning can occur on unknown datasets, without

human interference or manual gating. In this manner, automated biophysical classification can be used to

follow the progression of apoptotic states in each heterogeneous drug-treated sample, for developing drug

treatments to modulate cancer cell death and advance longitudinal analysis to discern the emergence of

drug resistant phenotypes.

Introduction

Programmed cell death by apoptosis1 serves a key role in the
homeostasis of tissues2 and in cell clearance by phagocytes.3

The dysregulation of apoptotic signaling is a hallmark of
diseases, such as cancer.4 Specifically in pancreatic cancer5

that is attributed to pancreatic ductal adenocarcinoma or
PDAC, which is the third leading cause of cancer death6 and
has a 5 year survival rate of less than 6%,7–9 molecular defects
in apoptotic signaling cause resistance of cancer cells to
cytotoxic therapies by reprogramming of the tumor
microenvironment. For an overwhelming majority of patients
with PDAC (80%) with a median survival duration of only 3–7

months,10 chemotherapy is the only option to control their
disease and prolong survival. However, the highly fibrotic
PDAC tumor microenvironment limits chemotherapy drug
penetration,11 while efficacy of the drug is limited by
mutations, stress responses and metabolic reprogramming in
the cancer cells that lead to drug resistance. Given the limited
time window for chemotherapy in PDAC, high sensitivity
strategies for monitoring of cell phenotypes on physiologically
relevant in vitro models or in vivo biopsies, to discern
progression of drug-induced apoptotic responses can
complement tumor imaging strategies. However, this is
limited by the absence of reliable molecular markers of drug
sensitivity and resistance,12 which motivates us to consider
cellular biophysical metrics to identify apoptosis.13,14

Drug-induced cell death by apoptosis and necrosis
(including drug-regulated necroptosis or secondary necrosis),
as well as drug resistance mechanisms cause characteristic
cellular biophysical features.15 Apoptosis usually involves cell
shrinkage, chromatin condensation and ruffling of plasma
membrane,16 eventually leading to break-up of the cell into
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apoptotic bodies that are cleared by phagocytosis (Fig. 1A).
For apoptosis in PDAC,17 the cell receptor mediated extrinsic
pathway is enhanced by intrinsic pathways based on
mitochondrial membrane permeabilization to release its
proteins and on Ca2+ regulated alteration of the endoplasmic
reticulum,5,18 all of which can alter electrical physiology of
the cytoplasm. Drug-induced necrosis leads to swelling of
organelles and disruption of plasma membrane, but it can be
triggered by stimuli shared with extrinsic apoptosis.19,20 The
morphological changes associated with drug resistance
include the emergence of irregular cell shape in pancreatic
cancer,21 larger and irregular-shaped cells of high nucleus to
cytoplasm ratio in breast cancer,22,23 spindle-like shapes and
diffusive plasma membrane shape24 in colon cancer HCT8
cells and elongated and irregular fibroblastoid morphology
for drug-resistant ovarian cancer cells versus that of drug-
sensitive cells.25

Cell proliferation assays have traditionally guided in vitro
drug sensitivity studies, but these cannot distinguish the cell
death mechanism and they cannot be conducted with single-
cell sensitivity to quantify the subpopulations in
heterogeneous samples. Flow cytometry to quantify
phosphatidylserine (PS) on the surface of cells by fluorescent
staining with annexin V (AV) can follow apoptosis with
single-cell sensitivity,4 while loss of viability under
necroptosis can be followed by staining of permeable cells
with dyes such as propidium iodide (PI) or DAPI. However,
with non-immortalized pancreatic tumors from patient-
derived xenografts (PDXs), the high background of non-viable
cells in the untreated sample can confound early distinction
of drug sensitivity after treatment. Additionally, since AV can
be highly expressed by apoptotic cells due to PS exposed on
the membrane outer leaflet, as well as by cells with
compromised plasma membranes by dye penetration to stain
PS naturally present on the membrane inner leaflet, there is
the need for other more specific apoptotic markers.
Furthermore, given the importance of modulating tumor cell
death to prevent an inflammation-driven immunosuppressive
microenvironment that is conducive to tumor recurrence,26

there is much interest in techniques capable of

distinguishing the progression of apoptotic states, which is
not easily accomplished by flow cytometry. Hence, we
consider single-cell biophysical cytometry to explore the
progression of cellular phenotypes from viable through to
various apoptotic states (early to late), and onward to the
necroptotic state.

Biophysical cytometry for label-free single cell analysis
using electrical, mechanical, and imaging modalities can
potentially complement the biochemical information on
expression profiles of cell markers obtained from flow
cytometry after fluorescent staining. However, biophysical
cytometry has typically yielded data of low dimensionality
and requires computationally intensive strategies to process
data on low event numbers, which has limited its
application.27 Impedance cytometry28–30 is an emerging non-
invasive, sensitive, and high throughput (300–400 events per
s) technique that can provide multiparametric biophysical
information, based on disruptions to the magnitude and
phase of alternating current flow by single cells or subcellular
particles in a microchannel that is followed simultaneously
over several frequencies in the 0.5 to 50 MHz range. In this
manner, biophysical phenotypes associated with apoptosis or
necroptosis, such as shrinkage or swelling can be discerned
based on cellular electrical size at low frequency (∼0.5 MHz),
while membrane features, ruffles or permeabilization can be
discerned based on membrane conductance and capacitance
at mid-frequencies (2–10 MHz), and features in the cell
interior due to the endoplasmic reticulum, mitochondria, or
nucleus can be followed at high frequencies (≥10 MHz)
based on the interior conductivity and nucleus to cell size
ratio.31 Using size-controlled co-flowing insulating beads for
data normalization,32 impedance magnitude (|Z|) and phase
(ϕZ) metrics can be quantified and compared across different
biological samples over multiple frequencies, so that the
dispersions can provide multiparametric information on cell
phenotypes.33,34 Furthermore, the frequency spectra of
single-cell impedance phenotypes can be fit to dielectric shell
models to obtain a biophysical picture to identify each cell
type in a heterogeneous sample and gauge the myriad
subcellular alterations over a spectrum of drug-induced

Fig. 1 A – Biophysical cellular changes under apoptosis vs. necrosis. B – Experimental protocol to quantify progression of viable cells towards
apoptotic and necrotic subpopulations by impedance cytometry of gemcitabine treated patient-derived PDAC cell types.
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transformations.35 Prior dielectric approaches have
recognized the cell death mechanism,36 trapped specific cells
for molecular analysis,37 and classified their drug-induced
transformations within the viable, necrotic, and apoptotic
categories,38 but subpopulations over the progression of
apoptotic alterations were not quantified. Furthermore,
quantification of the subpopulations was by manual gating
strategies, which is limited by overlap of the respective data
clusters, motivating the consideration of automated
strategies for impedance data classification. Recent reports
have explored automation of impedance-based phenotypic
classification, including application of k-means algorithm-
based clustering of subpopulations of peripheral blood
mononuclear cells,39 support vector machine (SVM) to
classify live vs. dead breast cancer cells,40 SVM classifier to
quantify eight groups of pollen grains,41 and neural networks
to classify different cell types.42,43

Our advancement over this work is the development of
optimal positive controls for each cellular phenotypic class
over the progression of apoptotic states, so that clustering by
unsupervised learning and classification by supervised
learning can occur on unknown datasets of heterogeneous
cellular systems with closely related and evolving phenotypes.
As a result, the relationships between various cellular
biophysical metrics, which cannot be easily determined using
a standard 1-, 2- or 3-dimensional analysis, can be utilized at
a hyperdimensional level to cluster and classify
subpopulations in an automated manner. These biophysical
metrics can then be utilized for quantifying the drug
sensitive phenotypes of cancer cells over the progression of
viable, early apoptotic, late apoptotic, and necrotic
subpopulations, as obtained through impedance cytometry of
pancreatic tumor PDXs under gemcitabine treatment. To
validate our automated classification of impedance cytometry
data, we compare against flow cytometry after staining for AV
and Zombie Near-Infrared (ZNIR; a dye permeable to cells
with compromised membranes) to quantify apoptotic and
necrotic subpopulations, respectively, while utilizing PDXs
with differing degrees of gemcitabine sensitivity to compare
the relative proportions at the early apoptotic versus late
apoptotic and necrotic stages (Fig. 1B). While machine
learning-based classification of impedance cytometry data
clusters compares well against flow cytometry for
quantification of apoptotic versus necrotic and live cell
phenotypes, we infer that impedance cytometry is especially
well suited towards discerning the relative intensity of onset
of apoptosis, by distinguishing the early versus late apoptosis
and necrosis states. Given the importance of modulating
cancer cell death for preventing an immunosuppressive
tumor microenvironment and the need for label-free tools to
repeatedly analyze the same sample to discern drug resistant
phenotypes, we envision a key role for ML-based
classification of impedance data clusters in following the
progression of drug-induced apoptotic phenotypes based on
biophysical metrics. The described ML-based procedure for
elucidation of the characteristic cellular biophysical metrics

will also advance the ability for inline identification and
tracking of cell phenotypes in microfluidic devices, to guide
the design of phenotype-selective cell isolation systems.

Results
Challenges to discerning the progression of apoptotic states

Patient-derived PDAC tumors MAD 14-449, 08-608 and 09-
366, referred to as: T449, T608 and T366, respectively, were
enlarged in mice as xenografts.44,45 Gemcitabine is a
chemotherapeutic drug for PDAC that inhibits cellular DNA
synthesis, leading to fragmentation of DNA and expression of
genes that induce the cell death by apoptosis.46 Cell
proliferation assays were used to screen the gemcitabine
sensitivity in each PDAC cell type (T449 PDX in Fig. 2A and
all other cell types in ESI† Fig. S1) using varying levels (0.01,
0.1 and 1 μg mL−1) for different exposure periods (24, 48 and
96 h), with each untreated control maintained in complete
medium for the same durations. Cell numbers were
estimated using a DNA intercalating fluorescent dye to
calculate the % cell proliferation by comparing fluorescence
of treated vs. untreated cultures.

In this manner, the variations in % proliferation permit
classification of the drug sensitivity for each cell type. For
T449 and T608 PDXs, treatments at 0.1 or 1 μg mL−1 for 48 h
are sufficient to sharply reduce the proliferation to ∼0% or
less, indicating their sensitivity to gemcitabine. Moreover, the
decrease in cell proliferation for T608 PDXs after 24 h of
gemcitabine treatment at 0.1 or 1 μg mL−1 levels, indicates
that this cell type is the most sensitive of those in this study.
In contrast, T366 PDXs are the most resistant cell type, with
no perceptible decrease in cell proliferation below the ∼50%
mark, even after the longest drug exposure (96 h) at the
highest concentration of this study (1 μg mL−1).

The effect of gemcitabine on each PDAC cell type was
measured by flow cytometry to classify apoptotic and necrotic
populations, after staining cells with annexin V (AV) to measure
phosphatidylserine (PS) as an apoptotic marker47 and with
Zombie Near-Infrared (ZNIR) as a cell viability dye to measure
membrane integrity and function. The observed
subpopulations with fluorescence include (Fig. 2B): AV-ZNIR-
events that signify viable cells with an intact membrane and no
apoptotic signal, AV+ZNIR- events that signify early apoptotic
cells with an uncompromised membrane, and ZNIR+ events
that signify non-viable cells with a permeabilized membrane.
Based on this, the dose of gemcitabine treatment at 1 μg mL−1

for 48 h for each PDAC cell type is used to quantify the
proportions within each of the three subpopulations (Fig. 2C–E).
Comparing the untreated control (Unt) and the gemcitabine
treated (Gem) samples, the drug sensitive cell types (T449 and
T609 PDXs) show a significant reduction (*p < 0.05 and ***p <

0.001, respectively) in the viable fraction (AV-ZNIR-). This occurs
as the ratio of apoptotic cells (AV+ZNIR-) increases significantly
(*p < 0.05) for T449, and the ratio of non-viable cells (ZNIR+)
also increases significantly for T449 and T608 (*p < 0.05 and
****p < 0.0001, respectively). For the drug resistant cell line
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(T366), there is no significant reduction (p = 0.0598) in ratio of
the viable subpopulation, with only a significant (*p < 0.05)
increase in the proportion of non-viable cells, likely due to a
baseline level of drug sensitivity (apparent in the proliferation
studies – ESI† Fig. S1). In general, non-immortalized cells of
low passage number that are derived from a primary patient for
generating the xenograft renders them to be much more
sensitive to in vitro culture conditions, thereby increasing loss
of viability over the drug treatment time frame. However, based
on the low level of AV+ZNIR- fractions in the control samples
and the obvious change in ZNIR+ fractions post-treatment, we
can confirm that the onset of apoptosis can be studied after
gemcitabine treatment at 1 μg mL−1 for 48 h. It is noteworthy
that the ZNIR+ events in this flow cytometry protocol cannot
discern the cell proportions at the necrotic state versus those
progressing onward from late-stage apoptosis, since AV is
highly expressed by apoptotic cells (due to PS on the membrane
outer leaflet) and by non-viable cells with compromised
membranes (due to PS on the membrane inner leaflet). Hence,
we consider biophysical cytometry methods to distinguish
phenotypes over the progression of apoptotic states.

Impedance cytometry identifies progression of apoptotic states

The importance of modulating drug action on the tumor to
prevent an immunosuppressive microenvironment highlights
the need for tools to identify and quantify cellular
subpopulations over the progression of apoptotic states and
distinguish them versus their progression to the necrotic
state.48,49 Specifically, we consider the sensitivity of
impedance cytometry for detecting successive degrees of

biophysical alterations associated with apoptosis,50,51 that is
characterized by cellular shrinkage, plasma membrane
blebbing, the mitochondrial markers and the condensation
of chromatin. In the absence of phagocytic clearance,52 this
gradually progresses to the loss of membrane integrity (also
known as “secondary necrosis”); similar to alterations by
necrosis,53 that cause cell swelling, loss of plasma membrane
integrity, organelle swelling, lysosomal leakage and
degradation of the DNA. To create “positive” controls for the
respective apoptotic and necrotic subpopulations, we adapted
the work from Selzner et al.54 on a series of hypotonic
treatments to control the progression of apoptotic states.
Specifically, PDAC T449 cells were exposed to deionized (DI)
water to release ATP due to cell swelling and enable selective
binding to ATP-P2 receptors, so that this purinergic signaling
triggers apoptosis due to the activation of different pro-
apoptotic proteins. Critically, the cells exposed to DI water
are returned to complete medium to allow a recovery or
resting period for triggering apoptosis, with the exposure
times (in DI) and resting periods (in culture media) varied to
create the progression of apoptotic states.

Flow cytometry measurements on the T449 PDXs exposed
to the varying hypotonic conditions confirm generation of
the respective subpopulations progressing from viable (AV-
ZNIR- events in (i)) to apoptotic (AV+ZNIR- events in (ii–iv)) to
necrotic states (ZNIR+ events in (v)) – Fig. 3A and ESI† Fig.
S2. Compared to the predominantly viable cells of the
untreated control (>95% AV-ZNIR- events; Fig. 3Ai), cells
exposed to hypotonic conditions for 2 min and cultured for
4.5 h (Fig. 3Aii) exhibit high levels of AV staining, but without
much change in ZNIR expression. In fact, the proportion of

Fig. 2 A – Proliferation assays to screen drug sensitivity of PDAC cell types (T449 here and others in ESI†) at varying gemcitabine levels (0.01, 0.1,
and 1 μg mL−1) for: 24 h (circle), 48 h (square) and 96 h (triangle). Proliferation (%) is calculated as the relative proliferation under each treated
condition compared with untreated for each exposure period and gemcitabine concentration. B – Flow cytometry density scatter plots of annexin
V (AV) versus Zombie Near-Infrared (ZNIR) for an untreated control and a gemcitabine treated T449 sample (1 μg mL−1) for 48 h. Subpopulation
ratios for gated AV-ZNIR- (viable cells), AV+ZNIR- (apoptotic cells) and ZNIR+ (non-viable cells) for PDAC types T449 (C), T366 (D) and T608 (E).
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cells in the early apoptotic state (AV+ZNIR-) exhibits a sharp
rise from just ∼2.3% in the viable control to >50% after
hypotonic treatment. With the same 2 min hypotonic treatment
that is maintained for a longer resting period in culture (12 h
in Fig. 3Aiii), the early apoptotic fraction is now reduced to
∼21%, while the non-viable fraction (ZNIR+) increases from
∼7% (Fig. 3Aii) to ∼27% (Fig. 3Aiii). This suggests that the
ZNIR+ events are likely associated with the continued
progression of apoptosis, as expected for higher dose hypotonic
treatments,54 rather than to cells in the necrotic state.

Upon increasing the hypotonic exposure to 20 min, but
with a shorter resting period (1 h), the proportion of ZNIR+
cells further increase to ∼50%, with the ZNIR- cells
presenting clear shifts towards high AV staining (Fig. 3Aiv
and S2Aiv†). Finally, upon exposure to a very long hypotonic
treatment of 75 min (Fig. 3Av), the great majority of cells
(>97%) are found within the non-viable gate, due to necrosis.
Hence, we infer that PDAC cells will initiate apoptosis after a
short hypotonic dose (AV+ZNIR- events) and that a severe
hypotonic dose compromises the membrane (ZNIR+ events),
but the intermediate hypotonic doses to advance progression
of apoptosis presents the traditional hallmarks of both
apoptosis (AV+ZNIR- events) and necrosis (ZNIR+ events).
This limits the ability of flow cytometry to distinguish late
apoptotic and necrotic cells for quantifying the
subpopulations at different apoptotic states.

Multifrequency impedance cytometry of PDAC cells after
the same hypotonic treatments was carried out to measure
the biophysical phenotypes associated with the respective
apoptotic subpopulations (Fig. 3B). Since an intact lipid cell
membrane screens the AC field at low frequencies in media

of high conductivity (e.g., 1× PBS) to cause insulator-like
behavior, the impedance magnitude and phase at 0.5 MHz
(|Z0.5 MHz| & ϕZ0.5 MHz) can be used to evaluate alterations
in cell size and membrane integrity.30 With increasing
frequencies, the capacitive coupling across the cell
membrane renders cells to become more conductive, so that
at a high enough frequency (e.g., 30 MHz), cell impedance
is effectively dominated by the dielectric properties of the
cell interior.30 Hence, the impedance phase at 30 MHz (ϕZ30
MHz) can be used to evaluate alterations in electrical
physiology of the cell interior. Using co-flowing polystyrene
beads (7 μm), the impedance data of cells with conductive
interior contents can be gated versus standard-sized beads
with insulative contents for normalization to enable
quantitative comparison across biological samples and their
experimental conditions. Based on this, we analyze the
events from individual cells using a plot of normalized
impedance phase at low (ϕZ0.5 MHz) versus high (ϕZ30 MHz)
frequency. In this plot, viable cells can be delineated by the
region of high ϕZ0.5 MHz and low ϕZ30 MHz (Fig. 3Bi), since
the cells have an intact plasma membrane that shields the
electric field from the cell interior. Following the first
hypotonic treatment, a second cluster of events with a lower
ϕZ0.5 MHz and somewhat higher ϕZ30 MHz versus the viable
population is apparent (Fig. 3Bii). We attribute this cluster
to the early apoptotic subpopulation, as previously
determined by flow cytometry in the AV+ZNIR- gate
(Fig. 3Aii). Characteristic biophysical traits of apoptotic cells,
such as size shrinkage that reduces electric field screening
would lower ϕZ0.5 MHz, as observed within this data cluster
versus the viable population. Similarly, biophysical traits of

Fig. 3 Hypotonic treatment on PDAC T449 to generate positive control subpopulations across the viable (i) to apoptotic (ii–iv) and necrotic (v)
progression. A – Density scatter plots of annexin V (AV) versus Zombie Near-Infrared (ZNIR) show that exposing cell cultures to DI water for
increasing periods of time induces cells towards apoptosis and necrosis pathways. B – Density scatter plots of impedance phase at 0.5 MHz (ϕZ0.5
MHz) versus impedance phase at 30 MHz (ϕZ30 MHz) show characteristic impedance data clusters corresponding to the respective subpopulations
across the viable to apoptotic and necrotic progression for the cell cultures exposed to hypotonic conditions.
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the interior of apoptotic cells, such as Ca2+ regulated
alterations to the endoplasmic reticulum or chromatin
condensation to enhance the conductivity of the cell interior
would increase ϕZ30 MHz, as observed within this data
cluster versus the viable population. Following the second
set of hypotonic treatments, an additional cluster of
impedance events at even lower ϕZ0.5 MHz and higher
increasing ϕZ30 MHz are apparent (Fig. 3Biii). Under the
harsher hypotonic treatments, the event numbers in this
cluster increase in correlation with decrease in the number
of events in the apoptotic gate (Fig. 3Biii–Bv), leading us to
attribute the cluster with lowest ϕZ0.5 MHz levels to cells in
the late apoptotic stage. This phenotype is likely associated
with the disassembly process that is characterized by size
reduction, shedding of apoptotic bodies, membrane
morphology alterations and interior re-organization. A
smaller size and compromised membrane (as part of
“secondary necrosis”) would cause further lowering of ϕZ0.5
MHz, while nuclear degradation, organelle fragmentation and
a degree of intracellular ionic exchange with the highly
conductive buffer would explain the increasing ϕZ30 MHz.
After the harshest hypotonic treatments studied herein,
another data cluster emerges that is attributed to the
necrotic subpopulation (Fig. 3Biv and Bv). The ϕZ0.5 MHz

level of this necrotic subpopulation is lower than that of
viable cells, but higher than that of late apoptotic cells,
while the ϕZ30 MHz level is the highest amongst all the
studied subpopulations. We suggest that cellular swelling in
necrotic cells likely increases the ϕZ0.5 MHz level for this
subpopulation versus cells in the late apoptotic stage, with
its permeabilized membrane reducing the ϕZ0.5 MHz versus
viable cells, while the higher ϕZ30 MHz is associated with an
increase in internal conductivity due to the uncontrolled
intake of ions from the conductive buffer in the absence of
cell clearance by phagocytosis.

Considering the differences between flow (Fig. 3Aiv) and
impedance cytometry (Fig. 3Biv) after the 20 min hypotonic
treatment, while flow cytometry indicates that ∼17% of cells
remain within the viable gate (AV-ZNIR-) and a majority of
these cells exhibit a high level of AV staining that is almost
indistinguishable from cells within the early apoptotic gate
(AV+ZNIR-), impedance cytometry shows virtually no cells in
the region associated with viable cells and a large cluster
attributed to cells in the early apoptotic state. This suggests
that the cells within the viable gate of the flow cytometry data
(Fig. 3Aiv) that are initiated into apoptosis based on a degree
of AV expression, do not reach the threshold level of AV
expression to locate the cells within the AV+ZNIR- gate. In
contrast, for impedance cytometry, since the ϕZ0.5 MHz level is
sensitive to alterations in cell size and membrane
conformation, it can be used to detect cells transitioning out
from the viable state into the early apoptotic phenotype due
to the respective hypotonic treatment. Impedance cytometry
can also differentiate cells in the late apoptotic versus
necrotic states, as independent data clusters
(Fig. 3Biv and Bv), whereas they occur as a single data cluster

of non-viable cells in flow cytometry (ZNIR+ events in
Fig. 3Aiv and Av). As a result, we anticipate some divergences
between the respective techniques in classifying and
quantifying subpopulations in the viable and early apoptotic
gates. In summary, through appropriate choice of frequency
and impedance metrics, biophysical properties can be used
to detect the progression of viable cells towards early and late
apoptotic states, while distinguishing these subpopulations
versus necrotic cells, but label-based flow cytometry methods
that are reliant on the degree of PS staining for AV expression
are not able to independently gate these phenotypes.

Automated clustering to identify subpopulations

Following the identification of viable, early apoptotic, late
apoptotic, and necrotic subpopulations after hypotonic
treatment based on their electrical physiology that creates
distinct data clusters within the ϕZ0.5 MHz vs. ϕZ30 MHz plot, this
information is used to quantify proportions of the respective
subpopulations after gemcitabine treatment of different PDAC
cell types. The key assumption is that cells will present the
same biophysical phenotype at any given apoptotic or necrotic
stage, regardless of what triggered this response (hypotonic or
drug treatment), which is confirmed by our flow cytometry data
after annexin V and ZNIR staining. Rather than manual gates
on 2D plots to delineate each cluster for quantifying each
subpopulation, which adds uncertainty, we utilize dispersion
of the data on a multidimensional level by using impedance
magnitude and phase metrics over multiple frequencies. This
holistic clustering approach is based on unsupervised machine
learning methods to automate clustering of data (Fig. 4A) that
relies on the specific dispersion of each subpopulation cluster
to calculate and catalogue each event within a specific cluster.

Fig. 4 Machine learning strategies. A. Unsupervised learning
clustering, and B. Supervised learning classification. A – Density scatter
plot of ϕZ0.5 MHz versus ϕZ30 MHz for merged data from the different
hypotonic treatment samples were processed by the Gaussian mixture
model (GMM), with k = 4 clusters, to identify various subpopulations
across the viable to apoptotic and necrotic progression. B – Utilizing
the clustered data, various classification methods were tested, with
K-nearest neighbors (KNN) presenting the highest accuracy. The
confusion matrix for the KNN method shows how the optimal model
accurately classifies data.
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Based on the type of dispersions observed in the data, we
explore the application of a Gaussian mixture model (GMM)
for the clustering. GMM algorithms rely on the calculation of
probabilities to define the likelihood of a given event to be
part of each cluster, so that it is assigned at the end of the
algorithm to the cluster with highest probability. As with
most unsupervised learning algorithms, GMM requires as
input a starting k number of clusters to be identified in the
data. Since we observe four data clusters associated with
viable, early apoptotic, late apoptotic, and necrotic
subpopulations, we assume k = 4. Also, GMM assumes that
the cluster dispersions follow Gaussian distributions, which
seems consistent to our observations (Fig. 3B). Impedance
cytometry data acquired for the T449 PDAC cell line from
each hypotonic treatment are merged, so that the four
subpopulations are present in the analyzed dataset (Fig. 4A).
The metrics of ϕZ0.5 MHz, ϕZ2 MHz and ϕZ30 MHz were used to
provide the algorithm with multiparametric information that
covers the electrical physiology for cell size (0.5 MHz),
membrane integrity (2 MHz) and interior composition (30
MHz). Using this multi-parametric dataset, it is apparent that
the GMM algorithm can identify the 4 expected clusters in
the data (Fig. 4A – right). In fact, manual gating of the 4
clusters using the plot of ϕZ0.5 MHz versus ϕZ30 MHz (ESI† Fig.
S3A), shows a degree of overlap, with a sharp transition
between the subpopulations (ESI† Fig. S3B and C) that no
longer represents normal distributions of subpopulations. In
comparison, the multiparametric assessment used with the
GMM algorithm provides a holistic measure of the data
dispersion, enabling improved identification of each
subpopulation and a true representation of each
subpopulation distribution across multiple parameters (ESI†
Fig. S3D–F).

Automated classification by supervised learning

The characteristic electrical physiology based on biophysical
properties of the four subpopulations (viable, early apoptotic,
late apoptotic, and necrotic) is used to assess gemcitabine
treated PDAC cell types using supervised machine learning
strategies. Supervised learning methods can be used to
perform classification tasks of datasets by cataloguing
individual events based on their multiple properties. This
classification process is reliant on a training step, wherein
the algorithm is provided with a known dataset for “learning”
the combination of properties that is characteristic of each
class present in the data. After the training step, the
developed algorithm is tested to assess its overall accuracy. If
the algorithm provides a high accuracy, it can then be
implemented on unknown datasets, if they share the same
list of properties and expected classes. Hence, using the data
acquired based on the different hypotonic treatments and
the classified clusters identified by the GMM algorithm, we
tested different supervised learning algorithms to identify the
optimal one for implementation on impedance cytometry
data acquired after gemcitabine treatment (Fig. 4B). Each of

the tested algorithms provided an accuracy of at least 94%,
with the optimal one being the K-nearest neighbors (KNN)
algorithm (K = 10; accuracy = 98.4%). In this algorithm, an
hyperdimensional distance is calculated between each
unknown event and its K nearest neighbors from the known
dataset, with the event being classified according to the class
with the higher number of K neighbors. With enough
iterations performed during the training stage, it is eventually
possible to identify the set of properties and conditions that
define the hyperparametric boundaries between each class.
Hence, for every new unknown event, the KNN algorithm
attributes a class to that event, permitting an automated
classification process. The high accuracy of the KNN
algorithm can be confirmed by analyzing its confusion
matrix. In this matrix, it is possible to observe what were the
predicted classes from the algorithm versus the true classes.
It is apparent that for most cases, the algorithm correctly
classified each event. It is also interesting to note that most
errors in classification arise due to misclassification of
subpopulations that exhibit a high degree of phenotypic
similarity. For instance, there are 0 true “late apoptotic”
events that are predicted to be “viable” events, and only 14
events that were predicted to be “late apoptotic” that were in
fact “viable” events, since these subpopulation types are
clearly distinguishable in phenotype. The capability of the
KNN algorithm to identify this difference is a good example
of its accuracy and gives us confidence in implementation of
this specific strategy to drug treated PDAC samples.

Quantifying the progression of apoptotic subpopulations

The trained KNN algorithm is then implemented on
impedance cytometry data obtained from untreated and
gemcitabine treated PDAC cells (Fig. 5), utilizing cell types with
differing drug sensitivity (Fig. 2). For all samples, the four
subpopulations are apparent (Fig. 5A), albeit at differing ratios
(Fig. 5B). The variations in ratios between the untreated and
gemcitabine-treated samples follow the previously determined
degrees of sensitivity for each cell line (Fig. 2). Specifically, it is
possible to confirm that both T449 and T608 are gemcitabine
sensitive cell types, presenting significant reductions in their
viable fraction (**p < 0.01 & ****p < 0.0001, respect),
accompanied by significant increases in their early apoptotic
(*p < 0.05 & ***p < 0.001, respectively) and late apoptotic
fractions (*p < 0.05 & ****p < 0.0001, respectively). For T608
PDXs, there is also a significant increase in the necrotic
fraction (*p < 0.05), which we attribute to the lower baseline
for their viability, even in the absence of gemcitabine
treatment. There are also some noteworthy trends correlating
the impedance cytometry and flow cytometry results (Fig. 2C–E).
For T449, the observed significant increase in the ZNIR+ events
within the flow cytometry data can be correlated to the data
cluster in impedance cytometry data associated with the late
apoptotic, rather than the necrotic subpopulation. For T608, we
infer that the sharp increase in the proportion of ZNIR+ events
in flow cytometry data is closely associated with the significant
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increase in the late apoptotic fraction determined from
impedance cytometry data. For T366, there are no significant
decreases in the viable fractions, with the only significant
increase (*p < 0.05) occurring for the late apoptotic ratio with
gemcitabine treatment. This small increase was also observed
in the flow cytometry data (Fig. 2D), but it was associated with
an increase (*p < 0.05) in the ZNIR+ sub-population. Hence,
T366 is the most resistant cell line among the tested ones, with
only a small portion of the cells undergoing gemcitabine-
induced apoptosis. The direct comparison between the
estimated ratios for each cell line can be found in Fig. 5C. The
ratios of late apoptotic and necrotic subpopulations from
impedance cytometry were merged to allow for comparison
with flow cytometry ZNIR+ subpopulations. While the
estimated subpopulation ratios between flow and ML-based
impedance cytometry show a degree of similarity (Fig. 5C), the
mismatches occur in the situations wherein cell events
transition between the flow cytometry gates, as anticipated
previously (Fig. 3). These results highlight the ability for
automated classification of the drug-induced phenotypes by
using machine learning to follow the electrical physiology of
PDAC cells under drug treatment.

Impedance metrics to classify progression of apoptotic states

Based on impedance-based identification of the four
subpopulations (viable, early apoptotic, late apoptotic, and

necrotic) within the gemcitabine treated PDAC samples, we
compare each subpopulation across cell lines to delineate the
biophysical impedance metrics relevant to their
quantification. This is presented for three PDAC cell types of
differing gemcitabine sensitivity: T608 (highly sensitive),
T449 (moderately sensitive) and T366 (resistant), using the
metrics of electrical diameter (|Z0.5 MHz|

1/3) to assess cell size,
ϕZ0.5 MHz to assess cell membrane state, and ϕZ30 MHz to
assess internal cellular structure and composition (Fig. 6A–
C). To better visualize this comparison, Fig. 6D presents a 3D
scatter plot of these impedance metrics for a T608 PDX
sample, and Fig. 6E presents a schematic overview of the key
phenotypic differences between the subpopulations alongside
their associated alterations in impedance metrics. The
comparisons for the individual cell lines (together with other
impedance metrics, such as ϕZ2 MHz and magnitude opacity)
can be found in ESI† Fig. S4 for the untreated samples and
in Fig. S5† for the gemcitabine-treated samples. Focusing on
the necrotic pathway, comparisons between the viable,
apoptotic, and necrotic subpopulations in drug-treated
samples show statistically significant differences in terms of
ϕZ2 MHz, ϕZ18 MHz and ϕZ30 MHz (≤ ***p < 0.001, ****p <

0.0001 & ****p < 0.0001, respectively), as well as clear
differences in ϕZ0.5 MHz levels (p ≤ 0.0842). Comparing the
necrotic versus viable subpopulations, the reduction in ϕZ0.5
MHz (Fig. 6B) can be attributed to plasma membrane
permeabilization, which causes an increase in conductivity of

Fig. 5 Quantification of subpopulation proportions by supervised learning (KNN method). A – Density scatter plots of ϕZ0.5 MHz versus ϕZ30 MHz for
untreated controls and gemcitabine-treated samples for three PDAC cell types (T449, T366 and T608). The KNN-classified sub-populations: viable
(green), early apoptotic (yellow), late apoptotic (orange) and necrotic (red). Ellipses contain 50% of all events per sub-population. B – Ratios for
KNN-classified sub-populations for each PDAC cell line (n = 3). Statistical significance: *p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.00001.
C – Comparison between the estimated subpopulation ratios from flow cytometry versus impedance cytometry for each PDAC cell line (n = 3).
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the cell interior to lead to the observed rise in ϕZ30 MHz levels
(Fig. 6C), but the known differences in cellular swelling do
not cause significant alterations in electrical diameter. In
fact, single-shell dielectric models (Fig. S6; ESI† section B)
show that while alterations to the cell size do not result in
major changes to the impedance phase of cells (Fig. S6B†),
the alterations in membrane conductivity (as expected for a
compromised plasma membrane) cause clear alterations in
ϕZ0.5 MHz (Fig. S6D†). On the other hand, increases in
conductivity of the cell interior (due to uncontrolled intake of
ions from the conductive buffer) sharply increase the
impedance phase at higher frequencies (ϕZ2 MHz, ϕZ18 MHz

and ϕZ30 MHz in Fig. S6F†).
Considering the apoptotic versus viable subpopulations in

the drug-treated samples, statistically significant differences
are apparent within all analyzed metrics (Fig. 6A–C and S5†).
The characteristic formation of membrane blebs under
apoptosis would increase the surface area of the cell and the
capacitance alteration can be related to the increase in
membrane permittivity. Based on shell-models (Fig. S6C†),
this increase would increase ϕZ2 MHz, while the onset of
apoptotic cell shrinkage would reduce ϕZ0.5 MHz (Fig. S6B†).
Moreover, the start of chromatin condensation and DNA
fragmentation, together with Ca2+ regulated alterations to the
endoplasmic reticulum, would increase the conductivity of
the cell interior. This would increase ϕZ2 MHz, ϕZ18 MHz and
ϕZ30 MHz (Fig. S6E†), as observed with a good degree of

significance (****p < 0.0001 & ****p < 0.0001, respectively),
assuming an intact plasma membrane for apoptotic cells.
Furthermore, statistically significant differences in all
analyzed metrics are also apparent between subpopulations
at the early-stage apoptosis (cross-validated by AV+ZNIR-
expression in flow cytometry) versus the late-stage apoptosis
(characterized by AV+ZNIR+ expression in flow cytometry,
similar to Fig. 3A(iv)). Continuation of the internal
fragmentation, including nuclear and organelle degradation,
leads to lowering of the insulating intracellular material,
thereby causing an increase in internal conductivity that is
reflected in a significant increase in ϕZ18 MHz and ϕZ30 MHz

(Fig. 6C and S5D and E†). Furthermore, with the onset of the
“secondary necrosis” onward from late apoptosis, the plasma
membrane becomes progressively permeabilized to lead to
alterations similar to those discussed previously for necrosis,
i.e., a significant decrease in both ϕZ0.5 MHz and ϕZ2 MHz (≤
**p < 0.01 & ≤ **p < 0.01, respectively), and a significant
increase in ϕZ18 MHz and ϕZ30 MHz (≤ **p < 0.01 & ≤ *p <

0.05, respectively) due to ion exchange between the
intracellular and external media. The transition from early to
late apoptosis also leads to the formation and shedding of
apoptotic bodies that vary in size, shape and composition
during drug-induced cellular disassembly for removing
fragmented internal components,35 which would lead to a
sharp decrease in cell size, as detected by electrical diameter
from our simulations (Fig. S6D†) and measured results

Fig. 6 Comparison of biophysical metrics from impedance cytometry: A. electrical diameter, B. impedance phase at 0.5 MHz (ϕZ0.5 MHz) and C.
impedance phase at 30 MHz (ϕZ30 MHz) for each PDAC cell type (n = 3 runs). The biophysical properties of each subpopulation (viable, early
apoptotic, late apoptotic, and necrotic) can be identified by characteristic combinations of impedance metrics. Statistical significance presented as
the highest p-value among the three PDAC types (*p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.00001). D – Density scatter plot of ϕZ0.5 MHz

versus ϕZ30 MHz and electrical diameter (|Z0.5 MHz|
1/3) for a gemcitabine-treated T608 sample. E – Overview of the key biophysical differences

between subpopulations and impedance metrics associated with the altered electrical physiology.
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(Fig. 6A; ≤**p < 0.01), especially in comparison to the viable
cell subpopulation (≤***p < 0.001). Comparing the necrotic
and late apoptotic subpopulations, while some phenotypic
alterations are common, such as the gradual loss of
membrane integrity that leads to significant changes in the
impedance metrics, there are also key differences between
the two states that can be distinguished based on the
machine learning strategies. For instance, the formation of
membrane blebs and apoptotic bodies within the late
apoptotic subpopulation cause differences in electrical
diameter and membrane-related metrics (e.g. ϕZ0.5 MHz, ϕZ2
MHz or magnitude opacity) versus the necrotic subpopulation.

Conclusion

Modulating drug-induced pancreatic cancer cell death for
prevention of an immunosuppressive tumor
microenvironment requires single-cell phenotypic analysis
tools capable of distinguishing the intensity of apoptosis
using drug-treated samples from patient-derived xenograft
(PDX) models. Since flow cytometry after standard staining
protocols for apoptosis and viability was unable to
distinguish cells over the progression of apoptotic states, we
consider distinction of cells in the early apoptotic versus late
apoptotic and necrotic states based on the biophysical
metrics measured by multifrequency impedance cytometry.
Machine learning strategies were used to train for
recognition of biophysical metrics from each apoptotic
phenotype based on positive controls from hypotonic
treatment of the pancreatic tumor cells, so that unsupervised
learning can enable subpopulation clustering and supervised
learning can be applied on gemcitabine treated pancreatic
tumor cells to enable regression and pattern prediction. In
this manner, the relative intensity of onset of apoptosis
under gemcitabine treatment can be distinguished for
pancreatic tumors of differing gemcitabine sensitivity based
on the cell proportions in the viable, early apoptotic, late
apoptotic, and necrotic states. In comparison to viable cells,
those in the early apoptotic state exhibit lowered electrical
diameter levels due to cell shrinkage, lowered impedance
phase at low frequency (ϕZ0.5 MHz) due to membrane blebbing
and a rise in impedance phase at high frequency (ϕZ30 MHz)
due to alterations at the cell interior, such as Ca2+ regulated
alterations to the endoplasmic reticulum, chromatin
condensation and DNA fragmentation. Late apoptotic cells
exhibit sharper drops in electrical diameter and impedance
phase at low frequency (ϕZ0.5 MHz) versus viable and early
apoptotic cells, while continuing to exhibit a rise in
impedance phase at high frequency (ϕZ30 MHz). On the other
hand, cells at the necrotic state are distinguished from all
other phenotypic states based on their much higher
impedance phase at high frequency (ϕZ30 MHz), likely due to
uncontrolled ion uptake to the cell interior. Interestingly, the
onset of late apoptosis versus early apoptotic and necrotic
states can be distinguished by impedance metrics, whereas
this was not possible by flow cytometry after the standard

staining protocols. Upon application of these methods to
quantify subpopulations after gemcitabine treatment of
pancreatic tumor PDXs, we find cells chiefly at the late
apoptotic state for the highly drug-sensitive cell types (T608),
while they are distributed over the early and late apoptotic
state for the moderately drug-sensitive cell types (T449), and
remain predominantly viable for the drug-resistance cell type
(T366), with a small proportion detected at the late apoptotic
state. This ability to automate phenotypic classification by
machine learning strategies, as applied here towards
quantifying intensity of apoptosis for modulating drug-
induced pancreatic cancer cell death, can form the
foundation for studies with heterogeneous drug-treated
samples from multicellular tumor models.

Methods
Patient-derived pancreatic tumor xenografts and cells

PDAC tumor samples were generated from remnant human
tumor surgical pathology specimens collected in
collaboration with the University of Virginia Biorepository
and Tissue Research Facility, and with the approval of the
University of Virginia Institutional Review Board for Health
Sciences Research following written informed consent from
each patient. Tumors were propagated orthotopically on the
pancreata of immunocompromised mice (Fig. 1B). Tumor
growth characteristics were measured, samples were collected
for genotyping, and xenograft lines were established.44,45

Cells were transduced with firefly luciferase lentivirus
(KeraFAST), selected using puromycin and maintained in
RPMI 1640 (Thermo Fisher Scientific) with 10% FBS (Gemini
Bioproducts) and 2 mM glutamine (complete medium), with
fresh aliquots used for experiments.

Cell assays and drug treatment

For the proliferation assays, cells (∼3 × 103) were plated in a
96-well plate in complete medium and allowed to attach
overnight. Following one day of growth, the cell number was
determined to initiate drug treatment and then replenished
after 48 h, as needed for each experiment. PDAC cells were
exposed to various doses (0.01 μg mL−1, 0.1 μg mL−1 and 1 μg
mL−1) of gemcitabine (University of Virginia clinical
pharmacy) for 24 h, 48 h and/or 96 h in complete medium,
with control samples being kept under the same time
periods. Upon harvest, the CyQUANT® cell proliferation assay
(Invitrogen, ThermoFisher) was used to determine the
relative cell number, using a plate reader (Biotek). Hypotonic
treatments were performed by removing the cell culture
medium from culture wells and adding 1 mL of DI water.
The exposure period of cells to DI water was varied (2 min,
20 min or 75 min) to generate the progression of
subpopulations. After this exposure period, DI water was
removed from the wells and fresh complete medium was
added. The cell cultures were then incubated and cultured
for different time periods (20 min, 1 h, 4.5 h or 12 h), after
which the cells were lifted and processed for flow and
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impedance cytometry. Gemcitabine treatments were
performed by exposing cell cultures to 1 μg mL−1 of
gemcitabine (University of Virginia clinical pharmacy) for 48
h in complete medium to prepare for cytometry analysis.

Sample preparation

Cell culture media, i.e., RPMI 1640 with 10% FBS and 2 mM
glutamine (complete medium, Thermo Fisher), post either
hypotonic and gemcitabine treatments, were first aspirated
and stored, with the remaining adherent cells being washed
in 1× PBS (Thermo Fisher) and exposed to 0.5% trypsin in 1×
PBS for 5 min at 37 °C. To retrieve both the adherent and
non-adherent cells fractions, both the aspirated cell culture
medium and trypsinized cells were re-suspended into a total
volume of 5 mL DMEM with 10% FBS and 1% pen–strep
(Thermo Fisher) and centrifuged at 300 g for 10 min. This
sample was then aspirated, the cell pellet (containing both
adherent and non-adherent cells) was re-suspended in 1×
PBS, 500 mM EDTA (Fisher Scientific), and 0.5% bovine
serum albumin (Sigma Aldrich) and filtered through a 100
μm cell strainer. Cells were then counted with a
hemocytometer and ∼300 000 cells from each sample were
then analyzed for flow and impedance cytometry
measurements concurrently.

Flow cytometry

After sample preparation, samples were stained with annexin
V (FITC; Thermo Fisher Scientific) and Zombie NIRTM (or
ZNIR; APC-A750, Biolegend) following the provider
instructions, and immediately analyzed. Flow cytometry was
carried out using a CytoFLEX flow cytometer (Beckman
Coulter), with data being analyzed using CytExpress
(Beckman Coulter). The cell population was first gated based
on forward (FSC) versus side (SSC) scatter data, to gate events
that were too small to be considered cells; and then gated
based on SSC Area versus Height, to gate out doublets events.
Data from the FITC and APC-A750 filters were then used to
plot the expression of annexin V and ZNIR, respectively, with
cells being gated according to their viability status.

Impedance cytometry

After sample preparation, reference polystyrene beads (7 μm;
Sigma) were added to each sample at a concentration of ∼1 ×
105 mL−1 and the heterogeneous samples were passed
through a microfluidic device (50 μm × 50 μm cross-section)
at 50 μL min−1 for measurement using an impedance
analyzer (Ampha Z32, Amphasys AG), at four simultaneously
applied AC frequency signals (0.5, 2, 18 and 30 MHz) to
electrodes patterned within the channel. The impedance
signal trains were processed in real time for thresholding to
store the single cell data in the form of impedance
magnitude (|Z|) and phase (ϕZ) at each frequency.

Data and statistical analysis

Data was processed and analyzed using MATLAB (R2018b,
MathWorks). Flow and impedance cytometry data was
processed to perform comparisons across experimental
conditions. For impedance cytometry, the impedance signal
of individual cells was normalized against the frequency-
independent impedance response of the reference
polystyrene beads by dividing the impedance data by the
mean impedance data of reference beads. Due to
normalization, impedance phase is herein reported in
arbitrary units. PDAC cell populations were gated using
normalized impedance data at 30 MHz, thereby removing
smaller debris and the reference beads from further analysis
steps. Normalized impedance magnitude is used to compute
the metric of electrical diameter, by calculating |Z0.5 MHz|

1/3

(using the polystyrene beads for size reference), and the
metric of magnitude opacity, by calculating |Z2 MHz|/|Z0.5
MHz|. Statistical analyses were performed on processed flow
and impedance cytometry datasets, with significance level
being defined at α < 0.05 for all cases. One-way ANOVA tests
were performed to compare datasets based on treatment
conditions and cell lines, i.e., assessing whether datasets
from untreated and drug treated or from the different cell
lines could be assumed to come from samples of the same
mean, with the null hypothesis being rejected (p ≪ 0.05).
Thus, two sample Students' t-tests were performed to
compare individual datasets to assess statistically significant
differences between treatment conditions and viability
subpopulations.

Machine learning

ML strategies were implemented using MATLAB (R2018b,
MathWorks) functions and applications. For unsupervised
clustering of viability sub-populations, the datasets from the
various experimental conditions from hypotonic treatments
were merged to obtain a single dataset with the four expected
viability sub-populations (data from ϕZ at 0.5, 2 and 30
MHz). Due to the observed 2D Gaussian distributions of the
apparent clusters, the Gaussian mixture model (GMM) was
implemented using MATLAB's fitgmdist function. The
function was set to identify k = 4 sub-populations within the
dataset, with the individual sub-populations being attributed
a specific class. With each population being classified, a
supervised classification algorithm was then trained using
MATLAB's Classification Learner application. The dataset
comprised of data from ϕZ at 0.5, 2, 18 and 30 MHz,
electrical diameter and magnitude opacity, and 5-fold cross
validation was used. Different algorithms available in the
application library were tested, including linear discriminant,
quadratic discriminant, decision tree, support vector
machines (SVMs) and K-nearest neighbors (KNN). Confusion
matrices for each algorithm were generated to assess the
performance of each method. The accuracy of each algorithm
was determined by calculating the ratio between the total
number of true positives and negatives (i.e., the number of
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times the classifier accurately predicted the class of an event)
and the total number of events. The optimal algorithm was a
weighted KNN, with an accuracy of 98.4%, using K = 10
neighbors, the Euclidean distance, and a squared inverse for
the distance weight. A weighted KNN typically performs
better than a traditional KNN as it gives more weight to the
events which are nearby and less weight to events farther
away from the event being classified. Moreover, when
compared to other, also high performing algorithms, such as
SVMs, KNN is typically a much faster method, allowing for
high accuracy while saving computation time and complexity.
Using MATLAB trainClassifier function to recreate the
optimal classification model, the weighted KNN algorithm
was then implemented in the datasets from gemcitabine-
treated PDAC samples for classification of the viability sub-
populations.
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