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cement in micro-XRF using image
restoration techniques

Jie Yang, *ad Zhenjie Zhangbd and Qiuming Chengcd

Micro X-ray fluorescence analysis (micro-XRF) commonly has a lower spatial (lateral) resolution than other

elemental mapping techniques like scanning electron microscopy. This disadvantage limits further

applications of micro-XRF in microanalysis. In this study, the spatial resolution of micro-XRF was

improved by oversampling and image restoration techniques, including both blind and non-blind

methods. The point spread function (PSF) for the non-blind method was estimated efficiently by applying

both the small point method and the knife-edge method. Three non-blind algorithms—the fast iterative

shrinkage-thresholding algorithm, the Wiener filter, and the Richardson–Lucy (RL) method—were tested.

The results showed that all these methods could improve the spatial resolution by as much as 26.5%.

According to two image quality metrics—the mean squared error and the structural similarity index

measure—the results of the RL method were better than those of the others. Compared to the non-

blind method, the blind method called “blind deblurring with L0-regularized intensity and gradient prior”

only yielded a 12.3% improvement of the resolution, but it obtained a more precise estimation of the size

of the PSF. An oversized PSF helps to denoise, but it might reduce the resolution, and vice versa. When

the correct PSF was used in the RL method, the improvement of the resolution was as high as 41.6%. A

further application on rock samples showed that the technique helped to reduce the resolution

variations caused by polychromatic X-rays. This study demonstrated that this technique is promising, but

it is still necessary to accumulate more data and design more appropriate algorithms for micro-XRF images.
Introduction

In recent years, an increased number of benchtop micro X-ray
uorescence analysis (micro-XRF) and macro X-ray uores-
cence analysis (macro-XRF) instruments have been devel-
oped,1–5 and they have rapidly contributed to research in
electronics manufacturing,6 forensic sciences,7,8 materials
sciences,9 botany,10 geology,11–17 and art history.1,18–23 The main
difference between micro-XRF and macro-XRF is the resolution
at which the investigation is performed (typical 100 mm),24 and
we only refer to micro-XRF in this paper. Micro-XRF can
perform non-destructive elemental mapping on few or even
non-pre-processed samples. Compared with other widely used
non-destructive analysis techniques, such as electron probe
microanalysis (EPMA) and scanning electronmicroscopy (SEM),
the micro-XRF apparatus has a simpler structure, does not
require peripheral equipment (e.g., devices for cutting, coating,
of Geosciences (Beijing), Beijing, 100083,

hina University of Geosciences (Beijing),

Sun Yat-sen University, Zhuhai, 51900,

and Mineral Resources, China University

7, 750–758
and polishing), and has a lower maintenance cost. Overall, the
cost of the technique is low, and the process is user friendly.
However, the X-ray uorescence analysis (XRF) image has
a lower spatial (lateral) resolution than SEM or EPMA images.
This is because most micro-XRF instruments use a capillary or
a polycapillary for X-ray optics.25 Consequently, the beam size of
the X-ray on the focus plane is a few tens of microns (typical 10–
50 mm), while the electron beam size in typical SEM and EPMA
is commonly less than or close to one micron.26 As a result, the
elemental mapping resolution of micro-XRF is of the order of
tens of microns, and the resolution of SEM or EPMA is of the
order of sub-microns to a few microns.27 For this reason,
although micro-XRF is more convenient to use, SEM and EPMA
still have a signicant competitive edge over micro-XRF for
acquiring high-resolution elemental images.

Therefore, the improvement of the spatial resolution is
essential for micro-XRF mapping. The most straightforward
approach is to improve the hardware of the instruments,
including reducing the beam size of the X-ray and decreasing
the detector input aperture,28 but these are not easy tasks. An
alternative method is tuning the mapping parameters like the
step size and the dwell time.27 In addition, up-sampling algo-
rithms such as super-resolution can improve the resolution of
XRF images. A few studies have been devoted to this approach
in the past few years. Dai et al. proposed dictionary learning,
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Diagram of acquiring a high-resolution image with over-
sampling mapping and image restoration techniques.
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total variation super-resolution, and deep learning methods to
address this problem.29–31 However, those methods rely on
trainings with an accumulation of data, and it is not easy to
apply an algorithm that is trained on a given image type to
another image type. According to the Shannon–Nyquist
sampling theorem, the upper limit of the resolution should be
half the sampling frequency.27 For most micro-XRF instru-
ments, theminimum available mapping steps aremuch smaller
than the X-ray spot size. Therefore, an over-sampling image
with higher pixel counts can be acquired by using a dwell step
smaller than the spot size, and the over-sampled image would
have a higher spatial resolution. However, with this approach,
the resolution improvements are much smaller than the limit
the Shannon–Nyquist sampling theorem permitted. When the
step size is smaller than 1/4 of the spot size, the resolution can
be improved only by 70%.27 However, the over-sampling image
can be regarded as the convolution of the X-ray uorescence
spot and the high-resolution image. Therefore, it is possible to
restore the image via image restoration techniques (Fig. 1). The
study by Sorokoletov veried this theory and showed that the
variational Tikhonov regularization algorithm could improve
the resolution in one-dimensional scanning micro-XRF anal-
ysis.32 In this paper, several classical image restoration tech-
niques are introduced, applied, and compared to improve the
spatial resolution of XRF images.
Image restoration techniques
Basics of image restoration

Image restoration has a long history beginning in the 1950s.33

Numerous new deblurring and denoising algorithms are
proposed every year, and the eld has been rapidly growing
recently due to the increase of market demand (e.g., phone
photography and computational photography) and the boom of
deep learning.34,35 An ideal convolution processing in XRF
mapping can be represented as follows:

y ¼ h*x,

where * is the convolution operator, y represents the low-
resolution and high-pixel-count XRF image acquired by the
instrument, x is the ground truth high-resolution and high-
pixel-count XRF image, and h is the point spread function
(PSF), i.e., the intensity distribution of X-ray uorescence in this
case. In the Fourier domain, the equation has a simpler form:
This journal is © The Royal Society of Chemistry 2022
Y ¼ HX,

where Y, H, and X are the Fourier transforms of y, h and x,
respectively. When the PSF is known, it is possible to invert the
convolution process by dividing by H, and then, the result X is
transformed to the spatial domain:

X ¼ Y/H.

However, this approach does not work well because noise 3 is
usually involved in the convolution process, that is,

y ¼ h*x + 3.

In the convolution process, the power of the high-frequency
signal decreases to almost zero. If we try to restore the image by
an inverse process, the high-frequency signals will be amplied
signicantly. However, because noise also appears at high
frequencies, this process will lead to extremely noisy results.
Unfortunately, XRF images are usually highly noisy; in this case,
iterative methods are more suitable for restoring XRF images.
Therefore, a common solution for the problem is using a least
squares (LS) approach to nd a solution ~x that can minimize the
error, that is,

~x ¼ argminxkh*x � yk2.

For image deblurring, the inverse problem is usually ill-
conditioned. To overcome this difficulty, regularization w(x)
with priors is required to stabilize the solution.36 A general form
is

~x ¼ argminx{kh*x � yk2 + w(x)}.

For example, one popular regularization technique is the
Tikhonov regularization, in which a quadratic penalty is
added:37

~xTIK ¼ argminx{kh*x � yk2 + lkLxk2}.

The second term is an l2 regularization term, and the
parameter l controls the balance between the delity and noise.
Common choices for L are the identity matrix or a matrix
approximating the rst- or second-order derivative operator.
When the PSF is known, the restoration technique is called
a non-blind method; otherwise, it is called a blind method. For
the blind case, stronger prior assumptions should be added to
constrain both the restored image and the PSF, which are
output as the results.
Wiener deconvolution

The most classical non-blind deconvolution method is the
Wiener lter (WF). It solves the image deconvolution problem
J. Anal. At. Spectrom., 2022, 37, 750–758 | 751
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in the Fourier domain. The Fourier transform of the restored
image ~X can be obtained as follows:

~X ¼ H
0
Y

jHj2 þ 1=SNR
;

where H0 is the conjugate matrix of H and SNR is the signal-to-
noise ratio of the image x. The SNR is difficult to estimate, and
the standard WF is very sensitive to high-frequency noise. A
commonly used modication is to use ljQj2 to replace 1/SNR. Q
is a criterion matrix, which usually uses the Laplacian matrix to
penalize high-frequency components, and the parameter l

tunes the balance between the data and the regularization.
Richardson–Lucy method

Due to the quantum effect of the photoelectric process, photons
detected by the detector can be described by Poisson statistics,
which results in Poisson noise. The Richardson–Lucy (RL)
method is a maximum-likelihood method that can be used for
image deblurring when the data noise is assumed to follow
a Poisson distribution.38 Unlike the WF method, the RL method
solves the problem in the space domain via an iterative method.
In iterative processes, the restored image ~xk + 1 at step k + 1 can
be calculated based on the image ~xk from step k, that is,

~xkþ1 ¼ ~xk

�
ĥ� y

h� ~xk

�
;

where ĥ is the ipped matrix of h obtained by reversing the
order of the elements in the rows and columns of h.
Fast iterative shrinkage-thresholding algorithm

The fast iterative shrinkage-thresholding algorithm (FISTA) is
an improvement of the iterative shrinkage-thresholding algo-
rithm (ISTA), which is an iterative algorithm with l1 regulari-
zation used to solve linear inverse problems in signal/image
processing.39 The optimization objective of the ISTA or FISTA is

~x ¼ argminx[kh*x � yk2 + lkxk1],

where kxk1 is the l1 norm of x. The ISTA has a complexity result
of O(1/k), whereas the complexity of the FISTA is O(1/k2).
Accordingly, the FISTA is several orders of magnitude faster
than the ISTA. The details of the optimization methods and the
algorithm can be found in Beck's publication.39
Blind deblurring with L0-regularized intensity and gradient
prior

The above three methods are classical, non-blind methods.
Since blind methods are easier to use, numerous blind methods
have been proposed.40 According to the study by Lai et al.,41 an
algorithm named “blind deblurring with L0-regularized inten-
sity and gradient prior” (L0RIGP)42 is one of the best blind
algorithms for single image deblurring. Based on the properties
of two-tone text images, the algorithm uses an L0-regularized
prior to solve the image deblurring problem. It has been
demonstrated that the algorithm also effectively handles non-
752 | J. Anal. At. Spectrom., 2022, 37, 750–758
document text images and low-illumination scenes with satu-
rated regions. The optimization objective of the method is

~x ¼ argminh,x[kh*xk22 + gkhk22 + lP(x)],

where P(x) ¼ skxk0 + kVxk0, s is the weight, Vx is the image
gradient, and kxk0 is the l0 norm, which accounts for the
number of nonzero values of x. Thus, l2 regularization is used to
penalize the PSF. In addition, because nonzero values of blurred
images and their gradients are denser than those of clear
images, l0 regularization is applied to penalize both the restored
image and its gradient. The details of the optimization
methods, iteration steps, and algorithm can be found in Pan's
publication.42

Benchmark
Resolution test chart

The most straightforward benchmark for testing the resolution
of an optical system is a resolution test chart. The chart usually
consists of many patterns in groups that progressively become
smaller, and USAF 1951 was used in this study. Each group in
the USAF 1951 chart consists of six elements, and each element
is composed of two blocks of three parallel lines (vertical and
horizontal). The resolution can be estimated by nding the
smallest block in which the lines can be identied. Based on the
group number (G) and element number (E), the resolution (R)
denoted by line pairs per millimeter (lp mm�1) can be calcu-
lated as follows:

R ¼ 2G+(E�1)/6.

Because the pattern was printed in metallic chromium on
a piece of glass, a low-resolution XRF image of Cr-Ka could be
obtained by scanning the chart with micro-XRF. In addition,
a high-resolution optical image that could be used as a refer-
ence was obtained by using a microscope. We used a version
with eight groups (groups 0–7), which could test a resolution
range of 0.250–912.3 lp mm�1. This resolution range is
adequate for testing both XRF and optical images.

Image quality assessment

Because both high-resolution optical images and low-resolution
XRF images can be achieved, some metric of image quality
assessment can be used.43 The simplest measurement is the
mean squared error (MSE), that is, the average squared differ-
ence between the estimated values and the actual values. A
lower MSE value indicates that the image was better restored.
For two images p and q with the same size of m � n, the MSE
between them is

MSE ¼ 1

mn

Xm�1

i¼0

Xn�1

j¼0

½pði; jÞ � qði; jÞ�2:

Another widely used benchmark is the structural similarity
index measure (SSIM),44 which also measures the similarity
This journal is © The Royal Society of Chemistry 2022
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between two images. Unlike the MSE based on absolute errors,
the SSIM considers the structural information or the inter-
dependencies between pixels that are spatially close.43 A
greater value of the SSIM indicates that two images are more
similar. The SSIM index is calculated on various windows of an
image. The SSIM between two windows p and q of same size N�
N is

SSIMðp; qÞ ¼ 2
�
mpmq þ C1

��
2spq þ C2

��
mp

2 þ mq
2 þ C1

��
sp

2 þ sq
2 þ C2

� ;
where mp and mq are the averages of p and q, respectively, sp

2 and
sq

2 are the variances of p and q, respectively, spq is the covari-
ance of p and q, and C1 and C2 are two constants, C1¼ (K1D)

2, C2

¼ (K2D)
2, K1 � 1, and K2 � 1. D is the dynamic range of pixel

values (e.g., 255 for 8 bit grayscale images). In this study,
according to the empirical parameter,44 we selected K1 ¼ 0.01
and K2 ¼ 0.03, and the window size was 7.
XRF and optics images

A macro-XRF instrument (Bruker M6 Jet Stream) was used to
acquire XRF images.1 The instrument used an Rh target X-ray
source (50 kV, 0.6 mA) and polycapillary optics, which could
generate a spot size smaller than 50 mm for Mo-Ka. The X-ray
beam was perpendicular to the sample surface. The silicon
dri detector (SDD) had an energy spectrum resolution of
145 eV for Cr-Ka at 275 kcps. The movement accuracy in the XY-
direction was 3 mm, and in the Z-direction, it was 1 mm. Since
this system was not equipped with a vacuum chamber, all the
analyses were performed in air. A part of the 1951 USAF chart
(G2–G7) was scanned by the equipment with a step size of 5 mm
and a dwelling time of 0.5 s for each pixel, and the overall scan
Fig. 2 Images of USAF 1951. (a) Black-and-white photo from the
microscope. Due to long hours of exposure to X-rays, some part of the
glass turned dark. (b) Binarized photo of the area in the red box in (a).
The area covered by chrome had a pixel value of 1; elsewhere, the pixel
value was 0. (c) Cr-Ka image. (d) Partial enlarged view of pattern G2E2
in the red box in (c).

This journal is © The Royal Society of Chemistry 2022
took 42 h. The area covered by chrome had an average value of
429 cps, and the background had an average value of 275 cps.
The resolution test chart was also photographed via a Lecia
optical microscope with a magnication of 50�. Fig. 2a shows
that the smallest pattern that could be identied was G6E6, that
is, a resolution of 114.0 lp mm�1. The photograph was slightly
rotated and resampled to a pixel size of 5 mm to match the XRF
image. Because the pixel values of the optical image and XRF
image were in different numerical ranges, to assess images via
the MSE and SSIM, the numerical ranges of the two images were
transformed to 0–1. The area covered by chrome had an average
value of 1; elsewhere, the average value was 0.

Compared to the optical image, the XRF image was fuzzier,
and the patterns were blurry (Fig. 2c). The numbers on the le
(2–6) could not be recognized; yet, lines in the blocks smaller
than G3E4 were joined and could not be identied. Therefore,
the spatial resolution of the XRF image was 11.3 lp mm�1.
However, according to the Nyquist–Shannon sampling law,
when the sampling distance was 5 mm, the limitation of the
resolution was 100 lpmm�1, and the smallest pattern that could
be identied was G6E5. The zoomed-in XRF image was highly
noisy, and the lines were twisted with blurred edges (Fig. 2d).
This may have been caused by current uctuations of the X-ray
tube, instability of the SDD, stage jitters, or positioning errors.

Point spread function (PSF) estimation
Point scan method

As discussed in the previous section, the PSF is essential for
image restoration. For micro-XRFmapping, the PSF is similar to
the intensity distribution of XRF. The most exact measurement
method of X-ray beams is the pin-hole method, in which an
aperture between the X-ray beam and detector is moved. This
method can directly obtain the X-ray energy spectrum distri-
bution. However, this measurement is not possible for most
instruments, because it is not easy to install a metal plate
(aperture) and a detector. Moreover, it is not suitable for
measuring the PSF for the following reasons: (1) most X-ray
sources are polychromatic, and different energy X-rays have
different spot sizes. Because low-energy uorescence can be
excited by both high- and low-energy X-rays, it is not easy to
calculate the XRF distribution based on the X-ray distribution
when considering a variety of samples. (2) X-rays have a volume
effect and scatter in a material, which changes the intensity
distributions of XRF on the sample surface. Therefore, a better
method is to scan a very tiny metallic dot or ball with a small
step size, and the shapes of PSFs for different elements
(different XRF energies) can be depicted by XRF images.

A piece of glass with a 5 mm dot of Cr coating on it was
scanned with a step size of 5 mm. Fig. 3a shows that the Cr-Ka
XRF spot was approximately round, and the XRF intensity
distribution in the horizontal direction was bell-shaped
(Fig. 3b). Considering other research on X-ray beam/spot
intensity distributions,28 we can roughly say that the intensity
distribution of the XRF spot followed a Gaussian distribution.
The PSF h(u,v) and the intensity distribution of the XRF g(u,v)
can be dened as follows:
J. Anal. At. Spectrom., 2022, 37, 750–758 | 753
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Fig. 3 Measuring the X-ray fluorescence (XRF) spot using a Cr dot. (a)
Two-dimensional XRF intensity distribution of a Cr dot, where circles
are confidence ellipses of the two-dimensional Gaussian distribution
(�s,�2s,�3s). (b) One-dimensional intensity distribution of XRF in the
horizontal direction. (c) Error distribution map.

Fig. 4 Knife edgemethodmeasurement of the size of the XRF spot. (a)
XRF image of the edge of a square on USAF 1951 corresponding to the
blue box in Fig. 2(c). (b) XRF intensity distribution crossing the edge. (c)
XRF intensity gradient denoting the shape of the XRF spot. The red dots
are gradient values of the XRF intensity, and the blue line is the curve
fitted by the Gaussian model.
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g(u,v) ¼ ah(u,v) + b,

hðu; vÞ ¼ 1

2psusv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

� e

� 1
2ð1�r2Þ

"�u� mu

su

�2

þ
�v� mv

sv

�2

� 2r

	
u�mu
su

�	
v�mv
sv

��
;

where mu and mv are the coordinates of the center of the XRF
spot, su and sv control the spot size along the u- and v-axes,
respectively, r adjusts the ellipticity of the spot, a is a parameter
controlling the maximum intensity of the XRF, and b is the level
of background noise. Regression analysis was performed to
obtain these parameters, and the error distribution (measured
intensity minus the predicted value) is shown in Fig. 3c. The
errors were evenly distributed, which implied that two-
dimensional normal distribution was a good approximation
for the PSF in this study. The condence ellipse shows that the
spot was not perfectly round, and its long axis was in a 45�

direction, which is because the SNR was low and the total
measurement time was not long enough. The sample was
scanned many times in the laboratory, and the long axis swung
drastically for each measurement. Therefore, since r was rather
close to zero and the polycapillary was vertically installed, an
isotropic two-dimensional Gaussian distribution was used as
the PSF in the subsequent analysis.
Knife-edge method

X-ray beams are in a conical shape when emitted from poly-
capillary optics; therefore, the PSF changes with the distance
from the focal plane. The X-rays usually are not perfectly
focused during mapping, which will slightly alter the XRF
intensity distribution on the surface of a sample. Although the
PSF can be obtained accurately by the point scan method, the
measurement is too time-consuming. A quicker and easier
measurement of the PSF is necessary. Under the assumption
that the change of the PSF follows an affine transformation
754 | J. Anal. At. Spectrom., 2022, 37, 750–758
around the focal plane, when the distribution model of the PSF
is known, the PSF can be roughly estimated by measuring the
spot size along one axis. For instance, in this study, an isotropic
two-dimensional Gaussian was taken as the distribution model,
in which r¼ 0 and su/sv ¼ 1. When su or sv can be acquired, the
complete PSF is known. By nding a straight edge on the
sample, su or sv can be measured quickly by the knife-edge
method.

The common denition of the spot size is its full width at
half maximum (FWHM). For a Gaussian distribution, the
FWHM is the width from 12% to 88% of the cumulative
distribution function (CDF). The relation between the FWHM
and the standard deviation (s) in the Gaussian distribution is as
follows:

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
sz 2:355s:

According to the above equation, the PSF size can be quickly
estimated by measuring the FWHM. However, due to the
inhomogeneity of the material, a more stable estimation of the
XRF intensity g(u) can be acquired from the regression model of
the Gaussian distribution considering background noise b, i.e.,

gðuÞ ¼ a
1ffiffiffiffiffiffi
2p

p
s
e
�ðu� m

2s
Þ2 þ b:

In the traditional knife-edge method, a metal plate between
the X-ray beam and detector is moved. Because the PSF is not
a distribution of the X-ray intensity but a distribution of the XRF
spot, we can modify the knife-edge method by placing the X-ray
beam and detector on the same side of the metal plate, and the
XRF intensity distribution on the plate edge is the CDF of the
PSF. Through a series of measurements by changing the
distance between the plate and focal plane, the PSF size model
can be established. Due to the polychromatic nature of X-rays,
different material plates should be used for different
elements. In the practice mapping analysis on a given sample,
This journal is © The Royal Society of Chemistry 2022
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the PSF size can be quickly calculated bymeasuring the distance
between the sample and X-ray optics. Besides, there is a simpler
estimation of PSF size via nding and scanning sharp edges on
the sample. Theoretically, it can yield a more accurate estima-
tion of the PSF size because the matrix effect of the sample is
considered. However, due to the heterogeneity of the sample,
inappropriate selections of edges might lead to failures. Here,
the edge of the square (Fig. 4a) on the USAF 1951 chart is used to
calculate the PSF size of the XRF image. The result showed that
s was 37.5 mm, and the spot size was 88.3 mm. In the following
non-blind restoration, a two-dimensional Gaussian distribution
with a standard deviation of 37.5 mm was used as the PSF.
Fig. 6 PSF estimated by L0RGP. The circles are confidence ellipses.
Results

All four image restoration algorithms were tested on the raw
XRF image, and the parameters of the algorithms were ne-
tuned to achieve the best results. The restored images are
shown in Fig. 5. All four methods signicantly improved the
spatial resolution. The lines and edges were sharper, and the
numbers on the le (2–6) could be identied. For the three non-
blindmethods, the smallest pattern that could be identied was
the same, G3E6 (R¼ 14.30 lp mm�1). According to the SSIM and
MSE values, the best result was from the RL algorithm, the
second was from the FISTA, and the third was from the Wiener
lter. In addition, the RL image had the fewest artifacts among
the three restored images. This result may have been obtained
because, compared to an optical image, the Poisson noise of an
XRF image is more prominent, which could be well handled by
RL. The FISTA obtained a poorer result, which may have been
due to the regularization in the algorithm being unsuitable for
XRF images. The WF obtained the poorest result, which may
have been because the model was the simplest and could not
suppress high-frequency noise well.
Fig. 5 Results of four image restoration methods: (a) Wiener filter, (b)
Richardson–Lucy, (c) fast iterative shrinkage-thresholding algorithm
(FISTA), and (d) blind deblurring with L0-regularized intensity and
gradient prior (L0RIGP).

This journal is © The Royal Society of Chemistry 2022
The smallest pattern in the result of L0RIGP that could be
identied was G3E5, corresponding to a resolution of 12.7 lp
mm�1. Therefore, in this case, the improvement of the resolu-
tion was 26.5% for non-blind methods and 12.3% for blind
methods. Considering that some researchers have taken the
spot size of an instrument as the spatial resolution,6 if the spot
size was selected as the base value of the resolution, that is,
1000/2/88.3 ¼ 5.66 lp mm�1, the total improvement of the
spatial resolution with over-sampling mapping and restoration
techniques was over 152%. However, because high-frequency
signals and noise were inevitably magnied by all four algo-
rithms, there were more artifacts in the restored image: ripples
and rings occurred, and twisted lines and edges became more
Fig. 7 Restored images using different PSFs.
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tortuous. With stronger regularization, the blind algorithm
L0RGP produced fewer artifacts, but high frequency details in
the image were signicantly lost, and the background of the
resulting image looked smooth.

The PSF estimated by L0RIGP is shown in Fig. 6, and it was
similar to the distribution of the XRF spot with a coarser
surface. Based on the assumption that the distribution followed
a two-dimensional Gaussian distribution, the PSF from L0RIGP
had a s value of 32.5 mm, which was smaller than the value
measured by the knife-edge method.

To nd the optimal spot size, a series of two-dimensional
Gaussian PSFs were generated with different s values in the
range of 27.5–40 mm, and then, these PSFs were applied in RL.
The restored images in Fig. 7 show that when s was close to 32.5
mm, the restored image had the highest resolution. The smallest
pattern that could be identied was G4E1, corresponding to
a resolution of 16 lp mm�1. Compared to the original resolution
of the raw XRF image, the improvement of the resolution was
42%. With the spot size as the base of the resolution value, the
overall improvement of the resolution was over 183%. This
implied that L0RGP provided a more precise estimation of the
PSF size than the knife-edge method, and the size estimated by
the knife-edge method was slightly larger than the correct size.
The over-estimation of the PSF size by the knife-edge method
may have been caused by the following: (1) the edge of the
square was not very sharp and the Cr coating is thin on the edge,
(2) the occurrence of jitter and positioning errors during
mapping, and (3) XRF noise.

Fig. 8 shows how the MSE, SSIM and spatial resolution
changed with the size of the PSF. For theMSE, the optimal swas
in the range of 35–37.5 mm, and for the SSIM, that range was
36.25–40 mm. With the spatial resolution as the criterion, the
PSFs that had s values in the range of 27.5–33.75 mm achieved
the best result, and all of them had a resolution of 16 lp mm�1.
The optimal s ranges for MSE, SSIM and resolution were
inconsonant, PSF with larger spot size tends to result in better
MSE and SSIM values. This was because the MSE and SSIM are
sensitive to noise. An improvement of the PSF size could reduce
the weights of the high-frequency signals, which caused the
resulting image to be smoother with less high-frequency noise.
According to these results, the PSF for s ¼ 33.75 mm resulted in
Fig. 8 Image quality (MSE and SSIM) and resolution change with the
size of the PSF.

756 | J. Anal. At. Spectrom., 2022, 37, 750–758
the best restored image, which led to a balance between the
resolution and the appearance of artifacts. Therefore, in appli-
cations of image restoration, the spot size measured by the
knife-edge method can be slightly reduced to achieve a balance
between the number of artifacts and the resolution. Consid-
ering that the highest spatial resolution can be achieved in
a wide range value of s (30.6� 3.1 mm in this case), the tuning of
s is not very rigorous.

When the raw estimated PSF from L0RGP was applied in the
RL method, the restored image had a coarse surface, as shown
in Fig. 7. Also, the SSIM and MSE values showed that the result
obtained using the raw estimated PSF was signicantly poorer
than the result obtained using the Gaussian PSF. These results
imply that the correct priori or distribution model of the PSF is
essential for blind methods. Based on the advantages of the
blind and non-blind methods, the blind method also can be
used to estimate the size of a PSF, the parameters can be
inputted into the PSF distributionmodel, and then the resulting
PSF can be applied in non-blind methods.

A high-quality XRF image is essential for applying image
restoration methods. To acquire such an image, high-density
sampling, long dwell times, and low acceleration of the stage
are necessary. These raise the time cost of XRF mapping.
Furthermore, the atness of the sample, the angle of X-ray
incidence, and the material of the sample might also inu-
ence the results of restoration. Thus, the application scope
seems rather limited. However, image restoration methods are
still useful because of the chromatic aberration of X-rays. Most
micro-XRF instruments use a capillary or a polycapillary for the
optics and use X-ray tubes as the X-ray source, which results in
X-rays of different energies having different focus distances and
spot sizes.25,45 When the X-rays of a given energy are focused, X-
rays with different energies are out of focus and might have
larger spot sizes. Accordingly, those XRF images are over-
sampled and appear blurry. For example, low-energy XRF
images usually look more blurry than high-energy XRF images.
Restoration techniques can improve the resolution of XRF
images that are out of focus and allow XRF images with
different energies to have a similar resolution. A polished iron
skarn was used to demonstrate this situation. The sample
consisted of magnetite (characterized by a high intensity of Fe-
Ka), calcite (characterized by a high intensity of Ca-Ka), garnet
(characterized by a moderate intensity of Ca-Ka), and quartz
veins (characterized by a high intensity of Si-Ka). The sample
was scanned by an M6 Jetstream with a step size of 10 mm.
Although these crystallized minerals have sharp boundaries,
their edges are blurry in XRF images (Fig. 9). As a result of the
energy of Ca-Ka being smaller than that of Fe-Ka, the Ca-Ka
image was blurrier than the Fe-Ka image. Because X-rays are
more likely to scatter in low-atomic-number and low-density
materials (e.g., quartz in this case) and low-energy X-rays are
absorbed in air, the quartz distribution (denoted by the high
value of Si-Ka) is dispersive. From Fe-Ka to Ca-Ka and then to Si-
Ka, the resolution of the image decreased with the increase in
the XRF energy. Three isotropic two-dimensional Gaussian
distributions with different s were used as the PSFs for different
elements, that were 40 mm for Fe-Ka, 50 mm for Ca-Ka and 80
This journal is © The Royal Society of Chemistry 2022
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Fig. 9 XRF images of an iron skarn sample.
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mm for Si-Ka. The results of RL showed that garnet, calcite, and
magnetite had shaper boundaries, and the restored images of
Fe-Ka and Ca-Ka had closer resolutions. However, the Si-Ka
image was degraded aer restoration processing, which was
due to the quartz distribution being dispersive, and X-rays
penetrating deeper into quartz than other minerals, and the
image being highly noisy. This implies that the material and
image quality are essential. Images that have extremely high
noise and materials that have dispersive textures are not suit-
able for image restoration.
Conclusions

Non-blind and blind reconstruction methods can effectively
improve the spatial resolution of oversampled XRF images.
Among the four methods, RL achieved the best result. However,
due to factors such as positioning accuracy and uorescence
noise, none of the methods could approach the limit of the
Nyquist–Shannon law. When the non-blind method was
applied, the measurement of the PSF or knowledge of the
intensity distribution of the XRF spot is indispensable. The
model of distribution can be determined by scanning a dot, and
then, the size of the PSF can be quickly determined by the knife-
edge method. However, in this way, the size of the PSF might be
slightly overestimated. Because a larger PSF size can reduce the
number of artifacts, a slight reduction of the measured PSF size
might achieve a balance between the resolution and artifacts.
Furthermore, it was demonstrated by a rock section that the
techniques helped to reduce the resolution variations for
different elements caused by polychromatic X-rays. This appli-
cation also showed that the image restoration did not work well
on images having extremely high noise and dispersive textures.

Although the PSF can also be estimated from the blind
method, due to a lack of a correct prior, the estimated PSF
might not work well, but it has a more precise size than that
obtained by a direct measurement (e.g., knife-edge method in
this study). Therefore, it is possible to use a combination of
measurements, a blind method, and a non-blind method to
achieve a better result. Although only one blind method was
reported in the paper, other blind methods proposed by Xu,46

Liu,47 and Pan48 were also tested, and the results also showed
This journal is © The Royal Society of Chemistry 2022
that these methods had no advantage over classical non-blind
methods for improving the resolution. This may have been
because there were more priors and regularizations in the blind
method, which were related to images acquired by the camera.
For example, Fergus found that the natural clear photographs
had similar histograms of gradients, and this discovery
contributed to design regularizations.49 Further studies on the
patterns in XRF images are necessary for developing suitable
blind methods for XRF image restoration. Nevertheless,
compared to non-blind methods, blind methods are more
convenient to use because they do not require measurement of
the XRF intensity distribution. Moreover, in the case when the
surface of a sample is not a plane, the PSF always changes on
different positions. Non-blind methods with a xed PSF are not
appropriate, but some blind algorithms using non-uniform
PSFs might work well.50 Therefore, the accumulation and
analysis of XRF image data are required to develop suitable
blind methods. Based on a large volume of data, which can be
used to train machine learning models, it is possible to intro-
duce deep learning and super-resolution techniques.35,51 These
methods have been proven to be effective in micro-analysis.52

Furthermore, as an image reconstruction technique, compres-
sive sensing was also introduced, which demonstrated the
capability of acquiring high-resolution XRF images with less
measuring time.53,54 It is possible to integrate these methods to
obtain high-resolution XRFs more efficiently. Thus, the current
investigation of image restoration methods was preliminary,
and more investigation especially on blind and deep learning
methods is necessary. The minimum size of the X-ray spot of
benchtop micro-XRF instruments is currently approaching
a few microns. If resolution enhancement technologies can be
further applied, we can acquire XRF images with a spatial
resolution of about 1 mm. In that case, micro-XRF will be
comparable to SEM for elemental mapping, and micro-XRF will
have advantages in terms of heavy element imaging capabil-
ities,27 sample pre-processing, and maintenance costs.
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19 J. R. Duivenvoorden, A. Käyhkö, E. Kwakkel and J. Dik, Herit.
Sci., 2017, 5, 1–10.

20 M. Alfeld, Microsc. Microanal., 2020, 26(2), 72–75.
21 A. Martins, J. Coddington, G. Snickt, B. Driel, C. McGlinchey,

D. Dahlberg, K. Janssens and J. Dik, Herit Sci., 2016, 4, 1–13.
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