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blem of determining human age
from fingermarks using MALDI MS-machine
learning combined approaches†

C. S. Bury,‡a C. Heaton,§b L. Cole,b R. McColmc and S. Francese *b

For over a century fingerprints have been predominantly used as a means of biometric identification.

Notwithstanding, the unique pattern of lines that can contribute to identifying a suspect is made up of

molecules originating from touch chemistry (contaminants) as well as from within the body. It is the

latter class of molecules that could provide additional information about a suspect, such as lifestyle, as

well as physiological, pharmacological and pathological states. An example of the physiological state

(and semi-biometric information) is the sex of an individual; recent investigations have demonstrated the

opportunity to determine the sex of an individual with an 86% accuracy of prediction based on the

peptidic/protein profile of their fingerprints. In the study presented here, the first of its kind, a range of

supervised learning predictive methods have been evaluated to explore the depth of the issue connected

to human age determination from fingermarks exploiting again the differential presence of peptides and

small proteins. A number of observations could be made providing (i) an understanding of the more

appropriate study design for this kind of investigation, (ii) the most promising prediction model to test

within future work and (iii) the deeper issues relating to this type of determination and concerning

a mismatch between chronological and biological ages. Particularly resolving point (iii) is crucial to the

success in determining the age of an individual from the molecular composition of their fingermark.
1. Introduction

The type of forensic information sought from ngermarks has
remained operationally unchanged for over one hundred years
and refers to the recovery of biometrics. To date, no two n-
germarks have been found identical, and, because of this, the
ridge ow andminutiae are used for the biometric identication
of perpetrators. However, since 2008, increasing attention has
been paid to additional intelligence extractable from nger-
marks and that can be derived from their molecular content.1

Exogenous contaminants could provide some circumstantial
evidence of “activity”, as well as lifestyle information.2,3

However, endogenous molecules (normally produced in our
body, excreted in sweat and transferred in a ngermark) should
not be underestimated as they could contribute to signicantly
narrowing down the pool of suspects. Triacylglycerols have been
recently tentatively proposed to have potential for providing
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information on diet and exercise as well as health related
information.4

Peptides and proteins are also endogenous sweat/ngermark
components, and the sex of the offender is another type of
desirable intelligence. To this end, following an initial proof of
concept study,5 Heaton et al. reported comprehensive statistical
modelling to determine the sex of an individual exploiting the
differential peptide and small protein proles detected by
matrix assisted laser desorption ionisation mass spectrometry
(MALDI MS) from natural ngermarks.6 This approach led to
the best performing model/classication system yielding sex
determination with 86% of accuracy of prediction. Whilst this
prediction power does not permit a suspect exclusion from
investigations, it does enable the adoption of this approach for
triaging crime scene marks, prioritising those to investigate, as
part of the forensic strategy. The lack of a higher prediction
power has been partly ascribed to the additional presence of
polymers, likely contaminants in ngermarks, due to their
presence in toiletries and hygiene products. Whilst a more
sensitive mass spectrometer would not avert polymer detection,
it may be possible to increase both the relevant ion population
and ion abundance and thus improving the discriminating
power.

Another very interesting piece of intelligence that would
contribute to narrowing down the pool of suspects is the age of
an individual. Still today, age determination in living
Anal. Methods, 2022, 14, 789–797 | 789
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individuals is challenged by the mismatch between the chro-
nological age (date since birth) and the biological age (related to
the assessment of tissues and organs);7,8 human age determi-
nation in living individuals is an extremely complex endeavor
involving an interdisciplinary approach encompassing the
assessment of physicians with forensic experience and expertise
in auxology, radiology, dentistry, and legal medicine,9 as well as
the use of mathematical and statistical modelling,10 machine
learning techniques11 and potentially modern analytical
methods based on “multi-omics”12 or epigenetics.13 Most
importantly, these assessments are performed either on indi-
viduals with uncertied identity or identity loss or on individ-
uals with certied identity, for medical reasons. In both cases,
these assessments are not placed in a forensic criminal inves-
tigation context, where the perpetrator is unknown.

The rst study that could contribute to such forensic inves-
tigations, and the rst of its kind, has been built on the
knowledge that 5-hydroxymethylcytosine (5-hmC) is signi-
cantly involved in cellular differentiation and epigenetic regu-
lation14 as well as decreasing in aging mouse brains.15 Xiong
et al. applied LC-MS analysis to the blood of 238 patients aged
1–82 and demonstrated that DNA hydroxymethylation, and
specically 5-hydroxymethylcytosine (formed through conver-
sion from 5-methylcytosine (5-mC)), was considerably
decreased and negatively correlated with aging.16 The authors
therefore suggested that 5-hmC could potentially be an aging
phenotype. Koop et al. recently reviewed a range of epigenetic
based methods for the epigenetic age estimation.13

However, to date, whilst the majority of the studies concen-
trate on determining the age of a ngermark le by an indi-
vidual17 (time since deposition), only a few focus on
determining the age of an individual from their ngermark, and
only very few investigate the determination of human age
exploiting themolecular content of a ngermark rather than the
physical characteristics. To the best of the authors' knowledge,
with the exclusion of publications encompassing age-related
chemical changes from specimens other than ngermarks such
as the scalp18 and forehead,19 one of the earliest papers on
human age estimation was reported by Bohanan et al.20 illus-
trating mainly qualitative observations on the differences in the
speed of the ageing process between children and adolescents.
Buchanan et al.21 were the rst to investigate human age from
the lipid composition of a ngermark in 1996. These authors
applied a destructive technique, namely GC-MS to investigate
the ngermarks of 50 donors and reported a clear difference
between the chemical prole of children and adults. In more
recent years, Antoine et al.22 and Williams et al.23 continued to
investigate children's ngermarks22,23 and their differentiation
from adults'22 using some form of FT-IR and once again tar-
geting lipids. In the former and more informative study, FT-IR
microscopy was employed for investigating “artifact” nger-
marks from 12 donors deposited following hand washing and
ngertip sebum enrichment (groomed marks); here the authors
made a qualitative assessment that lipids in children's nger-
marks are not only less abundant than in adults' marks but also
that they degrade faster, and as such, this degradation speed
could be used as metrics to distinguish between children and
790 | Anal. Methods, 2022, 14, 789–797
adults, though no age pinpointing or more accurate age clas-
sication was attempted. Hemmila et al.24 investigated spec-
troscopic changes of lipid proles in natural ngermarks and
their correlation with the individual's age using a combination
of FT-IR reectance spectral analysis and partial least squares
regression modelling. The authors found that, within a cohort
of 78 individuals, it was possible to correlate the spectral
proles to the age of an individual within a 4 year window of
error and that better models could be built if a classication
“young” versus “old” was considered.

Different from previous work, and for the rst time, in the
present exploratory study, we have sought to make an initial
assessment of the potential to retrieve the age of an individual
by a combined approach encompassing the (i) exploitation of
the peptide/protein content of a (natural) ngermark, (ii) the
application of a non-hyphenated mass spectrometric technique
instead, namely MALDI and (iii) the use of machine learning
approaches. Proteins are one of the classes of biomolecules
present in sweat/ngermarks and their expression and struc-
ture have been reported to change with age.25,26 On these bases,
for our preliminary investigation, we have employed the same
dataset acquired by Heaton et al.,6 to determine the sex of an
individual to assess whether the expression prole of endoge-
nous peptides and (small) proteins, detected by MALDI MS, can
also serve as a biomarker pattern of age. As such studies are
labour-, time- and resource-intensive, it was deemed sensible to
capitalise on a dataset already available for this new, original
and preliminary investigation.

Using this repurposed dataset, a range of supervised
machine learning techniques have been evaluated for the task
of chronological age prediction. The initial ndings indicate
that above-random donor age prediction is achievable through
supervised learning methods.
2. Methods
2.1. Fingermark dataset

The collection of natural ngermarks for age determination
studies has been described by Heaton et al.,6 in accordance
with approved Sheffield Hallam University ethics application
ER17244422. The same set of data processed to determine the
sex of an individual has been used here with no further
experimental laboratory work aside from reprocessing and
repurposing the dataset, which was analysed using a number
of statistical approaches to explore in depth the challenges
and the potential of determining human age from the
molecular composition of a ngermark. All data processing
has been conducted in compliance with relevant laws and
following the institutional guidelines following ethical
approval by Sheffield Hallam University. Informed consent
had already been obtained from the participants for the study
published by Heaton et al.,6 which also applies to the present
study according to ethics application ER17244422. Given the
purpose of the Heaton et al. study,6 this dataset consisted of
ngermarks from approximately 50/50 males/females depos-
ited and kept under ambient environmental conditions until
This journal is © The Royal Society of Chemistry 2022
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analysis which was completed within a month from
deposition.
2.2. Fingermark spectral processing for age determination
modelling

Three spectra per individual were processed according to the
Heaton et al.,6 method. In short, three marks were obtained per
donor, each consisting of the summed total of three individual
mass spectra acquisitions from three distinct matrix spots per
ngermark. The resulting three marks per donor were then kept
separate throughout the following statistical analysis.

For each ngermark, peak-picking was performed in R using
the MALDIquant package, including TIC normalization and
spectral smoothing. Consistent with Heaton et al.,6 a range of S/
N parameters (between 2 : 1 and 20 : 1) was used and required
the peak occurrence rate across the spectra (between 1% and
90%) to be trialed, with each parameter set yielding a different
count of included m/z positions to be analysed across the
spectra (see Table 1 from Heaton et al.,6 for details on the
number of remaining m/z positions per parameter set).
2.3. Age prediction models

Three distinct age prediction approaches have been considered
(Fig. 1).

(i) Binary age classication: rstly, the donor ages have been
divided into two distinct groups >mage + 3sage (the ‘old’ class)
and <mage � 3sage (the ‘young’ class), where mage and sage are the
mean and standard deviation of ages across all donors in the
Fig. 1 Schematic illustrating (i) binary age classification, (ii) multi-age grou
in years.

This journal is © The Royal Society of Chemistry 2022
sample set, and 3 $ 0 is a user-dened scaler, such that donors
with intermediate ages in the range (mage � 3sage, mage + 3sage)
are excluded from the model training/testing process. Classi-
cation models are then trained to predict whether each donor is
‘old’ or ‘young’;

(ii) Categorical age classication: extending from (i), donors
have been split into nage $ 2 disjoint age groups G1, G2,., Gnage

of equal age width. Classication models are now trained to
predict which age group Gi, for i ˛ {1,.,nage}, each donor is
most probable to be assigned to. In the case where nage ¼ 2, (ii)
reduces directly to the binary classication problem (i) with 3 ¼
0; (iii) age regression: models are instead trained to predict the
integer age value for each donor.

In instances (i) and (ii), three classication model types
have been trialed: a random forest classier, an XGBOOST
classier, and also a dummy classier provided by the sklearn
python package, yielding a baseline for random model
performance for comparison. In instance (iii), equivalent
regressor models have been assessed for random forest,
XGBOOST, in addition to a linear regression model (non-
regularized as well as including L1 and L2 regularisations) and
also a dummy baseline regressor provided by sklearn. In all
cases, and identical to the training strategy presented in
Heaton et al.,6 k-fold cross validation (CV) was performed in
the present study with k ¼ 5. Since three separate ngerprint
spectra were present per individual, and these could not be
assumed to be independent, care was taken to ensure that all
three spectra per individual remained within the same CV k
fold throughout training, in order to preserve independence
p categorical age classification and (iii) age regression. Age is expressed

Anal. Methods, 2022, 14, 789–797 | 791

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ay02002a


Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
2.

 D
ow

nl
oa

de
d 

on
 3

1.
10

.2
02

5 
00

:2
3:

39
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
between all train and test sets. In contrast, only 1/3 randomly
selected ngerprint spectra per individual was used from each
test set fold to assess model performance, in order to best
simulate the scenario when only one viable ngerprint sample
has been extracted from a crime scene; a model which instead
predicts an individual's age based on aggregated information
taken from the 3 available ngerprint samples is less likely to
be usable in a practical setting.

In instances (i) and (ii), the mean accuracy scored across the
k ¼ 5 hold-out test folds has been computed to assess model
performances. In instance (iii), the mean squared error (MSE)
and Pearson's R coefficient, again averaged over the k ¼ 5 test
CV folds, have been computed to assess model performance. A
modied accuracy score has also been trialed in the case of the
categorical model predictions, which has been constructed to
also consider age bins that neighbor the correct age bin to also
be correct, and thus mitigate unwanted boundary effects due to
the articial specication of “age bins”.

The effect of the inclusion of three distinct feature selection
strategies onmodel performances was tested, with each strategy
designed to identify the subset of m/z peaks that are most age-
dependent: (a) the PLS-DA Variable Importance in Projection
(VIP) score, (b) random forest feature importance derived from
contributions of each feature to Gini impurity across trees, and
(c) univariate feature selection via a chi-squared test. Care was
taken to ensure that for the k-fold CV split, the ngerprint
samples assigned to the training data subset were used for
selection of features (m/z peaks), such that each test fold
remained hidden during cross validation.

Furthermore, due to the non-uniform spread of ages within
the investigated ngerprint sample set (Fig. 2), the effect of data
imbalance onmodel performance has also been investigated. In
a modied CV training strategy, training data folds are
randomly down-sampled, such that the most represented age
bins are identied and only a random subset of training
instances from these age bins is used in model training, as
illustrated in Fig. 2.

Since the underlying distribution of ages was qualitatively
different between the female and male sample groups, to
mitigate the risk that any downstream conclusions have been
indirectly inuenced by sex, age prediction models have been
trained in the following analysis and evaluated separately for
Fig. 2 Distribution of age data across the fingerprint samples in the da
indicates the median counts across all bins. For the modified sampling s
sampling would be performed during CV model training (bins which e
expressed in years.

792 | Anal. Methods, 2022, 14, 789–797
each sex group, in addition to being evaluated on the full
sample group.
3. Results and discussion

The determination of the age of an individual could be crucial
intelligence to narrow down the pool of suspects and identify
a perpetrator. This is a poorly investigated topic, and nger-
prints have never been taken into consideration as an analyt-
ical specimen to gather this type of information. In this study,
within a strategy consistent with the sex prediction models
presented in Heaton et al.,6 a series of supervised learning
models have been trained, but here for the task of predicting
the age of the donor associated with each mark. The same
dataset previously acquired6 was used here for the purpose of
gaining an initial understanding of the feasibility of such an
investigation, prior to embarking on a large and time-
consuming study. However, in contrast to the study by Heaton
et al.,6 in which sex prediction was treated as a binary classi-
cation problem, three prediction approaches have been
considered, as described in Section 2.4, namely (i) binary age
classication; (ii) categorical age classication and (iii) age
regression. The results from the application of these
approaches are discussed in sections 3.1 to 3.3.
3.1. Binary age predictions

In the most simplied treatment of the age prediction problem,
a series of binary classication models were trained to classify
ngerprint samples as “young” or “old”; here the sample ages
are split into two disjoint groups, based on a specied interval
around the mean age across all samples (calculated to be 38.1
years across both male and female samples and 40.7/35.8 for
models restricted to the male/female sample subsets only).
Clearly such a predictive model will have limited usefulness in
a real-life practical setting; however this strategy (a) provides
a baseline against which further models predicting for more
informative age splits can be compared and (b) is directly
analogous to the male/female sex classication models inves-
tigated previously by Heaton et al.6

As illustrated in Fig. 3, 5-fold CV accuracy scores for both
XGBOOST and random forest model schemes are consistently
taset, with the age bin width fixed at 5-years. The red horizontal line
trategy to mitigate data imbalance, age bins for which random down
xceed the median counts per bin) are indicated by asterisks. Age is

This journal is © The Royal Society of Chemistry 2022
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Fig. 3 5-Fold cross validation performance results for binary classification models predicting binary old/young donor labels for XGBOOST,
random forest and baseline dummy classification model types. Performance statistics are presented separately for models trained using (i)
female-only and (ii) male-only data, in addition to (iii) the full sample set. Each x-axis illustrates the effect of 3, the parameter dictating the size of
the masked sample region between the “young” and “old” age classes, (mage � 3sage, mage + 3sage). Each boxplot summarises the distribution in
accuracy scores across all 4 feature selection strategies and peak picking strategies from Heaton et al.6
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superior to random (the dummy classier) for the task of binary
age prediction. Predictive performance also appears to improve
as the masked boundary region between the old and young
groups, ((mage � 3sage, mage + 3sage)) increases above the lowest
tested value of 3 ¼ 0.1, however, only for the female-sample
model (Fig. 3(i)) does the median model performance (relative
to random) consistently increase with increasing 3. This likely
represents a tradeoff between the increasing width of the young/
old boundary region and the signicant reduction of available
training data at high 3. As illustrated in Fig. S1,† at 3 ¼ 1.0,
a signicant proportion of the ngerprint samples have been
discounted during model building/evaluation (with respect to
the overall male & female combined median age and standard
deviation), with only individuals aged <26 and >50 included.

The performance statistics presented in Fig. 3 are compa-
rable to the maximum/median 5-fold CV accuracy score for sex
classication over the same sample set (65.6%/61.1%, Heaton
et al.6), with the highest age-prediction performance over the
full sample set (66.1%/57.9%, Fig. 3(iii)) being achieved by the
XGBOOST model at 3 ¼ 0.5. However, in contrast to the afore-
mentioned sex classication model, the practical usage of
binary age classication is likely limited, particularly for models
trained at high 3 $ 0.5, whereby the model is trained to only
distinguish between samples at the two extremities of the
sample age distribution.
3.2. Categorical age predictions

In order to be applicable in a practical setting, the development
of models capable of more specic age group predictions is
highly desirable. Due to the underlying mismatch between
This journal is © The Royal Society of Chemistry 2022
chronological and biological ages, anthropologists provide age
information as an age range rather than a specic age.27

Therefore on this basis, and in consideration of the data ob-
tained from the binary age prediction, the exploration of
a categorical classication using bin widths of sizes (a) 5 years
and (b) 10 years was deemed to be a reasonable approach. In
Fig. 4, accuracy performances for random forest models
consistently exceed the random baseline, for models trained
separately on the male, female, or full sample sets. Interest-
ingly, XGBOOST, which yields the highest performance in the
binary age classication scenario (Fig. 3), did not exhibit similar
superior performance in the categorical age scenario. Intui-
tively, accuracy scores diminish as the overall number of age
bins increases (10-year vs. 5-year bins), such that the optimum
age bin width becomes a tradeoff between the practical value
(higher number of bins) and model performance.

Fig. 5 shows the effect of counting predictions made in
neighboring bins on the true age bin as also correct (through
the use of the modied accuracy score presented in Section 1.2).
Although the modied accuracy score is more tolerant to model
errors, it can capture the potential usefulness of each model in
a practical, crime scene setting, where a near miss age prediction
can still be valuable. As expected, modied accuracy score values
(including those for the random baseline model) are consis-
tently higher than standard accuracy scores. However, the
relative extent by which the XGBOOST and random forest
models exceed baseline performance does not appear to
signicantly increase as the age bin width size increases, nor
when neighboring age bins to the true age bin are also treated as
correct. Moreover, in the case of larger age bins (Fig. 5(ii)), the
modied accuracy score appears to be no better than random.
Anal. Methods, 2022, 14, 789–797 | 793
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Fig. 4 Distribution of categorical age prediction scores across XGBOOST, random forest and baseline dummy classification model types, for
models trained on (i) female sample data only, (ii) male sample data only, and (iii) the combined sample set of male and female data. Age is
expressed in years.

Fig. 5 Distribution of categorical age prediction scores across XGBOOST, random forest and baseline dummy classification model types, for
non-enhanced fingermark samples, and age bin widths (i) 5 and (ii) 10. For both bin widths, the effect of counting predictions made in neigh-
boring bins within a specified age-difference of the true age (x-axis) to the true age bin are included, corresponding to the modified accuracy
scores discussed in Section 1.2. The equivalent figure for the enhanced fingermark sample set in Heaton et al.,6 is presented in Fig. S3.† Age is
expressed in years.
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To determine the inuence of data imbalance on model
performances shown in Fig. 4 and 5, the CV training/evaluation
protocol was repeated, but with random under-sampling of
highly represented age bins within each random k-fold data
split. As illustrated by the data in Fig. S2i and ii,† under-
sampling resulted in a reduction in model performances
compared to the random baseline, consistently for different age
bin sizes (5 and 10 years tested). It is suggested that any
potential benet from reducing age class imbalance was out-
weighed here by the low quantity of training data that remained
following under-sampling, and consequent inability of each
model to generalise to unseen test data.

3.2.1 Age regression analysis. As a direct extension of the
categorical age prediction methods discussed above, a series of
age regressionmethods were trialed. Such regressionmodels do
794 | Anal. Methods, 2022, 14, 789–797
not require any articial binning of age data, which, as was
illustrated in the previous section, were invariably susceptible
to the presence of near miss prediction events where an age
prediction is close to the true age, yet deemed incorrect due to
the articial construction of the age bins.

The data reported in Fig. 6 indicate the abilities of four
regression model architectures to correctly generalise to unseen
test data (Fig. 6(ii)–(iv)), compared to a random baseline
regression model that simply predicts the mean of the training
dataset (Fig. 6(i)); additional information referring to the
breakdown of samples per contamination state, shown in
Fig. S2iii and iv,† is illustrated in Table S1.† The presence of
positive correlations between predicted and true age values for
the training set data is not clearly extended to predictions made
on the hidden test data (reected by low test set Pearson's r2
This journal is © The Royal Society of Chemistry 2022
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Fig. 6 Scatter plots (i–v) illustrate the relationship between true versus predicted ages across samples for a (i) baseline random regressionmodel,
(ii) L1-regularised linear regression model, (iii) L1- and L2-regularised linear model, (iv) random forest regression model, and (v) XGBOOST
regression model. For each model, only the results for the peak-picking strategy (i.e. across S/N ratios discussed in Section 1.1), which produced
the highest Pearson's r2 correlation coefficient over the test set are reported: (i) S/N: 2, min required peak fraction: 0.9, (ii), S/N: 5, min fraction:
0.1; (iii) S/N: 5, min fraction: 0.1; (iv) S/N: 10, min fraction 0.1; (v) S/N: 5, min fraction: 0.01. Each scatter point is the average prediction value over k
¼ 5 CV train/test separate prediction events.
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values), indicating the inability of the trialed regression models
to suitably generalize to unseen data. In the case of XGBOOST
(Fig. 6(v)), signicant overtting to the training data is visible
(train set Pearson's r2: 0.96), which is not replicated in other
model types; however despite less train set overtting, other
models do not exhibit improved test set performances.
Comparable poor regression performances were observed for
models trained separately on the male and female sample
subsets (data not shown). Overall it is suggested that the poor
regression performances are likely due to the limited avail-
ability of data from which to infer age-related trends.

In conclusion, this study has investigated the potential
viability of a range of supervised machine learning-based
predictive methods to explore the problem of determining an
individual's age based on MALDI MS spectra analysis of
peptides and proteins in ngermarks. Whilst initial ndings,
using a binary (old/young) prediction model, yielded a predic-
tive model that achieved competitive performance with previ-
ously reported sex-prediction models (66.1% and 65.6%
maximum 5-fold CV accuracy scores for the age- and sex-clas-
sication models, respectively), this approach relied heavily on
the articial masking of a large intermediate age region of
samples for such high performance (Fig. 3). In a practical crime
scene setting, such a model is unlikely to be useful, since
a signicant number of real-life samples may fall into the
masked intermediate region.
This journal is © The Royal Society of Chemistry 2022
Alternatively, categorical prediction can be envisaged to
provide a more informative and discriminative age prediction
strategy for real-life samples. In the current initial analysis,
categorical predictions are reported to consistently exceed
random performance; with a 10-year age bin width, the
maximum/median model performance is achieved by the
random forest model type at 34.5%/32.4% (compared to the
28.3%/26.3% for the random dummy classier). Whilst the
highest attained model performance is currently inadequate for
practical usage, these initial ndings do indicate the existence
of an underlying relationship between donor age and collected
peptide/protein ions.

In this initial investigation, model performances are likely to
be limited by (a) sample size and (b) the non-uniformity of the
sex and age distributions across the sample set. Additionally,
the exclusion of donors of age <18 years is actually creating
a more difficult task for the predictive model (since the age
range observed by the model is shorter). It would be very
interesting to include <18 year old donors too in a further age
related study, since the minor/adult age boundary (albeit
a societal construct) could be used in a binary age classication
set up similar to the “young/old” age boundary used in the
current study.

It is also important to bear in mind for this kind of classi-
cation task, the likely impact of the unknown discrepancies
between the true chronological age of each donor and the
Anal. Methods, 2022, 14, 789–797 | 795
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reported chronological ages. This circumstance would need to
be addressed in future studies.

Finally, it is also possible, that although an average of 150
marks per week were analysed by MALDI MS, in the timeframe
necessary to analyse the complete set of around 600 (1 month),
some protein degradation may have occurred. As also implied
by Antonine et al., the age of a mark could be impacting the
human age estimation models due to the degradation of the
molecules targeted as age markers, and this may be an issue for
crime scenes that are not accessed promptly. Antoine et al.22

suggested that the preliminary determination of the age of the
mark itself would be ideal to minimise this impact, though this
intelligence remains itself a signicant challenge in forensic
science. Oonk et al.26 pinpointed ve proteins in ngermarks
that undergo chemical modications with time, to the extent of
being suggested as markers of time since deposition. However,
4/5 proteins belong to the keratin family and are not detected in
the mass range explored by MALDI MS in the Heaton et al.
study6 from which the data set was “borrowed” for the present
study.

Notwithstanding, the observations made in this initial study
justify the likely benets of a larger-scale age determination
targeted study that is designed to explicitly mitigate these
aforementioned limiting factors.

4. Conclusions

Overall, this preliminary study indicates that, to appropriately
address the attribution of age to an individual, a larger cohort of
donors as well as a much more balanced age group distribution
is needed, in order to improve the performance of the model-
ling approaches, particularly of the categorical approach.
However, it is also possible that, even with such a cohort of
donors, peptides and proteins may still not be sufficiently per-
forming biomarkers for human age determination as they too
could be affected by the underlying mismatch between the
chronological age and biological age. Biological age can
signicantly differ from chronological age, and, as such, the
approximation to the chronological age can be particularly
challenging and worrying when this intelligence is to be used to
narrow down the pool of suspects. In a future and more
comprehensive study this issue could be mitigated by deter-
mining both biological and chronological age to develop
a method allowing a relationship between chronological and
biological age to be established, ultimately “adjusting” the
output of the modelling strategy to align it to the true chrono-
logical age. Having access to the biological age data would also
permit the design of a model that predicts biological age from
mass spectral data and reports to chronological age; it would be
of great interest to explore whether such a predictive method
could be more/less accurate than other chronological / bio-
logical age conversion approaches. However, as already dis-
cussed, it is important to highlight that the assessment of the
biological age is, in itself, complex and not an exact science;
many approaches have been reported, some in combination,
with some kits commercially available, mainly detecting
epigenetic markers. The authors envisage a minimally invasive
796 | Anal. Methods, 2022, 14, 789–797
assessment in collaboration with a physician based on (1)
conventional laboratory blood tests (cholesterol and triglyceride
levels, glycaemia etc.), (2) quantication of 5-hydrox-
ymethylcytosine using standards kits and/or using published
HPLC based methods, involving collection of saliva and/or
blood, and (3) physiological assessments (heart rate, blood
pressure, BMI, diet, lifestyle, and exercise) including patient's
anamnesis.

The study illustrated here represents the rst stepping stone
in this specic “criminal chemical proling” application of
ngerprinting by MALDI MS, and the results have revealed the
appropriate design for further experiments to assess its poten-
tial to deliver yet more personal information about an indi-
vidual from their ngermarks.
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