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crostructure of algae-based active
carbon and modelling supercapacitors using
artificial neural networks†

Jiashuai Wang,a Zhe Li,ac Shaocun Yan,ac Xue Yu,a Yanqing Ma *ab and Lei Ma*a

An improved activated carbon material is synthesized from nostoc flagelliforme algae (NF) using an acid

immersing method. The material has more pores and lower internal resistance compared with raw NF.

Hydrofluoric acid can effectively decompose cellulose fibers and remove inorganic impurities, giving the

carbon materials high mesopore volumes, which makes electrolyte ions rapidly transfer to the active site

on the electrode surface. The specific capacitance of the sample was increased from 200 to 283 F g�1

after immersing in hydrofluoric acid. In addition, the symmetric supercapacitor shows an excellent

energy density of 22 W h kg�1 at a power density of 80 W kg�1. The capacitance remains at 101.7% after

10 000 cycles. Furthermore, in order to find the relationship between the biochar structure and

electrochemical performance in supercapacitors, an artificial neural network (ANN) method is used for

studying the complex synergy mechanism. The specific capacitance is modelled using various input

factors like aspect ratio (rL/D), cellulose ratio (CL(%)), specific surface area (SBET), pore volume (Vtot),

internal resistance (Rs) and so on. The Levenberg–Marquart back propagation algorithm with sigmoid

and ReLu active function is adopted to train the model. Random forest is used to analyse the relative

importance of every input factor on specific capacitance. Results show that the model can estimate the

energy storage with a mean squared error of 4.39 for materials with specific structure. Importance

analyses indicate the first three significant variables are SBET, Rs and Vpor. The ANN model can accurately

predict the electrical properties of biomass-based carbon materials, and also provide guidance for the

selection of energy storage materials in the future.
1. Introduction

With the development of society fossil energy is becoming
increasingly depleted and no longer meets the needs of human
beings. Energy storage has attracted a lot of interest.1 Among
the various kinds of energy storage devices, supercapacitors
emerge as competitive due to their high power density, short
charge/discharge time and good cycle stability.2 All these
properties can be attributed to the energy storage mechanism
through the adsorption and desorption of electrolyte ions on
the electrode surface. The electrode material is the most
important part for supercapacitors' electrochemical perfor-
mance. Among the enormous amounts of research, activated
carbons have recently attracted immense interest due to their
les and Nanosystems, Tianjin University,

ju.edu.cn

Technology and Instruments, Tianjin

ering, Shihezi University, 832003, P. R.

tion (ESI) available. See DOI:

hemistry 2019
large surface area, stable chemical properties, high conductivity
and adjustable structure.3 It is mainly prepared via carboniza-
tion and activation of different precursors. Generally speaking,
materials containing a high content of carbon and a small
amount of inorganics are favorable precursors for the prepara-
tion of activated carbon. From the points of availability and low
cost of raw materials, waste biomass, such as corncob sponge,4

watermelon seeds,5 bougainvillea owers,6 fresh elm samaras,7

dandelion uff,8 garlic skin,9 lotus receptacle,10 rice husk,11

cornstalk,12 and kelp,13 have been seen as promising precursors
for preparing activated carbon.

Algae biomass is known to grow fast in eutrophicated water
bodies. Its excessive accumulation does serious damage to the
marine ecosystem. It not only promotes bacteria growth but also
hinders the tourism development. Therefore, a practical and
feasible method to solve this problem is to take advantage of
these wastes to produce value-added products. Prof. Du14 re-
ported that enteromorpha with egg-shell structure is more likely
to form porous layered structure during carbonization, result-
ing high capacitance in supercapacitor. Prof. Yang15 fabricated
porous and high specic surface area carbon-aerogel from
seaweed aerogel, and successfully applied to the eld of
lithium-ion battery and supercapacitors. These results indicate
RSC Adv., 2019, 9, 14797–14808 | 14797

http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra01255a&domain=pdf&date_stamp=2019-05-13
http://orcid.org/0000-0002-3317-8273
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra01255a
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA009026


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
 2

01
9.

 D
ow

nl
oa

de
d 

on
 0

6.
11

.2
02

5 
01

:5
7:

50
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
that algae can stand out in energy storage application. However,
to date, no report has been published about algae being pre-
treated with different acid solution before carbonization, which
is the method we used in this article to improve the structure of
NF-based activated carbon.

Another important task in this paper is using articial
neutral network (ANN) to construct relations between complex
structure and performance. It is known that each structure
factor i.e. aspect ratio (rL/D), cellulose accounts (CL (%)), specic
surface area (SBET), pore volume (Vtot), mesopore volume (Vmes),
micropore volume (Vmic), resistance (Rs) and nitrogen content
(N (%)) shows nonlinearities or no specic relation to electro-
chemical performance. Therefore establishing an appropriate
structure–performance relationship becomes a big problem.
ANN is famous for fast learning process, and it has been
employed for Multi-Inputs Single-Output (MISO) problems such
as pattern recognition, stock prediction, etc.16 Prof. T. Weigert
predicted the state of charge for energy storage devices using
ANN.17 Prof. Ajit Danti used ANN to predict the age and gender
of human faces with 95% accuracy.18 In this paper ANNmodel is
established based on Levenberg–Marquart back propagation
algorithm. Tanh and ReLu active functions are act as transfer
functions in hidden layers. The relative importance of inputs is
assessed by Random Forest.19 To date, it has attracted much
attention in data analysis and other elds. Random Forest
contains many decision trees. Each split is a feature condition,
which is used to divide the data set (root node) into many
homogeneous groups, and further up to the terminal (leaf note).
The eventual importance of every feature is calculated by voting
from individual decision tree in random forest.20

2. Experimental
2.1 Synthesis of NFAC-x

The NF was collected from eastern coast of Xia Pu sea in Fujian
province. Acetylene black, polytetrauoroethylene (PTFE),
potassium hydroxide (KOH), concentrated hydrochloric acid
(37 wt%, HCl), hydrogen peroxide (30 wt%, H2O2), acetic acid
(Ac), hydrouoric acid (40 wt%, HF) were purchased from
Aladdin Chemistry Co. Ltd. (China). Sodium hypochlorite
(NaClO2) and ethanol were purchased from Yuanli chemical
engineering Inc., Tianjin, China. All the chemical regents were
of analytical grade.

2.1.1 Pretreatment of the raw NF. In this study, the dried
raw NF was processed as follows: a certain amount of raw NF
was rstly dispersed separately into 5 wt% Ac–H2O2, 5 wt% Ac-
NaClO2, 2 M HF aqueous solution and was stirred in the swing
bed for 4 h at 20 �C. The as-prepared samples were washed with
distilled water for 5 times, then maintained in a freeze drying
oven for 24 h. These samples are referred to as NF-a, NF-b, NF-c,
respectively. The control sample without any pretreatment is
referred to as NF.

2.1.2 Synthesis of the activated carbons. Firstly, a certain
amount of NF, NF-a, NF-b, NF-c was carbonized at 400 �C for 1 h
under an argon atmosphere in a tube furnace. The resulting
material was denoted as NFC-x (x represents a, b, c). 1 g NFC-x
was mixed with KOH in a certain proportion (KOH/NFC-x ¼ 2,
14798 | RSC Adv., 2019, 9, 14797–14808
3, 4) and milled with mortar evenly. Then the samples were put
into aluminium oxide ark located in a tube furnace for activa-
tion process at 700 �C for 2 h. Aer the activation process and
the temperature was down, the products were dispersed in HCl
solution (1.0 mol L�1) to react with potassium compounds.
Then the sample was vacuum ltrated by DI water for several
times to achieve neutral pH value. Finally the samples were
dried at 50 �C for 24 h in an air dry oven. The activated carbon
preparing from the NFC, NFC-a, NFC-b, NFC-c is referred as
NFAC, NFAC-a, NFAC-b, NFAC-c, respectively. For comparation,
NFAC-c was also fabricated at 600, 800 and 900 �C (NFAC-c-600,
NFAC-c-800, NFAC-c-900) in activation procedure.
2.2 Material characterization

Weight change during carbonization was monitored by a ther-
mogravimetric analyzer (TGA; DTG-60AH) under N2 atmosphere
from 100 �C to 800 �C. The surface morphology and micro-
structure of the samples were characterized with scanning
electron microscope (SEM; Hitachi SU3500) and transmission
electron microscope (TEM, Tecnai F30). Crystalline structure
was identied by a D/MAX-2500 X-ray diffractometer (XRD)
operating with Cu Ka radiation (l ¼ 1.5418 Å) at a scan rate (2q)
of 5� min�1. The degree of graphitization was measured by
Raman spectroscopy (Horiba Scientic, France) with an excita-
tion wavelength of 532 nm. The pore structure property was
characterized by Nitrogen adsorption–desorption method at
�196 �C (Quantachrome Autosorb-iQ). The samples were
degassed at 200 �C for 6 h under vacuum prior to the
adsorption/desorption measurements. The specic surface area
of the samples was measured by using the multi-point Bru-
nauer–Emmett–Teller (BET) method. The pore size distribu-
tions were estimated by using cyclinder/slit density functional
theory (DFT). The total pore volume (Vtot) was determined at
a relative pressure P/P0 ¼ 0.99 and the micropore volume (Vmic)
was determined using the t-plot method.
2.3 Electrochemical performance

Electrochemical properties of prepared samples were measured
in a two electrode system using CHI760e electrochemical
workstation (Chenhua, Shanghai, China). For electrode prepa-
ration, 80 wt% NF-derived active carbon, 10 wt% polytetra-
uoroethylene and 10 wt% conducting carbon were mixed in
ethanol to form slurry. The slurry was pressed into akes via
a stainless bar, and then cut into small round pieces (diameter
is 8 mm). The round pieces were oven-dried at 150 �C for 5 h.
Current collectors were two pieces of carbon paper with
a diameter of 12 mm. Two electrode plates with equal mass of
active materials were separated by a lter membrane. All
measurements were conducted using 1 M H2SO4. Cyclic vol-
tammetry (CV) and galvanostatic charge–discharge (GCD)
measurement were studied within potential window from 0 V to
0.8 V. As for 1 M Na2SO4 electrolyte, the maximum potential
window can reach 1.6 V. Electrochemical impedance spec-
trometry (EIS) was measured in the frequency ranging from
0.01 Hz to 100 kHz with 5 mV amplitude. The specic
This journal is © The Royal Society of Chemistry 2019
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capacitance (C) for single electrode and supercapacitor cell
(Ccell) were calculated from eqn (1) and (2), respectively.21

C ¼ 4I � Dt/(m � DV) (1)

Ccell ¼ I � Dt/(m � DV) (2)

where I (mA) represents discharge current, Dt refers to the
discharge time (s), m (mg) is the weight of both working elec-
trodes and DV (V) is the potential window during discharge
process.

The specic energy density (E, w h kg�1) and the specic
power density (P, w kg�1), as practical indicators, were also
calculated by eqn (3) and (4), respectively.22

E ¼ CcellV
2/(2 � 3.6) (3)

P ¼ E/(3600 � Dt) (4)

where V is the discharge voltage and Dt (s) is the discharge time.

3. ANN model

ANN is an effective machine learning regression model. It is
suitable for big data processing.23 ANN essentially mimics the
nervous system of human beings. The neurons of ANN are
grouped into an input layer, one or more hidden layers and an
output layer. Fig. 1 depicts the operation mechanism of hidden
layer. All variables are rstly weighted and summed (eqn (5)),
then activated by a selected nonlinear function.24

y ¼
Xn

i¼0

WiXi þ b (5)

where Xi represents input, Wi represents the weight for each
input and b is a bias. The incredible computational power of
ANN is just achieved through interconnected neurons and
transfer functions.25

3.1 Feature selection and data normalization

ANN can discover relationships between inputs and outputs of
a system without understanding sophisticated function mech-
anism.26 Here, we apply ANN for analyzing the relationship
between the structure of carbon materials and performance of
supercapacitors. There are many kinds of structure features
affecting the electrochemical performance of supercapacitor.
Generally speaking, high specic surface supplies abundant
contact surface to absorb electrolyte ions and increase specic
capacitance.24 Furthermore, micropore is benecial to the
Fig. 1 Artificial neural network model.

This journal is © The Royal Society of Chemistry 2019
formation of double layer capacitors, andmesopore can provide
ion transport channel to ensure the high rate capability.27

Heteroatom (e.g. N) may tailor their electron–donor properties
and consequently tune the electrical and chemical perfor-
mance.28 Importantly, from the perspective of biomass itself,
aspect ratio (rL/D) and cellulose content (CL (%)) are the unique
properties of species or organs. For example, straw or root of
plant has a large aspect ratio (100–500), while petal or fruit has
a relatively small aspect ratio (<10). Shell of Arecaceae contains
high fractions of cellulose components (>65%),29 straw contains
relatively low cellulose ratio (31–44%).30 The purpose of
building ANN model is prediction of performance with as many
as possible features into consideration, so we also treat them as
evaluating performance indicators of supercapacitors.

In order to train a good ANN model, data collection is an
important issue. In this manuscript, datasets were collected
from more than 200 samples about biomass-derived active
carbon and application for supercapacitors in recently pub-
lished literatures. The input layer includes physical and chem-
ical features of carbonmaterial (SBET, VPor, Dave, Vmic, Vmes, ID/IG,
Rs, N (%), CL (%), rL/D). The output layer includes only one
feature (specic capacitance (Cp)). All of these data is available
in XLSX le of ESI.† Considering that the two factors (rL/D, CL
(%)) are the attributes of biomass itself, and the other eight
factors are the structural characteristics of biomass-derived
activated carbon. In order to obtain the optimal model, we
used two, eight and ten factors as the inputs and compared the
accuracy of the prediction results. To eliminate dimension
differences and accelerate convergence efficiency, original
inputs were normalized in advance according to eqn (6) to
assure all features are in the range of [0, 1].31

Xnor ¼ X � Xmin

Xmax � Xmin

(6)

where Xnor is the variable aer normalization. Xmax and Xmin are
the maximum and the minimum value of a feature.

3.2 Levenberg–Marquart back propagation algorithm in
training process

Supercapacitors-based ANN model is simulated by TensorFlow
framework in the Python environment. The high prediction
capability of ANN model is determined by the structure of
network and the optimized algorithm process. Fig. 2 presents
the structure of the supercapacitors-based ANN model. It
Fig. 2 Artificial neural network model for supercapacitor.

RSC Adv., 2019, 9, 14797–14808 | 14799
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consists of three layers: one input layer including ten neurons,
one output layer including one neuron and two hidden layers
including 20 neurons. The datasets are divided in two portions
randomly by cross-validation technology.32 Ninety percent of
overall data is used as training data to update ANN model that
learning the structure–property relationships. The trained
network was then evaluated by the remaining validation set (ten
percent of overall data). The input information is transmitted to
every neuron in the hidden layer increased or decreased by
adjusting weight, and further transformed to the next hidden or
the output layer. In the transmission process, nonlinear acti-
vation function plays an important role in future prediction.
This paper chooses tanh function for the rst hidden layer and
ReLu function for the second hidden layer, given by the eqn (7)
and (8):33

f ðxÞ ¼ tanhðxÞ ¼ ex � e�x

ex þ e�x
(7)

f ðxÞ ¼ Re LuðxÞ ¼
�

x; x. 0

gx; x# 0
(8)

where g is a variable that can be learned through the Leven-
berg–Marquart back propagation algorithm. The reason for
choosing ReLu function rather than others is its effectiveness in
a training process.34

Training a network focuses on applying advanced algorithm
to adjust weights (w) and bias (b). The program illustration of
Levenberg–Marquart back propagation algorithm is presented
in Fig. 3.35 Firstly, ninety percent of experimental data was
selected as training subset. It is simple to obtain predicted value
using initial parameters (w and b) in the forward-propagation
process, meanwhile, mean squared error (MSE) is generated.
The eqn (9) represents the MSE calculation:36

MSE ¼ 1

N

Xl

i¼1

�
y
p
i � ydi

�2
(9)

where ypi is the ith value predicted from ANN mode ydi is the ith

desired value. The updating criterion is according to eqn (10):37

Wuvðnþ 1Þ ¼ WuvðnÞ � d
vðMSEÞ
vWuvðtÞ (10)

where d is the learning rate and n is epochs. The weight was
adjusted by iterating thousands of times that based on Leven-
berg–Marquart back propagation algorithm.
Fig. 3 The program illustration of back propagation algorithm.

14800 | RSC Adv., 2019, 9, 14797–14808
3.3 Random forest algorithm in feature importance
assessment

Random forest is an integrated learning algorithm which bases
on decision tree. Randomization mainly involve two aspects:38

(1) individual decision tree is constituted of training samples,
which is selected from data set by bootstrap method randomly.
(2) Each split at node is according to one candidate feature
condition randomly. In order to nd the optimum decision tree,
researchers usually based on two indicators: Gini index or out-
of-bag data (OOB) error rate.39 Herein, Gini index was used as
a criterion for impurity. The detailed algorithm is described as
follows:40

There are features such as X1, X2, X3,., Xm. Gini index is
dened by eqn (11):41

GIm ¼ 1�
X|k|
k¼1

Pmk
2 (11)

where k represents a category. Pmk represents the proportion of
category k at node m. GIm shows the probability of randomly
selecting two samples from data set whose classes are incon-
sistent. Therefore, the smaller the GIm is, the higher the purity
will be. The importance score of the feature Xj at the node m
(VIM(Gini)

jm ) is the Gini index change aer splitting, as shown in
eqn (12):42

VIM(Gini)
jm ¼ GIm � GIl � GIr (12)

GIl and GIr indicate the Gini index of two new nodes aer
branching. The node m in one decision tree is belonged to
set M, therefore the importance score of feature Xj (VIM

(Gini)
j ) is

the sum of VIM(Gini)
jm , as shown in eqn (13):

VIM
ðGiniÞ
ij ¼

X
m˛M

VIM
ðGiniÞ
jm (13)

If there are n trees in the Random Forest (RF), then the
importance score of feature Xj in RF is expressed by eqn (14):

VIM
ðGiniÞ
j ¼

Xn

i¼1

VIM
ðGiniÞ
ij (14)

Finally, the importance score of the feature Xj can be
normalized by eqn (15):

VIMj ¼
VIM

ðGiniÞ
jPk

j¼1

VIM
ðGiniÞ
j

(15)

where k represents the sum of features. Random forest algo-
rithm is to estimate the average contribution of each feature on
all trees in a random forest. As for capacitance performance
being controlled by 10 features in supercapacitors model
mentioned above, the program makes bucketing at each node.
That is to say, the output values were divided into several
interval segments. So the output will fall in a certain interval
according to the feature condition. The importance of the
feature is ranked along the direction in which the Gini index
This journal is © The Royal Society of Chemistry 2019
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decreases fastest at overall node. Fortunately, Sklearn data
packet in machine learning already encapsulates the above
mentioned complex algorithm, we only need to recall the
function and debug parameter. As analyzed above, trees are
random, resulting differences in individual trees' predictions.
The eventual importance of every feature (VIMj) is predicted by
voting from individual trained decision tree in random forest.

4. Results and discussion
4.1 Structural characterizations

Schematic illustration for preparing NFAC-x is shown in Fig. 4.
The porous carbon was fabricated by carbonization and KOH
activation of NF at high temperature (600–900 �C) under an Ar
atmosphere. As mentioned in previous research,43 NF is rich in
lipids, carbohydrates, alginic acid, and multiple trace elements.
Polycondensation reactions will take place between these
compounds during carbonization and activation process. TGA
indicates three weight loss stage (Fig. S1†). The main mass loss
takes place from 220 to 400 �C, which reveals the decomposition
of carbohydrates, cellulose.44 Therefore the carbonization
temperature was set at 400 �C to decompose most organics.

Morphology information on the four groups of samples was
obtained via SEM and TEM. The SEM images of NFC-x and
NFAC-x are presented in Fig. 5. It can be seen that NFC-x shows
the irregular bulk structure with few visible pores on its surface.
However, aer activation, NFAC-x was featured with vacancies
randomly (Fig. 5e–h and S2†). Such change resulted from the
volatile matter (CO2, moisture) through decomposition of
carbon sample at high temperatures (see ESI† for more expla-
nations). At the same time, the difference of surface
Fig. 4 Schematic illustration of the synthesis process for NFAC-x from
algae.

Fig. 5 SEM images after carbonization at 400 �C of NFC (a), NFC-a (b),
NFC-b (c), NFC-c (d) and SEM images after activation at 700 �C of
NFAC (e), NFAC-a (f), NFAC-b (g), and NFAC-c (h).

This journal is © The Royal Society of Chemistry 2019
morphology is presented for NF aer acid solution immersing.
NFAC's surface only distributes blisters, however porous struc-
ture is showed on the NFAC-x's surface. More specically, the
SEM image of NFAC-c (Fig. 5h) clearly shows a three-
dimensional honeycomb-like porous framework. The inter-
connected pore walls of NFAC-c look very thin, which can
accelerate the rate of ion transmission from the electrolyte
solution to the inner pores,45 furthermore make outstanding
rate performance (74%) when the current density is increased
from 0.1 A g�1 to 20 A g�1. Chemical composition (C, O) of
NFAC-c can be observed from EDS data. Corresponding element
mapping images validate the uniform distribution of C atom
(Fig. 6b) and O atom (Fig. 6c). O-containing functional groups is
helpful for widening working voltage window (0–1.6 V), and
increasing energy density of supercapacitors.46 NFAC-c shows
a large amount of interconnected micropores and mesopores
evenly distribute inside carbon material in TEM images. The
TEM images of NFAC-c in Fig. 6d–f show that a large amount of
interconnected micropores and mesopores are evenly distrib-
uted inside carbon material. The abundant micropores and
mesoporous structures are more helpful for charge storage and
the transmission of electrolytes for the electrode material
applied in supercapacitors.47 Amorphous structure is also
conrmed by carbon materials without graphic ribbon.48 From
pore size distribution curves, we can observe that mesopores
occupy higher proportion of NFAC-c compared to others, which
is benecial for high rate capacitive performance by serving as
ion transport channels to the interior surface of electrode
materials.49

The crystal structure of NFAC-x was evaluated by XRD
(Fig. 7a). For all NFAC-x, there are broad and weak diffraction
peaks around 22� corresponding to (002) plane of disordered
carbon and 43� corresponding to (100) plane of graphitized
lattice, respectively.50 The barely observed diffraction pattern for
NFAC is due to its amorphous property.51 The feature of disor-
dered structure and graphitization degree in the samples were
characterized by Raman spectra (Fig. 7b). The peak (D band)
centering at �1340 cm�1 reveals defect and disorder structure
of carbon. Another peak (G band) centering at �1580 cm�1 is
related to sp2 graphite lattice. A smaller intensity ratio between
D and G band (ID/IG) indicates the higher degree of graphiti-
zation.52 NFAC-c has a lower ID/IG (0.78) than that of NFAC-
Fig. 6 (a) SEM image of the obtained three-dimensional porous active
carbon (NFAC-c). (b) Corresponding elemental mapping images of C
atom and O atom in (c). (d) TEM image of NFAC-c. (e) and (f) HRTEM
image of NFAC-c.

RSC Adv., 2019, 9, 14797–14808 | 14801
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Fig. 7 (a) XRD profiles of NFAC-x. (b) Raman spectra of NFAC-x. (c) N2

adsorption/desorption isotherm of NFAC-x. (d) Pore size distributions
of NFAC-x. The inset shows magnified section of pore diameter
ranging from 1 nm to 5 nm.
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a (0.81), NFAC-b (0.82) and NFAC (0.95), revealing the greater
degree of graphitization.

The pore-size information is measured by N2 adsorption/
desorption analyzer. As depicted in Fig. 7c and d. NFAC,
NFAC-a and NFAC-b all display type I adsorption–desorption
isotherm based on the IUPAC classication. N2 adsorption
increases steeply at relative low pressure (P/P0 < 0.05), indicating
the presence of a great number of micropores.53 For NFAC-c, the
plot exhibited hybrid type I/IV adsorption–desorption isotherm
with a hysteresis loop in relative pressure P/P0 from 0.4 to 0.9.
The hysteresis loop is ascribed to capillary condensation
occurring in mesopores.54 The steep adsorption volume in the
relative pressure range from 0.9 to 1.0 indicates the existence of
macropores.55 The above information demonstrates that there
are micropores, mesopores, and macropores present in the
NFAC-c. More detailed pore size distributions curves (Fig. 7d)
calculated according to the DFT method further show the as-
prepared carbon materials have a hierarchical pore structure.
Table 1 lists the structure characteristics of NFAC, NFAC-a,
NFAC-b, and NFAC-c. It is found that their SBET are 3925 m2

g�1 (NFAC), 2884 m2 g�1 (NFAC-a), 2502 m2 g�1 (NFAC-b), 2796
m2 g�1 (NFAC-c), respectively. The Vpor are 2.26 cm3 g�1 (NFAC),
1.41 cm2 g�1 (NFAC-a), 1.14 cm2 g�1 (NFAC-b), 1.93 cm3 g�1

(NFAC-c), respectively. It can be observed that mesopores
occupy higher proportion of NFAC-c compared to others, which
is benecial for high rate capacitive performance by serving as
ion transport channels to the interior surface of electrode
materials.49 Mesopores forming can be attributed to three
Table 1 Pore characteristic of the as-obtained porous carbon materials

SBET [m2 g�1] Smic [m
2 g�1] Smes [m

2 g�1]

NFAC 3925 2554 1371
NFAC-a 2884 2459 425
NFAC-b 2502 2305 197
NFAC-c 2796 1236 1560

14802 | RSC Adv., 2019, 9, 14797–14808
reasons: (1) algae (NF) riches in alginate biopolymers on the cell
walls. It has a unique ability to generate “egg-box” structures,
which facilitate to generate mesopores on algae-based active
carbon.56 (2) Acid washing of precursor improves the porosity of
the activated carbon produced. Compared with other acid
solution, HF treatment can remove of the mineral matter or
other inorganic impurity involved in the raw algae thoroughly,
furthermore alter the pore structure of the material.57 (3) KOH
activation plays an important role in producing mesopore
structure in carbons. When the activation temperature is higher
than 400 �C, the chemical reactions are involved into the
process: 6KOH + 2C / 2K + 3H2 + 2K2CO3, subsequent
decomposition of K2CO3 and reactions of K/K2CO3/CO2 with the
carbon.58 Due to this unique microstructure, a specic capaci-
tance of 283 F g�1 for NFAC-c can be obtained at a current
density of 0.1 A g�1, which implies a higher performance than
that of NFAC (200 F g�1), NFAC-a (239 F g�1) and NFAC-b (253 F
g�1).
4.2 Performance of NFAC-x based electrodes in
supercapacitor

To compare electrochemical performance of NFAC-x, CV curves
were acquired at a scan rate of 20 mv s�1. All of them present
symmetric-rectangular shape without any peaks caused by
redox reactions (Fig. 8a, S3b and S5b†), showing typical electric
double layer capacitance.64 Comparing four curves, it can be
observed that NFAC-c's CV curve area is larger than that of
others. This indicates that NFAC-c is able to store more energy.10

Fig. 8b shows CV curves for NFAC-c at a scan rate ranging from 2
to 100 mv s�1. Symmetric-rectangular shape maintains well
even at high scan rate of 100 mV s�1. GCD curves at a current
density of 1 A g�1 are shown in Fig. 8c, S3b and S5b.† All curves
show isosceles triangle shape, implying good reversibility for
these electrodes.21 Discharge time of NFAC-c is the longest
among all samples', furtherly conrming its strong energy
storage power.65 GCD curves for NFAC-x electrode at different
current densities are shown in Fig. 8d, S4b, d and f.† Isosceles
triangle shape maintains well even at high current densities,
showing small internal resistance.46 The calculated specic
capacitances (Cm) are 200, 239, 253, 283 F g�1 for NFAC, NFAC-
a, NFAC-b, NFAC-c at a current density of 0.1 A g�1, respectively.
Fig. 8e demonstrates Cm of all electrodes at a current density
ranging from 0.1 to 20 A g�1. The Cm values of NFAC-c are
measured as 283, 276, 264, 255, 242, 225, 210, 190 F g�1 at 0.1,
0.2, 0.5, 1, 2, 5, 10, 20 A g�1. Therefore, the NFAC-c has the
highest value and still retains a capacitance of 67% at 20 A g�1.
Such high capacitance of NFAC-c is related to the unique 3D
multi-pores texture, which facilitates ionic transportation
Vpor [cm
2 g�1] Vmic [cm

2 g�1] Vmes [cm
2 g�1] Dave [nm]

2.26 1.18 1.08 2.31
1.41 1.05 0.36 1.97
1.14 0.97 0.17 1.83
1.93 0.58 1.35 2.76

This journal is © The Royal Society of Chemistry 2019
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Fig. 8 Electrochemical performance of NFAC-x electrodes: (a) CV
curves at a scan rate of 20mv s�1 for NFAC-x. (b) CV curves at different
scan rates from 2 to 100 mv s�1 for NFAC-c. (c) GCD profiles at
a current density of 1 A g�1 for NFAC-x. (d) GCD curves at different
current densities from 1 to 20 A g�1 for NFAC-c. (e) Specific capaci-
tances at varied current densities. (f) Nyquist plots of NFAC-x based
electrodes in a frequency from 0.01 Hz to 100 kHz. (g) Frequency
response of imaginary capacitance plot of NFAC-x. (h) Cycling stability
of the NFAC-c at a current density of 1.0 A g�1 for 10 000 cycles. The
inset shows the before and after 10 000 cycles of GCD curves.
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within mesopores.66 The decreasing specic capacitance with
current density is mainly resulted from slow diffusion of
protons through electrodes.67 Fig. S3c and S5c† show the
capacitance of other samples being activated at different
temperature and KOH mass. It was found NFAC-c exhibited
satisfactory capacitive performance. In order to evaluate
performance of as-prepared sample, we compared specic
capacitance between NFAC-c and other published biomass-
derived carbon materials (Table 2). It is shown that our
sample is at the level of high energy storage.

EIS has been conducted to get the dynamic information on
the interface of electrode and electrolyte (Fig. 8f, S3d and
S5d†).68 No obvious semicircle was observed at the high-
frequency region for NFAC-c, demonstrating a low charge
transfer resistance.69 Furtherly, intercept at the real axis of
impedance (Rs) was tted by the equivalent circuit, which are in
the following order: NFAC (0.85 U) > NFAC-b (0.91 U) > NFAC-
a (0.74 U) > NFAC-c (0.73 U). It shows that NFAC-c has the
This journal is © The Royal Society of Chemistry 2019
best conductivity. The vertical line at low-frequency region is
related to superior diffusion channels for electrolyte ions.70 The
frequency as the function of imaginary capacitance is plotted in
Fig. 8g. The imaginary capacitance reaches a peak at the oper-
ating frequency f0, which is the inverse of the constant time s0.71

The constant time for NFAC, NFAC-a, NFAC-b, NFAC-c are
1.47 s, 1.78 s, 1.47 s, 1.21 s respectively. This implies that NFAC-
c has the rapid frequency response.72 The NFAC-c based
supercapacitor shows 101.7% capacitance retention aer
10 000 GCD cycles at the current density of 1.0 A g�1 (Fig. 8h).
This result can be ascribed to the further wetting electrode,
which facilitate ions to intercalate into and out of the micro-
pores.73,74 As shown in the inset of Fig. 8h, the GCD curves still
remain symmetric and undistorted aer long-term charging/
discharging process, suggesting a remarkable stability.

Considering that the high stability window can be attained
in neutral solution. It is benecial to obtain the high energy
density for supercapacitors. So we assembled symmetric
supercapacitors by employing two same NFAC-c electrodes in
1 M Na2SO4 aqueous electrolyte. Fig. 9a shows the CV curves of
the NFAC-c//NFAC-c symmetric supercapacitors operated in
different voltage windows (1–1.8 V) at 50 mv s�1. It is clear the
loop displays a rectangular-like shape without obvious increase
of anodic current even at 1.6 V, suggesting an ideal capacitive
behavior and excellent reversibility. However, further extending
the potential to 1.8 V, the current at high potential increased
drastically due to the oxygen and hydrogen evolution reaction,
demonstrating that such supercapacitor can be reversibly cycled
within the voltage window of 0–1.6 V. The wide working voltage
is probably due to that the neutral electrolyte such as Na2SO4

aqueous solution (1.0 M) only contains low H+ and OH�

concentration.75 In addition, the 3D interconnected porous
structure can also enlarge the voltage window. The hierarchical
porosities provide effective pathway for H+/OH� transportation,
hence preventing di-hydrogen evolution in electrolyte.50

Furthermore, the extended voltage window also attributed to
the existence of oxygen-containing functional groups intro-
duced by KOH activation process.46 Fig. 9b presents the GCD
curves of NFAC-c at various current densities. The charge–
discharge curves show isosceles triangles shapes, indicating
good reversibility. Fig. 9c shows the specic capacitance of
NFAC-c at various current densities. When the current density is
1 A g�1, it reaches 191 F g�1. When the current density is
10 A g�1, it retained at 143 F g�1. Fig. 9d is a Ragone diagram. It
exhibits an energy density of 22 W h kg�1 at a power density of
80 W kg�1, which is higher or comparable with other published
results of carbon-based supercapacitors.9,61,76–80 Furthermore,
the assembled NFAC-c//NFAC-c supercapacitors could success-
fully light LED bulb with 1.5 V working potential (inset of
Fig. 9d). This conrms the feasibility of actual energy storage
application.
4.3 Numerical simulation and analysis of ANN model

Structural parameters of carbon materials have a strong effect
on capacitance performance, but it has still not come to an
agreement as for structure–performance relationship for
RSC Adv., 2019, 9, 14797–14808 | 14803
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Table 2 Comparison of specific capacitance of carbon materials derived from numerous biomass in symmetric supercapacitor

Biomass Activating agent SBET (m2 g�1)
Specic capacitance
(F g�1)

Current density
(A g�1) Electrolyte Ref.

Elm samaras KOH 1947 173 0.25 6 M KOH 7
Celtuce leaves59 KOH 3404 273 0.5 6 M KOH 59
Prolifera green tide KOH 2200 298 0.1 6 M KOH 15
Clover stem60 KCl 1459 309 0.5 1 M H2SO4 60
Pomelo61 KOH 832 213.6 1 6 M KOH 61
Cornstalk KCl/NaCl 1588 413 0.5 1 M H2SO4 12
Longan shells62 KOH 3260 102.1 0.5 6 M KOH 62
Lotus leaf63 KOH 2488 219 1 6 M KOH 63
Nostoc agelliforme KOH 2796 283 0.1 1 M H2SO4 Our work

Fig. 9 Electrochemical measurements of the assembled NFAC-c//
NFAC-c supercapacitor in 1 M Na2SO4 electrolyte: (a) CV curves in
various potential window at a scan rate of 50mV s�1. (b) GCD curves at
different current densities. (c) Specific capacitances at different current
densities. (d) Ragone plot. The inset is the lightened LED light.

Fig. 10 The relation between specific capacitance and (a) specific
surface area, (b) pore size, (c) pore volume, (d) mesopore volume, (e)
the intensity ratio of ID/IG, (f) Rs (g) N-doping amount, (h) micropore
volume, (i) aspect ratio, (j) cellulose amount.
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supercapacitors. As depicted in Fig. 10, we recorded experi-
mental data in the literatures. The structural features of our
sample (NFAC-x) were specially displayed with black dots in
every scatter diagram. There is no simple linear relationship or
obvious tendency between them. For example, single specic
surface area corresponds to multiple specic capacitances. The
same phenomenon exists for N (%), Dave, Vtot, etc. It indicates
that individual feature is not enough to reveal the complex
structure–performance relationship. Regarding to this matter,
ANN method was conducted to analyze the data in a feasibility
way. The weight matrix between ten input neurons and ten
hidden neurons, ten hidden neutrons and one output neutron
are recorded in Table 3. Weight matrices as for other number of
input neurons (2 and 8) are recorded in Tables S1 and S2,†
respectively. They are barely updated aer 1000 epochs when
the MSE doesn't decrease anymore. Essentially, weight can be
acted as the link between the neurons of hidden layers, which
makes indirect relationship between input layer and output
layer.

The quantication assessment of ANN is carried out by
calculating MSE and correlation coefficient (r2) between desired
output and estimated output provided by ANN model.81
14804 | RSC Adv., 2019, 9, 14797–14808
Fig. 11(a) shows MSE during training process as a function of
epochs. The MSE is reduced from 81.90 to 4.39 aer 1000 iter-
ation epochs perfectly. Furthermore, there is a sharp conver-
gence (MSE from 81.90 to 12.85) during the rst 300 epochs,
however a very slow improvement (MSE from 12.82 to 4.39) as
epochs increased beyond 300. When the input factors were
changed to 2 and 8, MSE can be reduced to 6.38 and 5.50,
respectively (Fig. S7a and S8a†). The smaller MSE is, the closer
the real value to predicted value. These results indicate that the
attributes of biomass and the structure of activated carbon
This journal is © The Royal Society of Chemistry 2019
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Table 3 Diagram of interconnected weights of neutrons in input, hidden and output layera

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

I1 �11.8 �3.0 �38.7 1.49 �18.2 �2.0 �5.9 12.5 �1.8 �43.7
I2 9.7 �1.8 �51.2 �1.1 5.6 �15.1 �5.2 11.3 1.4 �18.5
I3 �76.0 �1.12 9.5 3.5 �36.0 �5.8 �19.8 �4.3 �2.1 �28.1
I4 3.0 �1.5 �1.1 15.9 2.4 15.0 �3.6 9.9 �2.2 �1.9
I5 �9.9 �1.3 0.001 1.4 2.9 �12 �24.9 �0.4 �1.5 �33.2
I6 �12.8 �2.0 �14.6 2.0 �3.3 17.6 �15.7 �4.7 0.5 10.1
I7 23.2 �2.4 �5.9 12.2 18.6 �6.2 7.9 �10.8 �88.6 18.5
I8 23.6 �2.4 �2.2 3.4 3.4 �1.4 7.5 15.0 �1.2 �4.4
I9 36.6 �3.7 �46.8 60.9 29.7 19.5 �40.8 �8.9 �2.7 17.0
I10 40.7 �2.1 15.1 20.4 �26.0 5.1 �2.4 2.5 �3.2 �15.0
O 28.9 �28.5 �31.1 27.9 �33.3 �30.3 �28.5 29.1 �27.1 �31.6

a H: hidden layer; I1: input layer 1-rL/D; I2: input layer 2 � CL (%); I3: input layer 3 � SBET; I4: input layer 4 � Dave; I5: input layer 5 � Vtot; I6: input
layer 6 � Vmic; I7: input layer 7 � Vmes; I8: input layer 8 � ID/IG; I9: input layer 9 � Rs; I10: input layer 10 � N (%); O: output layer.
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jointly affect the capacitance. In other words, ANN model can
well weigh the relative contributions of these 10 factors to the
energy storage property. Correlation coefficient (r2) is a number
between 0 and 1. It can be calculated by eqn (16):82

r2 ¼ 1 � P
(ydi � ypi )

2/
P

(ydi � �y)2 (16)

where ypi is the i
th value predicted from the ANNmodel, ydi is the

ith desired value. �y denotes the arithmetic mean of the ydi . The
zero or very low value means that the ANN model does not
predict correctly. If the ability of ANN prediction is high, the
correlation coefficient increases and reaches to 1 for perfect
tting.83 The correlation coefficient is approximately 0.896 and
0.864 for training data and validation data respectively. They are
so closed to 1, which further conrms appropriate ANN
modelling for biomass-derived active carbon in super-
capacitors. Fig. 11b shows the experimental value compared
with predicted value from the test subset (twenty samples)
which not appeared in training process. By comparing two
Fig. 11 The prediction effect of ANN model controlled by ten inputs
(rL/D, CL (%), SBET, Dave, Vpor, Vmic, Vmes, ID/IG, Rs, N (%)): (a) mean square
error as epochs of the ANN model. (b) Comparison of experimental
and predicted value of test set for specific capacitance. (c) The specific
capacitance of NFAC-c predicted by ANN model for eight times. (d)
The relative importance of inputs to output.

This journal is © The Royal Society of Chemistry 2019
groups of values, it could not only be seen that the overall
change tendency of experimental values is consistent to the
predicted one, but also error was limited to tolerable range
excluding a few outliers. However, when the input factors
involve two attributes of biomass itself, only two predicted value
can be obtained by ANNmodel (Fig. S7b†). The sensitivity of the
output to the inputs is poor. Similarly, when the input factors
contain 8 kinds of structure characteristics from activated
carbon, the prediction effect became better than that of the
former. Due to the varying of input, the output changes corre-
spondingly. However, there are still some predicted values that
are far from the real ones (Fig. S8b†). Therefore, when the input
factors contain both the attribute of biomass and the structure
information of activated carbon, the prediction of ANNmodel is
the most accurate. The trained model was further used in pre-
dicting the electrochemical performance in NFAC-c with multi-
input features. From EDS data analysis, it can be obtained that
the prepared sample is not incorporated nitrogen into carbon
materials. So the value of nitrogen content (N (%)) was initialed
by zero. Because ANN has the characteristic of randomness, we
run program for 8 times to observe the stability of the prediction
value. As shown in Fig. 11c, they were recorded as 313, 319, 274,
281, 258, 287, 255, 315 F g�1 respectively. The average value is
289 F g�1, which is very closed to the real capacitance value (283
F g�1). These gures show ANN model can provide a valuable
guidance for predicting energy storage information of active
carbon materials with specic structure. The nal output is
determined by interconnected weights and activation functions.
In order to evaluate relative importance for every feature, we
used a random forest algorithm. As presented in Fig. 11d, the
relative importance to specic capacitance is ranked in the
descending order. It can be obtained that rst 3 features play an
important role in the prediction model. The detailed proportion
is listed in Table 4. SBET accounts for 30.1% importance. RS
Table 4 The relative importance of inputs to outputa

F SBET RS Vpor Vmes rL/D ID/IG Dave Vmic N (%) CL (%)

RI (%) 30.1 19.4 18.7 6.5 6.4 6.1 4.4 3.5 2.9 1.7

a F: feature; RI: relative importance.

RSC Adv., 2019, 9, 14797–14808 | 14805
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accounts for 19.4% importance. Vtot accounts for 18.7%
importance. It is reasonable for specic surface area to occupy
such large importance proportion. Large specic surface area
has long been the goal for researchers to realize high specic
capacitance, which can enable the electrode material to provide
enough contact area to absorb electrolyte ions, thus storing
more charge.27 It is known that the electrical conductivity is
crucial for obtaining the high rate capability and power
density.84 At the same time, the materials with high total pore
volume show better performance as ion reservoir or transport
channels during charging/discharging process, thus improving
the rate capability.85 We also found that mesopores have a more
important role than micropores to energy storage. It is exactly
consistent with our experimental results. For the attribute of
biomass itself, the aspect ratio has a greater impact than the
cellulose content on the capacitance. Therefore, it is a key issue
to explore a kind of biomass with appropriate aspect ratio as
well as the relationship between precursor and activated carbon
in the future. The gure also shows that the feature like N (%),
Dave, ID/IG has lower relative importance comparing with other
structure features.

5. Conclusion

Active carbon with hierarchically porous structure was fabri-
cated by effective method using a renewable source NF.
Immersing into acidied NaClO2, acidied H2O2 and HF has
improved the pore distribution of activated carbon to some
extent. HF increases mesopore volumes of the sample. The
specic capacitance was higher for the active carbon synthe-
sized from three kinds of acid solution with strong oxidizing
property. Under the optimized condition, the NFAC-c with
porous structure shows specic capacitance as high as 283 F
g�1 at a current density of 0.1 A g�1. The superior stability
(101.7% capacitance retention aer 10 000 cycles) is exhibited
in symmetric supercapacitor. Such excellent performance
derived from unique structure. Much cellulose, bers starch,
polysaccharide in NF are in situ decomposed and oxidized,
resulting in carbon sheet uffy and porous. Furthermore, the
dataset with more than 200 samples of biomass-carbon elec-
trode was selected for training ANN model. A three-layer ANN
with Levenberg–Marquart Back propagation algorithm has
been employed to predict the specic capacitance of super-
capacitor. The proposed ANN model being controlled by ten
inputs shows a precise prediction of the experimental data
with an excellent MSE of 4.39 and a high correlation coefficient
of 0.864 aer 1000 epochs. In a sense, the attributes of
biomass are indirect factors affecting the supercapacitance
behavior, while the structure of activated carbon is a direct
one. They interact with each other and jointly determine the
nal electrochemical characteristics. Random forest algo-
rithm successfully weights multiple inputs. SBET, Rs, Vtot play
more important role among all variables on specic capaci-
tance. The result suggests that the ANN can be used as an
effective method for modelling of electrode samples, thus
provides a guideline for adjusting ideal bio-carbon structure
for supercapacitors in the future.
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F. Carrasco-Mar̀ın, Chem. Eng. J., 2018, 1835–1841.
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra01255a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
 2

01
9.

 D
ow

nl
oa

de
d 

on
 0

6.
11

.2
02

5 
01

:5
7:

50
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
22 P. Yu, Z. Zhang, L. Zheng, F. Teng, L. Hu and X. Fang, Adv.
Energy Mater., 2016, 6, 160111.

23 M. Wang, T. Wang, P. Cai and X. Chen, Small Methods, 2019,
1900025–1900032.

24 A. A. Hameed, B. Karlik andM. S. Salman, Knowl. Based Syst.,
2016, 114, 79–87.

25 N. Abolhassani Monfared, N. Gharib, H. Moqtaderi,
M. Hejabi, M. Amiri, F. Torabi and A. Mosahebi, J. Power
Sources, 2006, 158, 932–935.

26 M. R. G. Marques, J. Wolff, C. Steigemann and
M. A. L. Marques, Phys. Chem. Chem. Phys., 2019, 21, 6506–
6516.

27 Y. Wang, Y. Song and Y. Xia, Chem. Soc. Rev., 2016, 45, 5925–
5950.

28 C. Zhao, Y. Huang, C. Zhao, X. Shao and Z. Zhu, Electrochim.
Acta, 2018, 291, 287–296.

29 A. R. Reed and P. T. Williams, Int. J. Energy Res., 2004, 28,
131–145.

30 R. Biswas, H. Uellendahl and B. K. Ahring, BioEnergy Res.,
2015, 8, 1101–1116.

31 Z. Yang and Y. Lin, Eng. Computation., 2018, 35, 1625–1638.
32 T. D. Dongale, K. P. Patil, S. R. Vanjare, A. R. Chavan,

P. K. Gaikwad and R. K. Kamat, J. Comput. Sci., 2015, 11,
82–90.

33 J. N. Marie-Francoise, H. Gualous and A. Berthon, IEE Proc.
Elec. Power Appl., 2006, 153, 255–262.

34 Y. LeCun, Y. Bengio and G. Hinton, Nature, 2015, 521, 436–
444.

35 M. A. Mohammed, M. K. Abd Ghani, N. Arunkumar,
R. I. Hamed, M. K. Abdullah and M. A. Burhanuddin,
Future Gener. Comput. Syst., 2018, 89, 539–547.

36 M. Jahangoshai Rezaee, M. Jozmaleki and M. Valipour, Phys.
A, 2018, 489, 78–93.

37 A. Eddahech, O. Briat, M. Ayadi and J.-M. Vinassa, Electr.
Power Syst. Res., 2014, 106, 134–141.

38 H. L. Ishwaran and M. Lu, Stat. Med., 2019, 38, 558–582.
39 K. J. Archer and R. V. Kimes, Comput. Stat. Data Anal., 2008,

52, 2249–2260.
40 Q. Zhao, L. Su, Z. Shi, P. Ling, N. Yan, C. Gu and Z. Shi,

IoPARTS, 2018, 60–65.
41 W. Chen, S. Zhang, R. Li and H. Shahabi, Sci. Total Environ.,

2018, 644, 1006–1018.
42 S. K. S. Fan, C. J. Su, H. T. Nien, P. F. Tsai and C. Y. Cheng,

So Computing, 2017, 22, 5707–5718.
43 B. Zhu, B. Liu, C. Qu, H. Zhang, W. Guo, Z. Liang, F. Chen

and R. Zou, J. Mater. Chem. A, 2018, 6, 1523–1530.
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