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Organic—inorganic hybrid metal halides are now the most attractive photovoltaic absorber materials,
typically, methylammonium lead triiodides (MAPblz). These unique semiconducting materials as absorbers
demonstrate a remarkably improved power conversion efficiency of over 20% and now with a certified
efficiency of 23.3%. Considering the Shockley—Queisser limit and their bandgaps, there is still much room
to increase the efficiency. Stable devices with reproducibility and long-term use are essential for their
commercialization. Atomic layer deposition (ALD) is a powerful technique to deposit high-quality thin
films with excellent thickness accuracy and conformality, as well as with no pin-holes in a large area at
low temperatures. ALD could be an ideal tool for efficient and stable perovskite solar cells. In particular,

Received 2nd December 2018, ALD will emerge for the production of tandem as well as flexible solar cells. This review contains the

Accepted 15th January 2019 following recent research topics; underlying charge transport layers onto transparent conducting oxides
(TCO), interfacial layers, overlying electron transport layers (ETLs), and encapsulation techniques utilized

by ALD. Several extended understandings by recent studies and challenges toward further enhancing the
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1. Introduction

Organic-inorganic hybrid metal halides are now emerging as a
new class of semiconductors. Known as the ‘perovskite solar cell
(PSC), photovoltaic (PV) cells with MAPbI; (methyl ammonium
lead triiodides), a notable example of a hybrid metal halide, as
light-absorbing materials showed a remarkable power conversion
efficiency (PCE) of over 20%." ™" The certified PCE is currently
23.3%."% PSCs have attracted considerable attention due to their
rapid increase in absolute efficiency per year (%) of 2.27 from that
of the first solid-state PSCs of 9.7%" up to the currently highest
certified PSC within recent six years, which has largely surpassed
other types of solar cells, increasing by under 1.0% per year."?
The PCE enhancements were achieved through scientific under-
standing as well as by engineering advancement. The former
includes crystal growth, compositional modification and opto-
electronic properties of the perovskite film, and the latter
signifies interfacial modification and the development of highly
efficient charge transport layers (CTLs) in the cells."*™°

PSCs have a sandwich structure of the perovskite layer, which
absorbs sunlight and generates photo-excited carriers, and CTLs,
which transport the photo-excited carriers to the electrodes.
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efficiency and stability will be addressed.

In addition, CTLs are divided into electron transport layers (ETLs),
which transport photo-excited electrons, and hole transport layers
(HTLs), which transport holes. The typical structures of PSCs can
be represented by three different types as shown in Fig. 1,
which are mesoscopic n-i-p, planar n-i-p and p-i-n structures,
respectively, and the types of PSCs are named according to the
CTLs in which the sunlight passes through first. In the mesoscopic
structure, a bilayer using a compact layer and a nanostructured/
mesoporous material is used as an ETL, whereas in a planar
structure, only a compact layer is used as CTLs. Since the ETL
extracts and transport electrons, n-type materials were used,
and the conduction band (CB) minimum should be positioned
lower than that of the perovskite. On the other hand, the HTL
requires p-type materials, and the valence band (VB) maximum
must be shallower than that of the perovskite. Most typical n-i-p
PSCs include TiO, as ETL and 2,2,7,7'-tetrakis(N,N-bis( p-methoxy-
phenyl)amino)-9,9'-spirobifluorene (Spiro-OMeTAD) as the HTL,
and the p-i-n includes poly(3,4-ethylenedioxythiophene):poly-
(styrene-sulfonate) (PEDOT:PSS), poly[bis(4-phenyl)(2,4,6-trimethyl-
phenyl)amine] (PTAA) and 1-(3-methoxycarbonyl)propyl-1-phenyl-
[6,6]Cs1 (PCBM). Inorganic materials have been intensively
studied as CTLs to enhance the stability of PSCs. Representative
inorganic materials of ETLs include TiO,,** Sn0,,'” ZnO,'®
7Zn,Sn0,* and BaSn0,,° and those of HTLs include NiO,*!
Cu0,,?? Cul,?® Cr0,,>* Cu-based delafossite materials>* >’ and
high-work-function Mo0O3.>¥ Among the many candidates, ETLs
such as TiO,, SnO,, ZnO and NiO HTL layers can be deposited
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Fig. 1 Typical three structures of the PSCs. The bilayer of compact and mesoporous materials consists of the ETL in mesoscopic n—i—p structure (a), and
only compact ETL and HTL are used in planar n—i—p structure (b) and p—i—n structure (c).

through atomic layer deposition (ALD) processes; in addition, Al,O;
which does not act as a CTL due to its insulating property but is
used as a passivation layer, is also capable of ALD processes.”*°

ALD is a powerful tool to deposit films on the substrates,
with a high conformality that can be hardly achieved by any
other technique. Dr Tuomo Suntola first invented atomic layer
epitaxy (ALE, commonly used term prior to 2000, instead of
ALD) in the 1970s.>" In his paper, the development of electro-
luminescent flat panel displays using ZnS thin films grown via
ALE was reported.” During the past decades after the invention,
enormous materials as well as growth methods via ALD have
been developed.>” The application of ALD has been largely
devoted to the microelectronic industry and nanotechnology.*>
In recent, many studies have focused on the application of ALD
to renewable energy devices including photovoltaics (PVs).>***

ALD is comprised of a binary sequence of self-limiting chemical
reactions between gas-phase precursor molecules and a solid
surface, which is solely dependent on the properties of the surface.
This self-limiting nature of the ALD gives rise to conformal growth
behavior and additional control over the total thickness of the film.
The precise film thickness control can be realized simply by the
repeating number of coating cycles. The schematic typical ALD
process is described in Fig. 2. A cycle of the ALD process consists of
four steps: the A source pulse, purging and the B source pulse, and
purging. Injecting the A source into the reaction chamber together
with the carrier gas (usu. N,, Ar, etc.) causes the A molecule
(Zn(CH,CH,), (diethylzinc, DEZ), Al(CH,); (trimethylaluminium,
TMA), etc.) to be chemisorbed on the substrate, and then injecting
the B (H,O0, H,0,, H,S, etc.) source into the substrate induces a
self-limiting reaction between the chemisorbed A and B sources.
The remaining surplus B sources will be removed through
purging. The self-limiting reaction refers to the reaction of the
reactant sources A and B only on the surfaces, not the reaction
between sources off of the surface. We briefly introduce the
surface chemistry of Al,O; using TMA and H,O in ALD, which
was well-established as a model system:*”
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Fig. 2 Schematic representation of the typical ALD process; (a and c) A
and B source precursor pulse; (b and d) inert gas purging of the remaining
(unreacted) precursor source.

(A) ~AIOH* + Al(CH3); — AlOAI(CH3),* + CH,(g) @)
(B) -AICH3* + H,O — AIOH* + CH,(g) (2)

(C) 2Al(CH;); + 3H,0 — Al,O5 + 3CH,(g) AH = —376 kecal
(3)

where the asterisks represent the surface species. The overall
reactions are self-limiting and spontaneous, which leads to the
formation of a strong Al-O bond. The reaction of the alternating
exposure of sources was repeated to produce the desired thickness
of the Al,O; films by increasing the number of cycles.

Taking advantages of the self-limiting chemical surface
reactions, ALD can guarantee high uniformity in a large area,
conformality and a nm scale thickness control of films. Furthermore,
ultra-high aspect ratio (more than 500: 1) substrate structures can be
conformally deposited by ALD.>***” Unlike conventional CVD that
attaches a compound to a substrate, ALD has the advantage
of deposition at relatively low temperatures (<200 °C) because
it atomically grows the compound on the substrate, which is
applicable to any flexible devices. Typical binary compounds

This journal is © The Royal Society of Chemistry 2019
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that can be deposited with ALD include many different metal
oxides, sulfides, and nitrides, for example, TiO,, 71r0,,%% Al,05,*°
NiO,*® Sn0,, MoS,,** and TiN.**> The greatest advantage of
applying ALD at the fabricating CTLs is the possibility of
depositing thin films without any pinholes and/or electrical
leakages. As a result, conformal and pinhole-free CTLs by ALD
can be considered as important components in PSCs in improving
efficiency as well as stability.

The substantial importance of the ALD process for PSCs has
since been reported; an overview of the ALD application for
PSCs will extend the understanding of the engineering of PSCs.
There are two review papers concerning ALD for PSCs thus far.
Deng and Li reviewed several selected articles to emphasize the
importance of the ALD process for the engineering of PSCs.>® In
another perspective article, Zardetto et al. offered a considerably
complete review of several ALD-grown materials utilized for
PSCs. Some important aspects of the ALD process for PSCs by
the two reviews were well presented.*® They have not sufficiently
covered the newly discovered importance of overlying ETLs onto
the perovskite for stability improvement and practical cases of
encapsulation engineering, which is recently progressed. In this
review, we focused on ALD processes for highly efficient and
stable PSCs including underlying charge transport layers onto
transparent conducting oxides (TCO), interfacial layers, and
overlying ETLs, and encapsulation techniques using ALD. To
conclude, several extended understandings by recent works and
challenges toward further enhancing efficiency and stability will
be addressed.

2. ALD for PSCs

2.1 Underlying charge transport layers (CTLSs)

CTLs play an important role in the performance of PSCs, which
selectively extracts photo-generated charges from the perovskite
layer and transport them to the electrodes. Underlying CTLs,
which are processed onto TCOs such as fluorine-doped tin oxide

QA (a)FTOblank (b) spray-pyrolysis TiO, b 15
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(FTO) and indium tin oxide (ITO), largely affect the growth of the
perovskite layer due to the interaction between substrate CTLs
and perovskite precursor solutions. Underlying CTLs require the
following characteristics, regardless of the ETL or HTL: (1) charge
selectivity, having a slightly lower conduction band as the ETL
and/or higher valence band alignment as the HTL relative to that
of the perovskite; (2) high conductivity, with high charge carrier
mobility for efficient charge extraction and transport; (3) film
morphology, granting pinhole-free dense morphology reducing
current leakages through shunt pathways; (4) chemical stability,
to avoid chemical reactions between the underlying CTLs and the
perovskite; (5) transparency, affecting the amount of light reaching
the perovskite layer mostly with wide-band gap CTLs.

The reduction of CTL thickness can reduce the serial resistance
of the device due to the short transfer distances of the photo-
generated charges. Processing such a thin film, however, has been
challenging in most cases, since thin film processing usually
resulted in pinholes and cracks, leading to a reduced charge
carrier blocking probability and creating a shunt leakage pathway.
Furthermore, in the case of large area substrates and/or substrates
with a high-aspect ratio, the formation of ultra-thin films with
uniform thicknesses is even more challenging. ALD can provide
ideal CTLs with conformal and dense film growth followed by
precise sub-nanometer scale thickness control. Roselofs et al.
recently introduced the impact of conformality for ultrathin
4 nm compact TiO, layers for mesostructured PSCs."** They found
that the high conformality by ALD allows the use of 4 nm thick
TiO, instead of ~50 nm thick TiO, by spray-pyrolysis as shown in
Fig. 3a and b. The devices fabricated from both TiO, films showed
similar PCEs of around 11.5%. Although the impact of con-
formality by ALD has been demonstrated, 4 nm TiO, was
formed with the rutile phase. As such, the conduction band
lies 0.2 eV below that of the anatase.** The benefit of ultrathin
TiO, in this study remained unclear. Seo et al. proposed the
thickness effect of ultrathin NiO as a HTL as shown in Fig. 3¢.*°
Where the film thickness is sufficiently thin to be affected by the
characteristic length of the space charge region, Debye length (Zg),
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(a) SEM images of TiO, films grown on FTO, all at the same magnification with a 200 nm scale bar. (b) Performance of representative mesoporous

perovskite solar cells with 50 nm thick spray-pyrolysis compact TiO, layers, compared to varied thicknesses of ALD TiO, from 100 ALD cycles (4 nm thick)
to 1700 ALD cycles (90 nm thick). Plotted are the settled J-V performance under 1 sun of AM 1.5 illumination. Reproduced with permission.** Copyright
2016, Wiley-VCH. (c) Schematic images of physical films thickness relative to the Debye length (Lp) vs. space charge profiles. When the thickness of NiO
films is large enough compared to the Lp, the NiO films were bulk-like, thus insulating ones as shown in the inset (top). Once the films’ thicknesses were
thin enough, the Lp started to overlap, and thus the apparent work function and hole concentration are increased (schematic in middle). Even in thinner
films, Lp is severely overlapped (schematic in the bottom). Reproduced with permission.*® Copyright 2016, The Royal Society of Chemistry.
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the films can exhibit higher electrical conductivity relative to that
of the bulk film. They found an apparent increase of the electronic
concentration of NiO films below ~7 nm, which addressed the
beneficial effect of ultra-thin transport layers on the device
performance. Taking advantage of the precise thickness control
in conformal ALD, ALD-grown CTLs with a thickness of a few
nanometers have been used for efficient PSCs. The most widely
investigated ETLs and HTLs grown via ALD as the underlying
layers are summarized in Table 1.

The initial ALD ETL study on underlying ETLs based on TiO,
focused on the clarification of the superiority of the ALD process
compared to other solution-processes, i.e., mostly sol-gel spin
coating and spray-pyrolysis.****™*® Lu et al. fabricated pinhole-
free and compact ETL TiO, films processed by ALD for planar
n-i-p PSCs as shown in Fig. 4a.*® ALD TiO, showed a better PCE
of 13.6% compared to that of solution-processed TiO, (i.e.,
8.7%). They have figured out that the optimum thickness of
ALD TiO, is 10 nm where PSCs exhibit the best performance.
PSCs with ultra-thin ALD TiO, films (5-20 nm) showed better
photocurrent compared to those with solution-based TiO,, thanks
to the excellent transmittance in the wavelength range of
400-900 nm. They also found that the ALD TiO,/perovskite
interface generates less leakage current, due to the dense and
pinhole-free film quality provided by ALD.

Lu et al. have subsequently proposed that the conduction
band edge and Fermi level of ALD TiO, has been slightly shifted
shallower relative to that of solution-processed TiO, due to the
higher concentrations of Ti** defects and surface absorbed ~-OH
groups in the film, evidenced by X-ray photoelectron spectroscopy
(XPS).*” Utilizing these energy level differences, they formed a
solution-based TiO,/ALD TiO, bilayer ETL with type II band
alignment and recorded a PCE of up to 16.5%. In spite of
demonstrations of the superiority of the ALD process, it hardly
obtained highly efficient planar PSCs based on TiO,, noted by
the poor interface between the TiO,/perovskite regardless of the
processes.> It has been proposed that interfacial modification,"?
or the doping®” strategy of solution-processed TiO, could improve
the performance of planar PSCs. Zardetto et al. reported that the
interfacial property between the ALD TiO,/perovskite can be
improved by the surface treatment of CF, gas under plasma.>>
CF,-treated TiO, has a deeper energy level compared to the
pristine one, which allows better formation of the band alignment
with the perovskite layer and facilitates electron extraction. In
addition, the surface of CF,-treated TiO, improved the interfacial
adhesion when perovskite-coated, increasing the maximum PCE
up to 14.8% from 4% (Fig. 4b).

The application of ALD SnO, layers in planar PSCs was more
successful than ALD TiO, ones in terms of their PV performances.
Correa et al. firstly reported that the planar PSC based on ALD
SnO,, deposited at a low temperature of 118 °C, recorded a
maximum PCE of 18.4%.>® They observed that ALD SnO, forms
barrier-free band alignment with mixed cations halides perovskite
layers ((FAPbI;), g5(MAPDbBr3),15). Furthermore, an efficient
extraction of the electrons from the perovskite into SnO, was
proven by femtosecond transient absorption (TA) measurement.
Consequently, PSCs with ALD SnO, show no current-voltage
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hysteresis or reproducible current-voltage characteristics regardless
of scan rates (Fig. 5a). The importance of band alignment between
ETL/perovskite in planar PSCs was well highlighted. In their later
study, SnO, was passivated by thin (<1 nm) Ga,O; interlayers for
the sake of the suppression of interfacial recombination.>* Howevetr,
the passivation of Ga,O; did not show any improvement in PV
performances. In addition, they have confirmed that interfacial
recombination near SnO, is considerably well suppressed by the
intrinsic interfaces between the ALD SnO,/perovskite layers. Based
on this ALD layer, which is energetically favourable with the
perovskite, they reported that the incorporation of RbI into the
MAFA-based perovskite can enhance the lifetime of charge carriers
up to 1.37 ps (0.55 ps for non Rbl-perovskites) and promote
hysteresis-less current-voltage characteristics, eventually yielding a
PCE of 20.3% (Fig. 5¢)."* Furthermore, It was demonstrated that the
Voe Of the device could be enhanced to 1.23 V (just 100 mV lower
than the thermodynamic limit) through the control of the doping
level of HTL (Spiro-OMeTAD)."*

It is well known that the material properties of a semiconductor
can typically be improved through high-temperature-induced
recrystallization. In contrast, Lee et al. reported high-temperature
(300 °C) annealed SnO, layers largely decreased the performance
of PSCs, while annealed SnO, ones at mild temperatures (180 °C)
showed better PV performances (Fig. 6).>> This trend has been
consistently observed in PSCs not only with ALD SnO, layers but
also in other solution-processed SnO, layers.’®>” They suggest
that residual precursors, tetrakis(dimethylamino)tin (TDMASn)
in case of the ALD process, in the SnO, films decompose at high
temperatures of 230 °C, leaving highly conductive SnO, layers.
The contrasting behavior of annealed SnO, layers is ascribed to
the reduction of the hole-blocking ability due to metal-like nature
of Sn0,. As a result, they were addressed as-deposited and mildly
annealed SnO, films containing self-passivating residual pre-
cursors, which is inevitably required to provide good electron
mobility as well as hole-blocking property.

Several SnO, via plasma-assisted ALD applied to planar PSCs
has also been investigated.’®®' Wang et al. further reduced the
process temperature of SnO, to 70 °C thanks to the additional
energy from plasma, which resulted in the maximum PCE of
19%.°° They utilized Ceo-SAM as an interfacial modifier on
SnO, to suppress the interfacial recombination. Considering
its high electron mobility as well as its energy level position,
SnO, is one of the most suitable candidates in planar PSCs.
Many researchers have considered doping strategies to obtain
better electron transfer within SnO, due to its wide band gap
nature.®> However, it is not the desired process because the doping
process also frequently requires high-temperature annealing. Thus,
SnO, via the ALD process, capable of sub-nanometer thickness
control of the thin film, can exhibit most excellent properties as
an ETL, which makes it possible to realize a high PCE of even
above 20 or 21%.

The ambipolar carrier transport properties of the perovskites
enabled structural versatility including p-i-n architecture. In
the case of p-i-n PSCs, underlying inorganic HTL materials
such as NiO, CuO, CuSCN, MoO3, and Cu-based delafossite were
applied to the PSCs.** The most investigated inorganic HTL in

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 (a) Cross-sectional SEM image of a perovskite solar cell with FTO/
ALD TiO,/perovskite/PsHT/Ag layers and J-V curves of solar cells based
on conventional TiO, and ALD TiO, layers (5, 10, 15 and 20 nm). Reproduced
with permission.*® Copyright 2015, The Royal Society of Chemistry. (b) J-V
curves of the perovskite solar cells with ALD TiO, as the ETL (solid black line) and
CF,4 plasma-treated ALD (dash red line); and maximum power point tracking
(MPPT) for the two devices. Reproduced with permission.>> Copyright 2018,
Wiley-VCH.
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p-i-n PSCs is NiO, which requires surface modification, nano-
structuring, or doping to minimize its intrinsically high resistances.
Seo et al. reported the first un-doped pure NiO ultra-thin film via
ALD in p-i-n PSCs with a PCE of 16.4%.% They optimized the
thickness of ALD NiO (7.5 nm) and exhibited the appropriated work
function of 5.0-5.2 eV and high transmittance of above 95% in the
visible range. Tan et al. proposed that conventional electron
transporting material TiO, can be a good hole transporting
material by the incorporation of IrO, (TiO,-IrO, composition via
super-cycle ALD).®* This ALD layer has a work function of 5.2 eV
and p-type semiconducting property. When 15.5 mol% of IrO,, is
incorporated into the TiO, film, it shows suitable HTL char-
acteristics and a PCE of up to 15.8% at maximum. Several film
deposition recipes via ALD chemistry were already developed for
highly hole conductive CuO, CuCrO, delafossite, and MoOs3,
which remained to be demonstrated as highly efficient p-i-n
PSCs with these ALD layers.

ETL processed by ALD especially has superiority when
applied to tandem or flexible devices requiring low-temperature
processes, conformal and pinhole-free films. Albrecht et al. realized
monolithic Si/perovskite tandem devices via low-temperature
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Fig. 5 (a) Current-voltage properties of TiO, and SnO,-based planar mixed halide/cation perovskite devices. Black arrows indicate the backward scan
from V¢ to Js., and red arrows indicate the reverse scan. (b) Normalized transient photocurrents measured from the V. to the maximum power point
voltage for both planar systems. Reproduced with permission.>* Copyright 2015, The Royal Society of Chemistry. (c) The performance of planar PSCs
with 1% of Rb in MAFA showed the highest PCE of 20.3%. Reproduced with permission.* Copyright 2018, The Royal Society of Chemistry.
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Fig. 7 (a) Schematic of the Si heterojunction/perovskite tandem solar cell
(the red dashed line indicates the active area) and cross-sectional scanning
electron micrograph of a typical monolithic tandem solar cell. Reproduced
with permission.®> Copyright 2016, The Royal Society of Chemistry.
(b) Fatigue testing of a flexible PSC with a bending radius of 1 cm. J-V
curves measured after various bending cycles and performance parameters
as a function of bending cycles. Reproduced with permission.>®> Copyright
2017, American Chemical Society.

(118 °C) ALD-processed SnO, layers (Fig. 7a).°®> They formed a
recombination layer of ITO/ALD SnO, onto the flat Si sub-cell,
which functions as an energetically aligned ETL with the
perovskite. The ALD ETL in the tandem device is expected to
become even more important due to its superior conformality
when the Si bottom cell has a textured surface to manage more
illuminated light. In the case of flexible devices, ALD TiO, and
SnO, layers as CTLs were investigated.****°*®” It is possible to
deposit high-quality ETL by ALD at low temperatures (<150 °C),
which is required in flexible substrates. It has been also
reported that the uniform films without pinholes via ALD are
more durable against cracks during device bending tests. Wang
et al. recorded one of the highest PCE (18.36% in the reverse
scan direction and a stabilized power output of over 17%) using
ALD SnO, among all n-i-p flexible PSCs.”® SnO, via plasma-
assisted ALD with post-annealing under the water vapour (the
entire process at a temperature below 100 °C) showed improved
charge transport ability and electrical conductivity. They evidenced
that this ALD layer on flexible substrates can alleviate the problems
of lower V,,, FF and severe current-voltage hysteresis, compared to
on rigid substrates. The flexible device retained 76% its initial PCE
from 17.4 to 13.3% after 1000 bending cycles (Fig. 7b). They argued
that the degradation of flexible ITO/polyethyleneterephthalate
(PET) substrates with bending cycles is the predominant reason
for the increased sheet resistance and decreased FF and PCE.*®**

Another consideration in developing underlying CTLs is the
different electronic properties (for example, VB, CB, and work
function, etc.) of the perovskite films depending on their CTLs,
which was reported by several research groups.”®””* They found
that the work function of perovskite films was determined to be
around 4.0 eV on n-type substrates (i.e., TiO,, SnO,) while the

This journal is © The Royal Society of Chemistry 2019
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films were around 4.7 eV for the work function on p-type
substrates (i.e., NiO, PEDOT:PSS). Olthof et al. proposed that
OH- surface groups on oxide materials, by-product formations
including the unreacted Pbl, at the surfaces during the film
growth, and the interface dipole could be the origin of the
different electronic properties of the perovskite films.”" Hu
et al. reported a strong impact on the device performance by
different SnO, variants prepared from ALD with three different
oxidizers (i.e., H,O, ozone, and plasma-treatment).”® The device
based on ozone SnO, showed the highest efficiency and V. of
1.17 V with negligible hysteresis. They asserted that the CB
mismatch between the MAPDbI; and the unreacted PbI, on SnO,
was caused by different interfacial dipoles depending on SnO,
films grown by different oxidizers and surface treatment.
A clear understanding of the CTL/perovskite interfaces is still
lacking thus far. However, it can be progressed further in the
design of efficient PSCs with the understanding of the chemical
reactions resulting in the formation of desirable interfaces.
For example, the elimination of interfacial PbI, or control of the
interfacial dipole would be viable options to be considered.

2.2 Surface passivation/interface engineering

Since the defects and impurities present on the surfaces of the
semiconductor promote the electron-hole recombination, inter-
facial properties of the solar cells are particularly important for
highly efficient PVs. Interfaces between the CTLs and perovskite
layers are the main source of charge recombination in PSCs.”*
Surface passivation introduced by ultra-thin layers at relatively
low temperatures of deposition should cover the surfaces to
minimize thermally induced pinholes or cracks in the layers.
Thin insulating tunnel layers can also act as a passivation layer
by reducing interfacial recombination and charge transfer via
tunnelling.

ALD provides ideal uniform and conformal passivation films
of high quality at a relatively low temperature, which have
already been widely adopted as a passivation layer in other
solar cell fabrication processes.”> Chandiran et al. proposed the
nanometer-thickness ALD TiO, overlayers (0-4 nm) on mesoporous
TiO,-based PSCs to suppress electron recombination, leading to a
PCE of 11.5% without further heat treatment.”® Similar concepts of
ALD metal oxide passivation films with the thickness of few
nanometres have been employed in various configurations (ALD
ZnO on mesoporous Al,O3;,”” ALD Al,O; between FTO/meso-
porous TiO,,”® ALD TiO, on 1-D nanorod TiO,,”® etc.”*%%%").

The passivation process on the TCO electrodes or TCO/metal
oxide substrates before perovskite coating is more challenging
and limited than the passivation process on top of the perovskite
or perovskite/CTLs in terms of compatibility without having any
damage underneath the perovskite layers, prone to degradation,
during the process.®> However, when the passivation process over
the perovskite is performed successfully, the passivation layer
can not only reduce charge recombination at the interface but
also improve the stability of the perovskite by protecting the
degradation reaction with moisture and/or oxygen from outside
of the cells. Dong et al. investigated ultrathin Al,O; prepared
by ALD on the perovskite layer as a passivation process.®*
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They deposited Al,O; directly onto the perovskite using TMA
and O; with a relatively low temperature of 70 °C to avoid the
thermally induced degradation of the perovskite and organic
HTL. The perovskite was degraded even after 1 cycle of the ALD
process, which resulted in the reduced performance of the PSCs.
Even though they reported the successful enhancement of
stability by adopting the Al,O; layer, they did not explain the
passivation tunnelling effect of ALD Al,O; due to the performance
drop. Kim et al. proposed novel ALD chemistry of the non-
hydrolytic process using carboxyl acid as an oxidizer for Al,O3
deposition to avoid perovskite degradation.®* They were not
successful in showing PSCs adopting the non-hydrolytic ALD
process, due to which the passivation effect of the film remains
unclarified.

Recently, Koushik et al. deposited 2-20 cycles of ALD Al,O3
onto the perovskite at room temperature without degradation,
evidenced by the X-ray diffraction (XRD) spectra as shown in
Fig. 8.%° The thickness of the Al,O; films was grown conformally
and precisely controlled at the Angstrom scale by varying the
number of ALD cycles. Devices without Al,O; layers exhibited a
PCE of 15.1%. Device passivated by Al,O; showed considerable
improvement in all PV performances with sub-optimal conditions
(2-8 cycles) and optimal conditions (10-15 cycles). Further
increasing the number of ALD cycles over 15 resulted in a
significant decrease in the J;. and FF. The author addressed that
the relatively thick Al,O; worsened the tunnelling effect, followed
by less probable hole injection from the perovskite to the HTL.
ALD Al,O; layers with an optimal thickness (10 cycles ~1 nm)
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positively affected current-voltage hysteresis and increased the
PCE of PSCs up to 18%, which provided sufficient tunnelling
passivation effect and protected the underneath perovskite layers.
70 days of dark aging under a stepwise increasing humidity
(RH 40% to 70%) demonstrated that the Al,O; passivation
layers delay humidity-induced degradation, as it retained 70%
of its initial efficiency, while devices without the Al,O; layers
lost almost all highly efficient PV performance.

Hu et al. reported another passivation material, i.e., ALD ZrO,
to modify the interface between perovskite/PCBM in MAPbBr;-
based inverted planar PSCs.*® Hole blocking by ZrO, suppresses
charge recombination loss and consequently produces a remarkably
high V. of 1653 mV. The author additionally addressed the origin
of V,. enhancement of ZrO,-inserted PSCs, since the arrangement
of PCBM films is more ordered on the perovskite/ZrO, surface,
as evidenced by XRD analysis.

2.3 Overlying ETL via ALD for stability engineering

The stability of PSCs for the goal of commercially available
products is one of the most difficult challenges in PSCs. The
prototypical light absorbing material in PSCs is CH;NH;Pbl;,
which has ABX; perovskite crystal structure, and it has a relatively
low lattice formation energy of —29.71 eV per cell, as much as
1-order of magnitude lower than typical oxide perovskites, resulting
in facile degradation under moisture, oxygen, heat, electrical
bias, as well as from light illumination.?” It has been proposed
that alternating or mixing the A-site elements of MA with
formamidinium (FA), Cs, Rb or even bigger organic cations to
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Fig. 8 (a) High-angle annular dark field (HAADF) scanning TEM image of the enlarged perovskite/ALD Al,O3/Spiro-OMeTAD interface. (b) XRD spectra of
the parent perovskite film before and after the successive depositions of ALD Al,Os. (c) J-V curves of the best perovskite devices utilizing different
numbers of ALD Al,O3 cycles. (d) Normalized PCE of the champion perovskite devices with and without ALD Al,Os as a function of storage time under
varied humidity conditions. Reproduced with permission.8> Copyright 2017, The Royal Society of Chemistry.
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enhance the lattice formation energy can stabilize the perovskite
structure and eventually increased the stability of the devices.

Asghar et al. reviewed the understanding of the degradation
mechanisms of PSCs originated from all the device components
from the perovskite, transport layers, electrodes, and device
geometry.®® Not to mention the stability of the perovskite material
itself, other components can promote or retard the degradation of
PSCs. The components on top of the perovskite are of particular
interest due to the additional protecting role preventing the
penetration of moisture from the outside and its own stability.
The conventional HTL in regular-type PSCs is the Spiro-OMeTAD,
PTAA and poly(3-hexylthiophene) (P3HT), which is solution-
processed. Yang et al. studied the ability of HTL to prevent
moisture-induced degradation onto the perovskite.*® They found
that Spiro-OMeTAD causes an acceleration of the decomposition
of the perovskite due to the HTL undergoing significant cracking,
while other HTLs show a reduction in the degradation rates. They
explained the different rates of perovskite decomposition by the
toughness of the layer. PCBM, the most common ETL in inverted
devices, has been reported to inhibit water permeation due to its
hydrophobic nature.’® Thus, this is the reason why layers over the
perovskite should be dense, impermeable and free of pinholes in
terms of stability.

ALD has been proposed as a promising method to produce
an excellent protective layer when deposited onto the perovskite
layer.®* Metal oxide films were grown via ALD with great imperme-
ability originating from dense, conformal, and pinhole-free nature
with an extremely low water vapour transmission rate (WVTR).”
The first application of ALD for stable PSCs was reported by
depositing a few cycles of Al,O; directly onto the perovskite layer
as introduced in the previous passivation section.”

In spite of its sub-nanometer thickness, it has improved the
atmospheric air stability of PSCs. The trade-off between stability
and charge transfer occurs simply because the thick film demon-
strated sufficient impermeability, while charge transfer via tunnel-
ling is severely suppressed. In order to avoid this problem, the
deposition of 10-20 nm of ALD ETLs onto the perovskite-PCBM
heterojunction has been proposed. ALD ETLs functions as a
protective layer as well as CTLs in the inverted p-i-n type PSCs.
Table 2 shows important stability results based on ALD ETL
adopted inverted PSCs reported in the literature.’>**"®” The direct
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deposition of an ALD ETL with a thickness over 10 nm onto the
perovskite usually decomposes the perovskite vigorously during
the process, which make the final PCE less than 10%.°%°°

Kim et al. prepared TiO, layers by ALD in the inverted PSCs,
which showed remarkable improvement in resistance against
degradation in harsh environments such as soaking in liquid
water or high temperatures (100 °C).>* It has also been reported
by Brinkmann et al. that 20 nm thick impermeable ALD-SnO,
ETLs can suppress the decomposition of the perovskite.”* PSCs
with ALD-SnO, preserved their performance (~12%) during
500 hours of dark storage under humid atmospheric exposure
(relative humidity (RH) of 50%) without any sign of degradation,
while PSCs without the SnO, layer degraded rapidly within
50 hours. They analysed the reason why SnO,-inserted PSCs
showed strikingly high stability, as shown in Fig. 9. From the
XRD data, they found no severe decomposition of the perovskite
when exposed to moisture regardless of SnO, deposition, which
meant that the bulk of the perovskite remained unchanged. On
the other hand, XPS results showed a notable degradation with
increasing I3ds, binding peaks from Agl on the surface of
devices without ALD SnO,. Similar XPS analysis of thermally aged
(60 °C) samples showed consistent results that the ALD SnO, layer
successfully prevented the evaporation of volatile organic com-
ponents (e.g., MAI). They claimed that outstandingly dense gas
permeation barriers by ALD suppressed the out-diffusion of the
decomposition products.

The moisture-induced degradation of PSCs can be overcome
by proper encapsulation of the devices. Typical metal electrodes,
such as Ag and Au, can diffuse through the organic transport layers
and make detrimental reactions with the perovskite layers at the
interface under operational condition or at high temperatures.'®
Aforementioned ALD-grown inorganic CTLs are critical to prevent
roles against in-/out-diffusion. Guerrero et al. reported the interfacial
degradation of PSCs, as shown in Fig. 10a.'°® PSCs under
operational conditions including the light and electric field generate
ion migration inside perovskite films, leaving the accumulation of
net charges at one or both contacts. Light and electric field-driven
chemical reaction by the diffusion of these ions and metals
cause interfacial degradation between the perovskite/PCBM and
the PCBM/metal, which finally induced a severe drop of the PCE
even under inert atmosphere.

Table 2 Accelerated aging tests results for inverted PSCs based on impermeable ETLs. Devices are completed with ALD metal oxide on the perovskite-
PCBM heterojunction. Stability results indicate the retained performance after each aging condition

ALD metal

oxide Device structure PCE (%) Ageing condition and stability results Ref.

ZnO ITO/PEDOT:PSS/MAPbI;/PCBM/ALD ZnO/Ag 10.8 Dark storage in ambient air ~95% retaining for 87

NWs/50 nm Al,O; coated PET 42 days

TiO, ITO/NiO,/MAPbDI;/PCBM/ALD TiO,/Al/Au 8.8 Dark storage under thermal soaking (100 °C) 91% 88
retaining for 10 hours

SnoO, ITO/PEDOT:PSS/MAPDI;/PCBM/Al:ZnO/ALD SnO,/Ag 12.6 Dark storage in 23 °C and 50% RH or inert under 89
60 °C no degradation

SnoO, ITO/PEDOT:PSS/MAPbI;/PCBM/AL:ZnO/ALD SnO,/Ag/SnO, 11.2 Dark storage in inert 60 °C 95% retaining for 3200 hours 90

SnO, ITO/PEDOT:PSS/MAPDIL;/PCBM/AL:ZnO/spatial ALD SnO,/Ag 12.7 Dark storage in 23 °C and 60% RH ~92% retaining 91
for 1000 hours

Al:ZnO FTO/NiO/MAPbI;/PCBM/BCP/ALD-ALl:ZnO/Ag/Al,05(90 nm) 18.5 85 °C, 1 sun illumination, ambient air, MPPT 86.7% 92

This journal is © The Royal Society of Chemistry 2019
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Fig. 9 Unravelling the aging mechanism in air. XRD spectrum of a perovskite cell based on AZO as ETL after storage in air for 7 days (inset: magnified view
of the (100) Pbl; reflection for a fresh sample and one that has been stored in air for 7 days; spectra were vertically offset for clarity) (a). Photoemission
spectra of the iodine |3ds/, peak for fresh and aged cells based on AZO, SnO, and bilayered AZO/SnO, ETLs, respectively (b). The aged samples were stored

in air for 2 days. Corresponding plan-view SEM images of the 10 nm Ag layer

in the case of the AZO sample (c and d), and for the AZO/SnO, sample (e).

Schemes of the aging for the AZO and the AZO/SnO, samples (f and g). Reproduced with permission.’* Copyright 2016, Macmillan Publishers Limited.

Seo et al. rationalized the use of the dense ALD-ETL layer
between perovskite/PCBM and metal electrodes by suppressing
interfacial degradation, as shown in Fig. 10b and c.®” They
fabricated inverted PSCs using ALD Al:ZnO with FTO/NiO/
perovskite/PCBM/AL:ZnO/Ag. Al:ZnO-adopted PSCs exhibited
17% efficiency, which produced similar device performance to
the control device without Al:ZnO due to the negligible charge
transporting retardation by the 3 orders of magnitude higher
conductivity of Al:ZnO compared to that of PCBM. Regarding
the stability of PSCs, while the control solar cells have been
degraded rapidly under continuous 1 sun light illumination at
room temperature in spite of the additional encapsulation layer
(90 nm of Al,03), Al:ZnO PSCs maintained almost all of its
initial efficiency. The author addressed that the unique role of

2412 | Chem. Commun., 2019, 55, 2403-2416

Al:ZnO, distinguished from other encapsulation techniques, is
to prevent moisture penetration as well as interdiffusion at the
perovskite/Ag interface when illuminated. The Al:ZnO layer prevents
interfacial degradation between the perovskite-heterojunction and
the Ag electrode caused by unfavourable chemical reaction. These
perovskite solar cells demonstrated their stability in a harsher
environment, exhibiting a power conversion efficiency of 18.45%
and retaining 86.7% of its initial efficiency for 500 hours under
continuous 1 sun illumination at 85 °C in ambient air with
electrical biases (at the maximum power point). The application
of the ALD ETL over the perovskite layer has another function of
extending process compatibility to prevent deterioration of the
perovskite during the deposition of transparent electrodes such
as ITO. It was proposed by Bush et al. that sputtered ITO was

This journal is © The Royal Society of Chemistry 2019


https://doi.org/10.1039/c8cc09578g

Published on 21 2019. Downloaded on 01.11.2025 04:19:44.

View Article Online

ChemComm Feature Article

Process

1.e.PVK+NH,CH,

P~ |
T Perovskite PCBM

Perovskite

C
, " . . : . . . . - 100
20 85 °C, 1-sun illumination, near MPPT, ambient air *- RT _
;@1 < -e-85°C| 180 ®
R 0 £
8 cosen, N— P 1 1 ’g
£ 16 anad — E
3 P {40 2
e J fote
g 144 2
124 ' ' ' ' ' . | ' ' 1s e
0 50 100 150 200 250 300 350 400 450 500

Time (h)

Fig. 10 (a) Feasible hypothesis that could potentially give rise to external cathode contact degradation. Reproduced with permission.!°* Copyright 2015,
American Chemical Society. (b) Schematic of PSCs with suppressed interfacial degradation in the presence of the ALD Al:ZnO layer. (c) PCE evolution of
the ALD-AL:ZnO-coated PSC with a thin Al,O3 passivation film (~50 nm) over 500 h. Aging was performed under continuous near maximum power
electrical biases (0.76-0.88 V) and 1 sun illumination (100 mW cm~2) with a 420 nm cutoff UV filter at 85 °C in ambient air (the relative humidity was
~20-60%). The relative humidity was recorded every day. The initial PCE value (orange star) was 18.4% at room temperature, and the PCE at 85 °C
(orange circles) was recorded every 5 h. The ALD-Al:ZnO-coated device retained 86.7% of its initial performance (16.5% — 14.3%), as determined from
the reverse J-V scan. Reproduced with permission.®” Copyright 2018, Wiley-VCH.

successfully able to complete semi-transparent PSCs in the perovskite tandem solar cell by utilizing ALD SnO, as a buffer
presence of ALD ETL due to its impermeability minimizing layer for the ITO sputtering process.'”>'® The intermittent layer
sputtered damage onto the perovskite.'”> Moreover, Snaith and ~ (SnO,/ITO) successfully protects underneath the perovskite dur-
co-workers recently fabricated a solution-processed perovskite- ing the top cell fabrication process.
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Fig. 11 (a) Right: Schematic of the encapsulated PSC. Left: The cross-sectional SEM image of the TFE. (b) Normalized PCE of HTM-varied PSCs after
60 and 90 °C ALD processes. (c) Shelf life of PSC encapsulated with 1-4 layers of multilayer TFE under an accelerated condition of 50 °C, 50% RH. The
numbers in legend indicate the WVTR of each TFE (g m~2 d™Y). J-V characteristics of (b) pristine PSC and (c) PSC encapsulated with 4-dyad TFE with
respect to time lapse under reverse scan. Reproduced with permission.’®” Copyright 2017, Wiley-VCH. (d) Evolution of normalized PCE for
AlLOs-protected devices immersed in water. The inset shows photographs of the devices with Al,Os3 (right) and without Al,Os (left) layers after being
kept in water for 1 h. Reproduced with permission.1%® Copyright 2018, American Chemical Society.
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2.4 Encapsulation via ALD

The key factor in achieving long-term stable PSCs is largely
related to developing stable perovskite materials and/or device
architectures including encapsulation. Encapsulation methods
are utilized extensively in organic PVs (OPVs) or organic light
emitting diodes (OLEDs), which requires levels of WVTR less than
107 g m™? d™' for longlived OLEDs."* However, encapsulation
technology with adequate WVTR levels has not been developed yet
in PSCs due to them being prone to the degradation of perovskite
materials during the encapsulation processes. %'

Lee et al. reported the first laminated (inorganic and organic
stacked layers) encapsulation thin film (thickness of less than
5 um) for the encapsulation of PSCs, composed of pairs of Al,O3
and poly(1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane) (pV;Dj3)
processed by ALD and iCVD, respectively. Four pairs of Al,O; and
pVsD; display an outstanding barrier property of 107 * g m~>d " of
WVTR under a high RH of 90% and 38 °C.'"” Fig. 11 shows the
effect of the ALD process temperature on the performance of the
PSCs. In the case of PSCs with PTAA as the HTL, the performance
retained 90% of its initial efficiency after the ALD process at 60 °C.
One pair of Al,O3; and pV;D; encapsulation films do not cause
much deterioration of the performance, changing from 21.5 to
20.1%. PSCs with 4 pairs of encapsulation films maintained
97% of their initial PCE for 300 hours of ageing under 50 °C/
50% (temperature/RH). The longest shelf life of PSCs, with an
efficiency greater than 18%, has been achieved.

Unlike regular PSCs, inverted PSCs usually showed better
thermal stability due to the presence of PCBM instead of spiro-
OMTeAD.’"'%® The ALD Al,O; process below 100 °C does not
significantly affect the performance of inverted PSCs. Lv et al.
reported a composite ALD Al,O; encapsulation layer in multi-
layers composed of Al,O; (10 nm)/Al,O; with intermediates of
the Al precursor (20 nm)/Al,O; (30 nm) processed at 60 °C.'%°
PSCs with the Al,O; multilayer showed great water resistance,
retaining 95% of the initial efficiency after 2 hours of being
immersed in DI water, as shown in Fig. 11d. Thin Al,O; layers
do not exhibit ideal water resistance at all. Water molecules
might penetrate the layers from the surface of the Al,O; up to
the perovskite layers very slowly by forming H bonds with
oxygens and migrating the species. They also proposed the
novel concept of retarding water penetration. Intermediates of
the Al precursor layer (O-Al-(CH;);_,), between the top and
bottom dense Al,O; layers, additionally react with water. The
intermediate layer can be converted into compact Al,O; layers,
which significantly decrease the overall water penetration rates
as well as eliminating invading water molecules.

3. Conclusions

In this review, we mainly focused on underlying CTLs as well as
overlying perovskite layers, surface passivation layers, and
encapsulating layers all deposited by ALD in PSCs. A reduction
of the thickness of CTLs can reduce the device serial resistance.
Processing such ultra-thin films, however, has been challenging,
and most thin film processing resulted in pinholes and cracks,
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leading to reduced charge carrier blocking ability and creating a
shunt leakage pathway. Furthermore, in the case of large area
substrates and/or substrates with a high-aspect ratio, the formation
of ultra-thin films with uniform thicknesses is even more
challenging. ALD can produce ideal CTLs with conformal and
dense film growth with precise sub-nanometer scale thickness
control. ETL processed by ALD has superiority when applied to
tandem or flexible devices requiring low-temperature processes,
conformal and pinhole-free films. ALD has also been widely
adopted as a passivation layer in many different solar cell fabrication
processes. Unlike passivation processed on the TCO electrodes or
TCO/metal oxide substrates before perovskite coating, it is more
challenging and limited than the passivation process atop of
perovskite or perovskite/CTLs in terms of compatibility without
having any damage underneath perovskite layers, prone to
degradation. However, when the passivation process over the
perovskite is performed successfully, the passivation layer can
not only reduce charge recombination at the interface but also
improve the stability by protecting the degradation reaction
with moisture and/or oxygen from the outside. ALD has been
proposed as a promising method to produce an excellent
protective layer when deposited onto the perovskite layer. Metal
oxide films grown via ALD, having great impermeability originating
from a dense, conformal, and pinhole-free nature with extremely
low water vapour transmission rate, can be a solution for the
commercialization in PSCs.

Further efficiency improvement can be expected in PSCs
based on ALD CTLs by developing other potential candidate
materials such as WO;, MoO3;, V,0s, CuO,, doping strategies
and interfacial engineering. Considering that many doping
chemistries using ALD have already been reported, it would
be an effective way to produce highly efficient CTLs. Until now,
applications of doped CTLs via ALD for PSCs have rarely been
reported. Furthermore, it is still unclear why perovskite layers
exhibit different electronic properties depending on CTLs and
their surface states. Since ALD can provide the same material
with different surface properties using various oxidizers under
similar growth conditions, it would be an ideal model system to
understand the interfacial property between CTLs and perovskites.

The newly developed ALD ETL overlying perovskite has
demonstrated huge potential for the stability improvement of
PSCs. However, all these works have been directed towards
inverted-type PSCs with MAPbI;. Thermally and chemically
more stable perovskites containing Cs, FA, Rb, and/or Br will
be able to explore the new possibility of the direct deposition of
ETLs onto the perovskite layer without PCBM, which can reduce
device serial resistance and complexity while preserving the
efficiency of PSCs. Moreover, considering the overall efficiencies
of regular-type PSCs, exhibiting higher PCEs compared to
inverted-type PSCs, the development of ALD HTL overlying
perovskite would be promising in terms of improving device
stability as well as efficiency. Encapsulations via ALD Al,O; for
PSCs have been reported in the limited number of research
papers to date. It is remarkable that negligible degradation in
PV performance with encapsulation has been observed. It is also
necessary to further reduce the WVTR of encapsulation layers for
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PSCs by benchmarking the excellent ALD encapsulation technology

(e.g ZrO,/Al,O, bi-layer,""° organic/inorganic multilayer

104)

already

developed in other fields. ALD techniques show great potential for
efficient and stable PSCs and in the future will become the most
viable ones in the fabrication of commercial PSCs.
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