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echanistic multivariate linear
regression models for reaction development

Celine B. Santiago, Jing-Yao Guo and Matthew S. Sigman *

Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived

physical organic molecular descriptors are described in this review. Several reports demonstrating the

effectiveness of this methodological approach towards reaction optimization and mechanistic

interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is

provided as a guide for model development and parameter analysis.
Introduction

The development of a new reaction methodology, especially in
asymmetric catalysis, can be a challenging and expensive task,
as it is generally attained through exhaustive reaction
screening.1 Traditional reaction optimization routes are oen
based on empiricisms with occasional systematic approaches
such as Design of Experiments (DoE)2 or High Throughput
Screening (HTS).1,3–6 Additionally, mechanistic analyses are
typically performed subsequent to completion of reaction
optimization where computational studies are supplemented
for further renement of chemical understanding.7

A reaction optimization strategy which simultaneously
interrogates reaction mechanism and identies better
performers during the early stages of reaction optimization is
an evolving approach towards meticulous design of new
eline Santiago received her B.
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catalysts.8–18 In particular, an optimization method by Sigman
and coworkers8 utilizes multivariate linear regression (MLR)
models that are acquired based on a mathematical relationship
of the experimental reaction outcome (e.g., selectivity (enantio-,
regio-, and chemo-), turnover number and turnover frequency
(TOF),19,20 reaction rate,21 and yield22) as a function of both
experimentally-derived and calculated physical organic molec-
ular descriptors. Substandard results with low yield/low enan-
tioselectivity, commonly omitted without further consideration
in the conventional empiricism-driven optimization route,23 are
utilized in this MLR approach to generate a diverse and wide-
ranging data set for statistical analysis.24

In order to attain statistical models, it is a prerequisite to
have structural modularity of the molecules of interest and
consequently, large parameter libraries will need to be built.
Recent advances in computational methods and resources
encouraged the application of accurate molecular simulation
utilizing density functional theory (DFT) to generate descriptors
for molecular-feature-based MLR model applications. A notable
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advantage of this MLR approach over Quantitative Structure
Activity Relationship (QSAR)25–27 is the selection and employ-
ment of physically meaningful molecular descriptors instead of
topological descriptors.28 Therefore, useful mechanistic infor-
mation can be gathered from well-validated mathematical
models. In comparison with transition state analysis, the MLR
approach has a substantially lower computational requirement
since it utilizes ground state structures as the parameter source
and an initial mechanistic hypothesis is unnecessary. Moreover,
this computational advantage of the MLR approach provides
means for virtual screening, where reaction outcomes can be
predicted a priori.29,30 Application of these modern statistical
analysis tools in asymmetric catalysis can accelerate reaction
optimization and provide a platform for de novo catalyst design
through predictive modelling.

The aim of this minireview is to demonstrate the capabilities
of a predictive and mechanistically informative MLR modelling
approach via utilization of suitable physical organic molecular
descriptors. Additionally, a detailed protocol is provided
describing the step-by-step process from parameter acquisition
and selection, to multivariate linear regression.

Molecular descriptors

Since the seminal work of Hammett in the 1930s, Linear Free
Energy Relationships (LFERs) have been widely used by the
organic chemistry community to relate structure to function
with the purpose of gaining mechanistic information and pre-
dicting reaction outcomes.31–35 Recognizing the inherent ambi-
guity in qualitative evaluation of reactivity patterns based only
on chemical structure, Hammett developed a quantitative
molecular descriptor, s, to describe aryl substituent electronic
effects. The broad applicability of the Hammett parameter and
the LFER method triggered the development of various molec-
ular descriptors.26,36,37 In this section, physically meaningful
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This journal is © The Royal Society of Chemistry 2018
molecular descriptors that have been applied in multivariate
linear regression analysis are discussed.
Steric parameters

Steric effects play a key role in asymmetric induction since the
spatial orientation of every reactive species during the stereo-
determining step must be precisely controlled. This prompted
the generation of parameters to quantitatively describe steric
effects. Various steric parameters that have been previously
introduced in the literature include the Ta parameter,36

Charton parameter,38 Sterimol values,39 Tolman cone angle,40

buried volumes,41 torsion angles, bond lengths, and bite
angles.42,43

Ta, Charton, and Sterimol values. In the 1950s, Ta36

demonstrated that steric effects can be separated from elec-
tronic effects in the acid-catalysed hydrolysis of alkyl esters 1
delivering one of the rst recognized steric parameters. The Ta
steric parameter (Es) is calculated from the logarithmic value of
the reaction rate of the substituted versus the unsubstituted
methyl ester (Fig. 1A). The substituent-induced resonance and
inductive effects are diminished since the charge formed during
the rate-determining step is preserved.

A decade later aer the introduction of Es, Charton proposed
an improved variation of the Ta steric parameter, which
further eliminates the electronic inuence by correlating the
experimentally measured reaction rates from the acid-catalysed
hydrolysis with the calculated van der Waals radii (Fig. 1B).38

This experimentally veried parameter is called the Charton
value (y). Considering the multifaceted nature of steric effects,
Verloop presented amore sophisticated set of steric parameters,
the Sterimol values, which provides various dimensional
measurements as subparameters instead of a single, cumulative
value that represents the entire spatial information.39 The most
representative Sterimol parameters include the distance along
the bond axis L, the minimum radius perpendicular to the bond
axis B1, and the maximum radius B5 (Fig. 1C).

These physical organic steric parameters were initially
developed for QSAR analysis in evaluation of biological activity,
but were recently shown as valuable tools in asymmetric catal-
ysis. A study by Harper et al. has compared the Charton and
Sterimol steric parameters in an effort to quantitatively dene
Fig. 1 (A) Taft, (B) Charton, and (C) Sterimol steric parameters.

Chem. Sci., 2018, 9, 2398–2412 | 2399
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the inuence of the substituent steric effects on the enantio-
selectivity in the desymmetrization of bisphenol 3 using
a peptide catalyst 5 as previously reported by Miller (Fig. 2A).44,45

The Charton value of the substituent was found to be inade-
quate in describing the steric inuence from unsymmetrical
substituents on the measured enantioselectivity (Fig. 2B). This
break in linearity in the Charton LFER model exposed a poten-
tial deciency of Charton values caused by its simplied treat-
ment of substituents, which are considered as freely rotating
groups and thus are described as spheres. In contrast, the
dimensionality feature of the Sterimol values allows for a more
detailed description of the substituent shape. Through
Fig. 2 (A) Desymmetrization of bisphenol. (B) Charton–LFER model.
(C) Sterimol–LFER model. (D) Nozaki–Hiyama–Kishi propargylation of
acetophenone.

2400 | Chem. Sci., 2018, 9, 2398–2412
multivariate analysis, a superior model was generated relating
the observed enantioselectivity (DDG‡) to the R substituent
Sterimol B1 and L values (Fig. 2C). A similar approach was
presented in the analysis of enantioselective Nozaki–Hiyama–
Kishi propargylation of methyl ketone 6, where a multivariate
linear regression analysis using a combination of Sterimol
values derived from the quinoline-proline ligand 9 was able to
depict the enantioselectivity (Fig. 2D).

Subsequently, the Song laboratory investigated how the
amino group of the chiral phosphoramide catalyst 13 affects the
measured enantioselectivity in the asymmetric addition of
diethylzinc 11 with benzaldehyde 10 (Fig. 3A).46 The Charton
value y of the amino substituent can account for only the
enantioselectivity induced by mono-N-substituted catalysts,
while the di-N-substituted chiral phosphoramide catalysts have
to be excluded from the Charton-LFER model (Fig. 3B). This
inability of the Charton parameter to describe the heterogeneity
in the amino substituents further illustrates its limitations. In
comparison, with the utilization of the individual Sterimol B1
values of the R1 and R2 N-substituents as parameters, both the
mono-N-substituted and di-N-substituted chiral phosphor-
amide catalysts were successfully incorporated in one compre-
hensive model. Additionally, Sterimol MLR models were
utilized to depict the enantioselectivity invoked by chiral 1,2-
amino-phosphinamide ligands in a Henry reaction47 and chiral
1,2-amino-phosphoramide ligands in the asymmetric addition
of diethylzinc to acetophenone.48

Tolman cone angle and percent buried volume. Tolman
introduced the cone angle as a steric metric for phosphine
ligands based on space-lling models.40 The Tolman cone angle
(q) is the measured apex angle across the phosphorus atom by
projecting an arbitrary cylindrical cone from the metal atom
positioned at the vertex towards the edge atoms of the phos-
phinyl substituent positioned at the perimeter (Fig. 4A). The
metal to phosphorus distance is usually set to a standard value
of 2.28 Å, in agreement with the Ni–P bond length in
[Ni(CO)3(L)] complexes. However, the Tolman cone angle is
Fig. 3 (A) Asymmetric addition of diethylzinc with benzaldehyde. (B)
Charton-LFER model of mono- and di-N-substituted phosphoramide
catalysts.

This journal is © The Royal Society of Chemistry 2018
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Fig. 4 (A) Tolman cone angle. (B) Percent buried volume. (C) Nickel-
catalysed Suzuki cross-coupling. (D) Rhodium-catalysed C–H
activation.

Table 1 Torsion angle analysis of benzynes

Aryne Optimized structure
Angle
difference Regioselectivity

17� C1 addition exclusive

16� C1 addition exclusive

12� C1 favored >20 : 1

10� C1 favored >13 : 1

4� C1 favored >9 : 1
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oen unable to describe modern unsymmetrical and more
structurally complex ligands, such as the Buchwald-type biar-
ylphosphines, bidentate ligands, and N-heterocyclic carbenes.49

Inspired by the Tolman cone angle, Nolan and Cavallo reported
the percent buried volume (%Vbur) as a steric parameter to
better represent the steric bulk of N-heterocyclic carbenes.41,49,50

The percent buried volume is dened as the percent of the
volume that the ligand occupies in an abstract sphere with the
metal atom positioned at the centre (Fig. 4B). Cavallo and
coworkers developed a program called SambVca to calculate
%Vbur from X-ray crystal structures and calculated geometry-
optimized structures.51,52

A recent report by Wu and Doyle examined the inuence of
phosphine ligands on the yield of a nickel-catalysed Suzuki C-
sp3 coupling of acetals 14 with boronic acids to generate
benzylic ethers 15 (Fig. 4C).22 The Tolman cone angle and the
percent buried volume of a variety of phosphine ligands
(including Buchwald-type ligands) were compared in order to
delineate the differences between the two steric parameters.
Aer performing a MLR modelling approach, the remote steric
hindrance as depicted by the high q and low %Vbur of high-
yielding phosphine ligands was identied as a critical factor
to improve the reaction yield.

Since the Tolman cone angle is specically designed to
describe phosphines, extending the application of this steric
readout to other ligand types would be relevant to further
understanding of organometallic reactions. As a demonstra-
tion, Paton, Rovis, and coworkers employed cone angle and
Sterimol analysis to rationalize how cyclopentadienyl (Cpx)
ligands structurally affect the regioselectivity and diaster-
eoselectivity in rhodium-catalysed C–H functionalization reac-
tions (Fig. 4D).53

Torsion and bond angles. The angles are notable steric
parameters owing to the simple fact that atoms proximal in
space tend to repel each other. The bulkier N-heterocyclic car-
bene ligands results in wider angles due to the increased steric
repulsion towards the alkylidene group in ruthenium-NHC
complexes as reported by Jensen and coworkers.54 Picazo,
Houk, and Garg identied that the alkyne terminus with the
larger internal angle in DFT-optimized structures will have
This journal is © The Royal Society of Chemistry 2018
a higher propensity towards nucleophilic attack (Table 1).55

Consequently, the degree of distortion can be used to estimate
the regioselectivity of the nucleophilic addition of arynes.
Electronic parameters

While asymmetric induction has been traditionally attributed to
the steric inuence of the chiral catalyst, remote variations
altering the electronic properties of the catalyst can result in
signicant changes in enantioselectivity as well. With careful
evaluation of ligand structure to activity, electronic manipulation
of ligands can be an advantageous tool for design of asymmetric
catalysts. In this section, various electronic parameters and their
applications in LFERs will be discussed. It is noteworthy that,
instead of representing purely electron density, most of these
parameters incorporate structural information as well.

Hammett parameter. As discussed in an earlier section, the
Hammett parameter (s) is a quantitative measure of electronic
effects for various para- and meta-substituents on the benzene
ring.31–33,35 The work of Hammett is a pioneering example of
LFERs, wherein the pKa values of benzoic acid derivatives 24
were related to equilibrium constants (Fig. 5A) and reaction
rates of various arene systems. The reaction constant, r, relates
the log of equilibrium constants to the Hammett value, allowing
comparison of substituent sensitivity to the standard set by the
ionization of benzoic acid.

In a seminal report, Jacobsen and coworkers demonstrated
that the manganese-salen catalyst 26 was highly sensitive to the
remote electronic inuence of the para-substituents in the
enantioselective alkene epoxidation (Fig. 5B).56 Depicted by
Chem. Sci., 2018, 9, 2398–2412 | 2401
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Fig. 5 (A) Hammett parameter. (B) Enantioselective alkene epoxida-
tion reactions. (C) LFER model for epoxidation of 2,2-dimethylchro-
mene 27. (D) LFER model for epoxidation of cis-b-methylstyrene 29.

Fig. 6 (A) Sterimol MLR model for desymmetrization of bisphenol. (B)
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a correlation between the logarithmic values of the enantio-
meric products and s, a pronounced trend was revealed where
manganese-salen catalyst 26 with electron-donating para-
substituents resulted in higher enantioselectivities in the
epoxidation reaction of 2,2-dimethylchromene 27 (Fig. 5C) and
cis-b-methylstyrene 29 (Fig. 5D). The aryl substituent presum-
ably affects the reactivity of the Mn-oxo intermediates, wherein
an electron-donating group generates amilder oxidant resulting
in a comparatively late transition state and thus, higher
enantioselectivity.57

Infrared (IR) frequencies and intensities. Jones and
coworkers demonstrated in 1957 that the IR carbonyl stretching
frequency of acetophenone derivatives, with various substitu-
tions at the para position of the phenyl ring, correlates well with
the Hammett parameter.58,59 Furthermore, the classic Tolman
electronic parameter (TEP) is determined from the A1-symmet-
rical CO stretching frequency of [Ni(CO)3(L)] complexes. It is
2402 | Chem. Sci., 2018, 9, 2398–2412
used to quantitatively dene the electron-donating or with-
drawing ability of phosphine ligands.40

Principally, IR frequencies and intensities are considered to
be stereoelectronic in nature as the molecular vibrational
modes are directional changes dependent on mass and charge
of the atoms in the molecule.60 Sigman and coworkers have
extensively exploited the nature of IR frequencies and intensi-
ties in various case studies.19,61–66 As an example, the desym-
metrization of bisphenol 3 was studied (Fig. 2A), wherein the
Sterimol-MLR model failed to describe the enantioselectivity.
Specically, sterically bulky and electronically disparate
bisphenol R substituents (CCl3, 4-tBuPh, and F5Ph) were shown
to fail in the correlations (Fig. 6A).61 Through the employment
of infrared-derived parameters from the bisphenol ring vibra-
tions, steric and electronic effects were simultaneously depicted
leading to improved validations (Fig. 6B).

Atomic charges. Assigning charges to atoms has been
a signicant tool to understand reactivity in chemical reactions
as well as electronic properties pertaining to dipole moments
and nuclear magnetic resonance (NMR) chemical shis.67 Since
the designation of atomic charges involves the arbitrary parti-
tioning of electron density distribution among the atoms in
a molecule, it is hardly a proper quantum chemical property,
and empirical validation is imperative to support this simulated
feature. In a compelling investigation by Seybold and
coworkers, the Löwdin (QL(COOH), Fig. 7A) and natural pop-
ulation analysis (NPA) atomic charges (QN(COOH), Fig. 7B)
calculated from both the carboxylic acid group of various
IR stretching frequency MLR model for desymmetrization of
bisphenol.

This journal is © The Royal Society of Chemistry 2018
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Fig. 7 (A) Correlation of benzoic acid pKa with benzoic acid group
Löwdin partial charge QL(COOH). (B) Correlation of benzoic acid pKa
with benzoic acid group natural population analysis (NPA) partial
charge QN(COOH).

Fig. 8 (A) Dehydrogenative Heck arylation of indoles with cis-alke-
nols. (B) Predictive model of enantioselectivity based on NBON,ox. (C)
Predictive model represented in %ee.
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benzoic acids correlated well with the pKa values.67,68 This
relationship was aerwards extended further to a larger-sized
panel of benzoic acids by Santiago et al.63 Additionally, White
and coworkers demonstrated that MLR models of NPA charges
and Winstein-Holness A-values69 were able to help predict the
regioselectivity in C–H oxidation of (�)-triacetoxy calisiolide B.70

In a recent report by Zhang et al., the natural bond orbital
charge of the oxazoline nitrogen (NBON,ox) in the pyridine-
oxazoline (PyrOx) ligand was found to have a signicant corre-
lation with the enantioselectivity in a palladium-catalysed
dehydrogenative Heck arylation reaction between indoles 31
and cis-alkenols 32 (Fig. 8A).71 Remote electronic effect was
surveyed through varying the substitutions on the pyridine ring
that modulates the NBON,ox. Virtual screening was carried out
based on this nding to reveal a set of superior ligands (Fig. 8B),
which were within reasonable %error in terms of %ee (Fig. 8C).

NMR chemical shis, coupling constants, and shielding
tensors. NMR spectroscopy is one of the most reliable charac-
terization tools to determine molecular structure.72 NMR-based
parameters such as chemical shis (d), coupling constants (J),
and shielding tensors (sxx, syy, szz) can be obtained experi-
mentally or computationally as potential molecular descriptors.
As such, d values relies on the molecule's orientation with
respect to the external magnetic eld, and varies depending on
the steric and electronic environment surrounding the nucleus
imparting knowledge of molecular functionality.73 In a report by
Baran and coworkers, 13C NMR d values were used to evaluate
the preference for electrophilic oxidation of the tertiary C–H
bonds and thus, predict the regiochemical outcome of the
This journal is © The Royal Society of Chemistry 2018
reaction.74 As there is an abundance of C–H bonds, predicting
the regioselectivity in late stage C–H functionalization
processes based only on chemical intuition is a difficult task,
which highlights the benet of quantitative prediction using
NMR-derived parameters. In addition, NMR spin–spin coupling
constants (J) embody information regarding bond distances,
bond angles, and molecular connectivity.

Based on the chemical shi anisotropy (CSA), the isotropic
chemical shi (diso) is a rank-2 tensor which is dened as the
average of the principal components of the chemical shi
tensor (dxx, dyy, and dzz).75,76 The directional information made
accessible by the shielding tensor makes it a potentially more
sophisticated molecular descriptor than the isotropic chemical
shi. In 2008, Autschbach applied two-component (spin–orbit)
relativistic density functional theory analysis method estab-
lished on relativistic natural localized molecular orbitals
(NLMOs) and natural bond orbitals (NBOs) to d and shielding
tensors.77–79 The extended application of this method, referred
to as natural chemical shi (NCS) analysis, can indicate specic
orbitals that have the highest impact on d.80–82 Raynaud,
Copéret, Eisenstein, and coworkers effectively utilized the NCS
method via an orbital analysis of chemical shi tensors to
identify precise ngerprints that distinguish between Fischer
Chem. Sci., 2018, 9, 2398–2412 | 2403
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Fig. 10 Predictive model for decomposition of pyridinium anolyte in
relation to redox potential E1/2 and steric parameter Hst.

Chemical Science Minireview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
 2

01
8.

 D
ow

nl
oa

de
d 

on
 0

7.
11

.2
02

5 
02

:0
4:

59
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and Schrock carbenes.83 In a collaborative effort by Copéret,
Sigman, and Togni groups on the study of ethenolysis of cis-
cyclooctene 36 catalysed by a library of homologous [Ru–NHC]
complexes 40 (Fig. 9A), the shielding tensor syy component of
the computed 77Selenium NMR chemical shi in [Se–NHC]
complexes 41, adducts of [Ru–NHC] complexes, was found to be
correlative with the selectivity for ethenolysis (Fig. 9B).84

Through NCS analysis, it was identied that the syy chemical
shielding tensor is a probe of the p-backbonding ability of the
NHC ligand.

Redox potential. The ability of a particular chemical species
to gain or lose electrons can have direct impact on reactivity.
The half-wave potential (E1/2) is dened as the propensity of
a chemical species to be reduced, and this electrochemical
measurement can easily be obtained from voltammetry experi-
ments.53,62 Minteer, Sigman, Sanford, and coworkers generated
a predictive multivariate model to assess the stability of pyr-
idinium anolytes 42 for redox ow battery storage applications
(Fig. 10).21 The decomposition barrier (DG‡) was evaluated as
a function of the half-wave potential (E1/2) and the steric
parameter, substituent height out of the pyridine ring plane
(Hst), as predictor variables (Fig. 10B). The obtained MLR model
guided the design of a highly persistent N-xylyl-substituted
pyridinium 43 as organic anolyte material. The high persis-
tence of the identied pyridinium presumably results from the
protection of the pyridine C2 and C6 positions by the xylyl
Fig. 9 (A) Ruthenium-catalysed olefin ethenolysis and ring opening
metathesis polymerization (ROMP) of cis-cyclooctene. (B) Ethenolysis
selectivity model of NMR principal component tensor syy and percent
buried volume %Vbur.

2404 | Chem. Sci., 2018, 9, 2398–2412
substituent, which decelerates the undesired homo-coupling of
the two pyridine radicals.

Non-covalent interaction (NCI) parameters. The interplay of
distinct non-covalent interactions (NCI) between reaction partic-
ipants orchestrates the selectivity attained in various catalytic
processes.85–87 However, quantitative empirical descriptors for
these NCIs are lacking due to the relatively small energy window
(0–2 kcal mol�1) and the dynamic nature of this type of interac-
tion.86 Thus, NCI parameters that are computationally-derived
provide an attractive alternative. Taking an inspiration from the
earlier work of Wheeler and Houk88 where relative p-stacking
interaction energies (Eint) between two interacting aromatic
moieties were found to be correlative to Hammett sm parameter,
new weighted NCI parameters were developed by Orlandi et al.,89

represented as Epw and Dpw (Fig. 11A). These new parameters
were dened as the Boltzmann averages of features frommultiple
potential conformers. Utilizing such descriptors in the multivar-
iate linear regression analysis of Birman's kinetic resolution89 of
benzylic alcohol 44 (Fig. 11B) and the palladium-catalysed 1,1-
diarylation90 of benzyl acrylate 48 (Fig. 11C) suggested that the
specic p-interactions are relevant in invoking enantioselectivity.
Multivariate model development workow

The general protocol to generate multidimensional descriptive
models is shown in Fig. 12. In this process, themajor components
involved are (1) the identication and acquisition of relevant
parameters; (2) the design of an initial set of data for model
construction (i.e., the training set); (3) intercorrelation assess-
ment; (4) preliminary model development involving identication
of univariate trends and execution of multivariate linear regres-
sion; and (5) validation of multivariate models through cross- and
external validation methods. Successful development of accurate,
informative models should allow virtual screening to accelerate
reaction optimization and predictor variable analysis to obtain
mechanistic insights. In this section, a detailed guideline of each
step for model construction and evaluation is provided.
Parameter identication and acquisition

As discussed in the former section, a set of descriptive features
needs to be selected and acquired, preferably from simulated
This journal is © The Royal Society of Chemistry 2018
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Fig. 11 (A) Epw andDpw parameters. (B) Birman's kinetic resolution (C)
palladium-catalysed 1,1-diarylation.

Fig. 12 General scheme of model development.
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structures with a well-balanced computational requirement and
accuracy.91 Existing mechanistic knowledge of the reaction can
guide parameter selection.

Training set design

For the construction of generalizable, unbiasedmodels,92–94which
are aimed atmaking accurate predictions for a range ofmolecules
with considerable variations, instead of explaining only the data at
This journal is © The Royal Society of Chemistry 2018
hand, it is common to divide the acquired experimental data into
two sets: a training set, which is used for model construction, and
an external validation set, which is necessary for verication of the
generated models.95–97 This arrangement allows for an efficient
evaluation of model generalizability.

However, for the development of catalytic systems, in most
cases, the number of observationsmay be quite limited (less than
a hundred) by a statistical standard. Consequently, themodelling
outcome can be highly dependent on the selected set for model
training. Thus, the training set should be designed carefully to
represent the entire poll of choices for the system under study.
The selection of structurally diverse and well-distributed samples
that encompass a wide range of reaction outcomes is a key
element in training set design, which is crucial for the resulting
models to be generalizable towards structural variations and
relative accuracy in extrapolation.98 Countering the intuition of
looking for the best possible results, the entries with low
performance are equally important in this operation.11

Training set design requirements can be met in multiple
ways. The rst option is to base the selection on the knowledge
of chemical structure, which though not quantitative, would be
intuitive for a trained chemist, and is generally effective for
modular structures.99 The second method is to perform a D-
optimal design100 on a set of relevant parameters,101,102 which
aims for maximum coverage of the sample space, as briey
demonstrated by Bess et al. in their analysis of the enantiose-
lective NHK propargylation of alkyl ketones, where the training
set was designed based on the evaluation of the presumed most
important steric and electronic parameters.103 This method
requires the front-end construction of a large virtual library, the
corresponding comprehensive parameter set, and an initial
guess of the relevant, inuential parameters based on chemical
knowledge and mechanistic speculation. This option is espe-
cially suited for model-guided screening where the collection of
experimental results arise from the training set design, similar
to the Design of Experiments (DoE) process.104 The third option,
Chem. Sci., 2018, 9, 2398–2412 | 2405
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in contrast, is suited when modelling is performed at a late
stage of screening, which involves selecting the data that
provide a large span of well-distributed response values from
a completed and relatively extensive preliminary screen.11
Parameter analysis and processing

Proper parameter renement can help simplify and improve the
model interpretation.105 A preliminary necessary operation is
parameter normalization, which is conventionally performed
using eqn (1), where the mean is subtracted from the sample
and then the resulting value is divided by the standard devia-
tion.106 This procedure allows all parameters to possess the
same scale and deviation, so that the coefficients inmultivariate
linear regressionmodels are reective of the variance accounted
for by each parameter.

Pnorm ¼ P� mP

sP

(1)

A parameter intercorrelation analysis through visualization
of correlation matrices is highly desirable for several reasons.
First of all, as the physical meaning of some parameters (e.g.,
structural features) is unclear, it is benecial to benchmark
them against well-dened, experimentally-derived descriptors.
Secondly, multicollinearity, where parameters have signicant
intercorrelations with each other, should preferably be avoided
in multivariate correlations.107–109 When highly intercorrelated
parameters coexist in the same model, the effective variance
becomes associated with the difference between parameters.
This causes the random noise in descriptor values to be
amplied. Furthermore, the coefficient values can be erro-
neous, which damages the reliability of the model. As a result, it
is vital to perform an intercorrelation analysis which helps
avoid such collinear parameter selection. In a recent report by
Guo et al., a correlation map, an initial step in principal
component analysis (PCA),110 was effectively utilized as a visu-
alization tool to identify intercorrelations between
parameters.99

If the study is entirely extrapolation-oriented, and the
parameter set is considerable in size, a PCA is highly recom-
mended.110–113 Such process analyzes the variation of the original
parameter set, which then creates a new set of orthogonal
parameters that can typically account for the vast majority of the
variance with a considerably smaller number of parameters. This
analysis is extensively applied to reduce dimensionality, which
signicantly improves the modelling efficiency as well as dimin-
ishes the concern for collinearity. However, it is not recom-
mended if a mechanistically informative model is desired, as the
reconstructed orthogonal parameters have less obvious meaning,
and the resulting models can be difficult to interpret.

Notably, with the data being divided into training and vali-
dation sets, the standard for parameter processing (e.g., means,
standard deviations, and principal component directions)
should all be established by the training set, with the validation
set being processed accordingly, so that the external validation
data does not directly impact the model composition.
2406 | Chem. Sci., 2018, 9, 2398–2412
Subset design and univariate correlations

It is necessary to identify impactful features at an early stage of
data analysis, which can be achieved through univariate corre-
lation analysis on data subsets, where ideally, structures
bearing signicant similarities with each other provide
a singular characteristic to be interrogated.99,114 The most rele-
vant features identied through single-parameter analysis are
not always directly applicable in the construction of multivar-
iate models. However, apart from demonstrating the general
trends, when combined with the intercorrelation analysis,
univariate models can aid in interpreting the occasionally
complicated comprehensive models.
Preliminary multivariate model construction

This section is dedicated to the construction of a linear
regression model on the basis of a free energy relationship
analysis. Other statistical methods that are also effective for
quantitative analysis yet less applied in the analysis of catalytic
systems, such as random forest115,116 and articial neural
network,117–119 are not discussed in this review.

Least-squares linear regression by forward feature selec-
tion120,121 is a common method for model construction. Starting
from either a constant term, or an initial guess of the model
containing the presumed relevant parameters, this method
evaluates the change in statistics caused by addition/removal of
each parameter, and incorporates the most consequential term
at each step, until no signicant improvement can be found.
Backward feature elimination has also been applied in several
cases,11,61 where all parameters will be incorporated in the
model at the beginning, and the algorithm reduces the variables
by removing the insignicant terms.

The employment of weighted least squares, where the entries
are not all treated equally but are instead weighted based on
certain criteria, can also be desirable. For example, in extrapo-
lative modelling of a system aimed at a highly enantioselective
as well as high yielding process, where the accuracy is empha-
sized in the overall high-performance region, a yield/TOF-based
weighting can be applied to the enantioselectivity model, so
that the low-yielding reactions are considered less important.
Another application of weighted least squares is that, in cases
where the system is suspected to be plagued by a few outliers,
the iteratively reweighted least squares (IRLS),122 where each
entry is weighted based on its residual error, can be very useful
in eliminating the inuence of the outliers.

To avoid overtting,123 where the model tries to explain all
the random noise in the training set and makes it specic
towards the training set with poor generalizability, the number
of descriptors should be limited (empirically less than 1/3 of the
number of entries).124 Furthermore, the following methods can
be employed to validate the model.
Model evaluation and optimization

Cross-validation and external validation are the most common
methods for model verication. Both can be employed to test
for the generalizability of the model. Cross-validation is
This journal is © The Royal Society of Chemistry 2018
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performed internally on the training set, where part of the data
is excluded and predicted based on a model with the same
parameter combination reconstructed from the remaining set
of data.95,96,125,126 The prediction accuracy can then indicate the
stability and generalizability of the models. Leave-one-out cross-
validation, where each point in the training set is removed and
tested individually, is the only type which would provide
a constant result, depicted as Q2, which is used as a common
statistical measure.127 For other cross-validation options, it is
common to average the results from multiple runs.

External validation, in contrast, deploys an additional set of
data separated from the training set, whose empirical results
are known before model development. The validation data set is
oen considered to be in between the training set, which is used
for model construction, and test set, for which the prediction
comes before the experimental results. It allows for a conve-
nient evaluation of both the generalizability of the model, and
the design of the training set.97 Ideally, provided an aptly
orchestrated training set, it is adequate to adopt the rest of the
existing data as external validations, despite the ratio of the two
sets of data. Otherwise, with a rather random training/
validation partition, the results could resemble a cross-
validation within the entire dataset.

As a side note, multiple techniques have been developed to
modify and improve the prediction accuracy of least squares
regression models. For instance, LASSO regression, the
restricted least squares method where coefficients for some
parameters are reduced or set to zero, is used to decrease the
prediction variance with slight sacrice of model bias.
Furthermore, the interpretability of models may also improve as
a result of parameter elimination128

It is important to note that the standard for model evaluation
would change based on the primary goal of the study. For purely
extrapolative modelling, accuracy and generalizability are
imperative, while complexity and obscurity of the models are
not considered vital aws. Conversely, for mechanistically
informative modelling, high statistical measures sometimes
have to give way to simplicity and interpretability, in which case
reasonably reliable models composed of a small number of
parameters with clear physical meaning can be more preferable
over complicated models comprised with a large number of
parameters including exponential and cross terms, albeit better
performance of the latter.129,130 Additionally, for
mechanistically-driven studies, the parameters should not be
strongly interdependent, even with acceptable levels of noise
amplication. The reason being that in such cases, the conse-
quential features involved would be the differences between the
parameters instead of the features described by any of them,
leaving the models difficult to interpret.
Fig. 13 Fluorination of allylic alcohols.
Model failures and solutions

It is not an uncommon scenario where no satisfactory model
can be found. Listed here are some typical causes for model
failure and possible solutions.

Change of reaction mechanism. It is difficult to build
a comprehensive model for a system if there are multiple
This journal is © The Royal Society of Chemistry 2018
pathways leading to the products being analyzed. In this case,
nding the features that describe the origin of mechanism
change and dividing the data into subsets accordingly could
provide access to a comprehensive model.90,131 As an example,
Neel et al. reported an enantioselective uorination reaction of
allylic alcohol 50, in which the Hammett correlation revealed an
apparent change of mechanism as a function of the substitution
pattern of boronic acid (Fig. 13).131 As a result, the system was
divided accordingly, and modeled as two individual sets of
data.131

Presence of outliers. If the majority of the dataset can be
accurately described by an interpretable model, with a few
exceptions (which can be recognized by performing a t-test on
the residual errors), it would be reasonable to suspect an outlier
scenario where the inability of the model in describing certain
entries has chemistry-related causes. The common sources of
outliers include occurrence of side reactions, decomposition of
unstable structures, change of mechanism caused by distinct
structural features,132 and problematic conformation of the
parameter sources (e.g., not the lowest in energy, or multiple
low-energy conformations instead of one need to be accounted
for). If the structures and/or features of the supposed outliers
support the speculation, it would be proper to rene the
parameters or remove the outliers.

Unrepresentative training set. Poorly designed training sets
which are limited in diversity, range, being clustered, or con-
taining outliers, can be ineffective in model construction. In
this case, it is rational to redene the training set.98 A scope
extension is recommended if the diversity and/or range of the
entire dataset is a concern.

Insufficient parameter space. If all former attempts fail, it is
highly probable that the key molecular features affecting the
process is not included in the parameter set, and new descrip-
tors need to be explored to effectively describe the system under
study. Tropsha and coworkers have developed a scoring system
(MODelability Index, MODI) to evaluate the modelability of data
sets.133 The system evaluates the extent to which similar struc-
tures afford comparable empirical outcomes, with ‘similarity’
determined through nearest neighbor analysis of descriptors.
Chem. Sci., 2018, 9, 2398–2412 | 2407
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Fig. 14 (A) Thiourea-catalysed asymmetric conjugate addition. (B)
MLRmodel of enantioselectivity. (C) MLRmodel of diastereoselectivity.
(D) Evaluation of optimal catalysts.
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This algorithm reveals the ability of the current parameter set to
address the effective diversity of the system under study.

Model applications

To demonstrate the application of this modelling approach, two
case studies will be discussed. In the rst study, the MLR model
was developed to identify a better performing catalyst while in
the second example, the model was constructed to interrogate
the mechanism and distinguish the underlying NCIs involved
in the reaction.

Virtual screening

Virtual screening is the classical application of reliable quan-
titative models.30 From an experimental standpoint, the prac-
ticality of synthesis and commercial availability of starting
materials must be taken into consideration when designing the
virtual screening deck. Notably, the structures to be evaluated
should be within the generalizable region of the models where
the molecular structures bear similarity with certain entries in
the training set, as critical changes unaccounted for in the
training set could lead to prediction failure. Remarkably, it has
been observed that averaging the predictions from multiple
reliable models can help improve the accuracy of estimations.13

Structure–enantioselectivity relationship of thiourea cata-
lyst. The multidimensional modelling approach was utilized by
Li, Cheng, and coworkers to obtain predictive models that
portray the thiourea catalyst 52 effects on the enantioselectivity
as well as diastereoselectivity in the asymmetric conjugate
addition reaction between 2-phthalimidoacrylate 53 and 3-
substituted benzofuranone 54 (Fig. 14A).134 The resulting
optimal models for enantioselectivity (Fig. 14B) and diaster-
eoselectivity (Fig. 14C) indicated the need for small electron-
withdrawing groups as catalyst substituents to achieve high
enantioselectivity. Additionally, the utilization of the thiourea
nitrogen NBO charge and IR N–H stretching frequency
demonstrates the signicance of the H-bond activation with the
substrate. Aer further optimization of reaction conditions, two
catalysts (3,5-triuoromethylbenzyl 56 and methyl 57), which
were predicted according to the structure-selectivity model were
evaluated experimentally with various 3-benzofuranones and
alkyl 2-phthalimidoacrylates, both leading to high enantiomeric
ratios (Fig. 14D). Further evaluation of the performance of
bifunctional tertiary-amine hydrogen-bonding catalysts in
Michael reactions demonstrated the requirement of less bulky
N-substituents.135

Predictor variable analysis

Mechanistic interpretation of the relevant parameters used as
predictor variables in the models is a less common, yet highly
advantageous application of the molecular-feature-based
models. In addition to providing a mechanistic rationale for
the observed chemical phenomenon, such analysis can effi-
ciently guide virtual screening towards a more focused, smaller
library of simulated structures. However, it is noteworthy that
mechanistic interrogation based on predictor variable analysis
2408 | Chem. Sci., 2018, 9, 2398–2412
can only be successfully performed if there is already a prior
hypothesis for the reaction mechanism. Due to the unavoidable
interrelationship between parameters, multiple statistically
satisfactory models, where parameters can be substituted for
each other, can be attained. Typically, models that consist of
parameters with discernible physical meaning or correspond
with existing mechanistic information are selected for further
validation.
This journal is © The Royal Society of Chemistry 2018
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Mechanistic elucidation in enantiodivergent uorination of
allylic alcohols. The enantiodivergent uorination of allylic
alcohol 60 exhibiting a DDG‡ range of 3.5 kcal mol�1 was
demonstrated by Toste, Sigman, and coworkers to be a suit-
able reaction system for investigation of underlying NCIs
relevant in controlling the observed enantioselectivity
(Fig. 15A).89 Based on experimental results, it was proposed
that a condensation reaction between the allylic alcohol and
the boronic acid (BA) occurs to form a mixed boronic ester. In
the enantiodetermining step, it was hypothesized based on
the structures that an H-bond forms between the mixed
boronic ester and the chiral phosphate anion (PA). Addition-
ally, two key NCIs were hypothesized: (1) meta-substituted BAs
resulted in inverted enantioselectivity and (2) PAs containing
2,6-disubstitutions resulted in greater sensitivity towards the
BA substitutions. To probe the proposed NCI interactions, the
Epw and Dpw NCI parameters were calculated for each
substituent. The NCI parameter Dpw, describing the
geometric readout to establish the T-shaped C–H p interac-
tion, was found relevant in multivariate linear regression,
along with the Sterimol parameters B5,BA and LPA, dening the
steric inuence from the BA and the PA catalyst, respectively,
and the symmetric stretching intensity iPosy, demonstrating
Fig. 15 (A) Enantiodivergent fluorination of allylic alcohols. (B) Multi-
variate model of enantioselectivity. (C) Transition state analysis.

This journal is © The Royal Society of Chemistry 2018
the H-bonding and electrostatic interaction capability of each
PA catalyst (Fig. 15B).

A computational transition state (TS) analysis was performed
in order to clearly visualize the involved NCIs in the uorination
of allylic alcohols. As depicted in Fig. 15C, the T-shaped NCI
indicated by the multivariate model was obtained from the DFT
study of the transition state without intended pre-arrangement
of structure. Additionally, analogous to the parameters ob-
tained from the multivariate model, the BA meta-substituent
and the PA binaphthyl moiety are involved in a T-shaped p

interaction. Furthermore, the Dpw parameters obtained from
the ground state calculations are consistent with the computed
distances between the BA aryl ring and PA binaphthyl moiety
observed in the TS.
Conclusions

In summary, multivariate linear regression models utilizing
physical organic molecular descriptors were demonstrated to be
effective towards their application in virtual screening and
mechanistic interrogation. Compelling reports that executed
virtual screening led to acceleration of reaction optimization.
Mechanistic interpretation of the structural meaning of these
relevant parameters has contributed to the analysis of the
observed chemical phenomenon. We hope that the presented
detailed modern MLRmodel development protocol will serve as
a guide for utilization of this approach.
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1991, 113, 6704.

57 M. Palucki, N. S. Finney, P. J. Pospisil, M. L. Güler, T. Ishida
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