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Deep convolutional neural networks for Raman
spectrum recognition: a unified solution
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Machine learning methods have found many applications in Raman spectroscopy, especially for the

identification of chemical species. However, almost all of these methods require non-trivial preprocessing

such as baseline correction and/or PCA as an essential step. Here we describe our unified solution for the

identification of chemical species in which a convolutional neural network is trained to automatically

identify substances according to their Raman spectrum without the need for preprocessing. We evaluated

our approach using the RRUFF spectral database, comprising mineral sample data. Superior classification

performance is demonstrated compared with other frequently used machine learning algorithms includ-

ing the popular support vector machine method.

1. Introduction

Raman spectroscopy is a ubiquitous method for characteris-
ation of substances in a wide range of settings including
industrial process control, planetary exploration, homeland
security, life sciences, geological field expeditions and labora-
tory materials research. In all of these environments there is a
requirement to identify substances from their Raman spec-
trum at high rates and often in high volumes. Whilst machine
classification has been demonstrated to be an essential
approach to achieve real time identification, it still requires
preprocessing of the data. This is true regardless of whether
peak detection or multivariate methods, operating on whole
spectra, are used as input. A standard pipeline for a machine
classification system based on Raman spectroscopy includes
preprocessing in the following order: cosmic ray removal,
smoothing and baseline correction. Additionally, the dimen-
sionality of the data is often reduced using principal com-
ponents analysis (PCA) prior to the classification step. To the
best of our knowledge, there is no existing work describing
machine classification systems that can cope directly with raw

spectra such as those affected significantly by baseline
distortion.

In this work we focus on multivariate methods, and intro-
duce the application of convolutional neural networks (CNNs)
in the context of Raman spectroscopy. Unlike the current
Raman analysis pipelines, CNN combines preprocessing,
feature extraction and classification in a single architecture
which can be trained end-to-end with no manual tuning. We
show that CNN not only greatly simplifies the development of
a machine classification system for Raman spectroscopy, but
also achieves significantly higher accuracy. In particular, we
show that CNN trained on raw spectra significantly out-
performed other machine learning methods such as support
vector machine (SVM) with baseline corrected spectra. Our
method is extremely fast with a processing rate of one sample
per millisecond.‡

The baseline component of a Raman spectrum is caused
primarily by fluorescence, can be more intense than the actual
Raman scatter by several orders of magnitude, and adversely
affects the performance of machine learning systems. Despite
considerable effort in this area, baseline correction remains a
challenging problem, especially for a fully automatic system.1

A variety of methods for automatic baseline correction have
been used such as polynomial baseline modelling,1

simulation-based methods,2,3 penalized least squares.4,5

Lieber et al.1 proposed a modified least-squares polynomial
curve fitting for fluorescence subtraction which was shown to
be effective. Eilers et al.6 proposed a method called asymmetric
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least square smoothing. In this method one first smooths a
signal by a Whittaker smoother to get an initial baseline esti-
mation, and then applies asymmetric least square fitting
where positive deviations with respect to baseline estimate are
weighted (much) less than negative ones. This has been shown
to be a useful method, and in principle can be used for auto-
matic baseline correction, although it may occasionally require
human input. Kneen et al.2 proposed a method called rolling
ball. In this method one imagines a ball with tunable radius
rolling over/under the signal. The trace of its lowest/highest
point is regarded as an estimated baseline. A similar method
is rubber band3 where one simulates a rubber band to find the
convex hull of the signal which can then be used as a baseline
estimation. Zhang et al.4 presented a variant of penalized least
squares, called adaptive iteratively reweighted Penalized Least
Squares (airPLS) algorithm. It iteratively adapts weights control-
ling the residual between the estimated baseline and the
original signal. A detailed review and comparison of baseline
correction methods can be found in Schulze et al.7

Classification rates have been compared for various
machine learning algorithms using Raman data. The method
that is frequently reported to outperform other algorithms is
support vector machines (SVM).8 An SVM is trained by search-
ing for a hyperplane that optimally separates labelled training
data with maximal margin between the training samples and
the hyperplane. Binary (two class) and small scale problems in
Raman spectroscopy have been previously addressed using
this method. A large proportion of these related to applications
in the health sciences, use a non-linear SVM with a radial
basis function kernel, and an initial principal component ana-
lysis (PCA) data reduction step. In this context SVM was shown
to: outperform linear discriminant analysis (LDA) and partial
least squares discriminant analysis (PLS-LDA) in breast cancer
diagnosis,9 successfully sort unlabelled biological samples
into one of three classes (normal, hyperplastic polyps or
adeno-carcinomas)10 and discriminate between three species
of bacteria using a small number of training and test
examples.11 Although multiclass classification is possible
using SVM, in practice training a non-linear SVM is infeasible
for large scale problems involving thousands of classes.
Random forests (RF)12 represent a viable alternative to SVM for
high dimensional data with a large number of training
examples. RF is an ensemble learning method based on mul-
tiple decision trees that avoids overfitting the model to the
training set. This method generated a lot of attention in the
machine learning community in last decade prior the wide-
spread popularity of CNN. However when compared with
PCA-LDA and RBF SVM on Raman microspectroscopy data13 it
performed poorly. The method previously applied to spectral
classification problems that is closest to our own approach is
fully connected artificial neural networks (ANN). Unlike CNN,
ANN is a shallow network architecture which does not have
enough capacity to solve large scale problems. Maquel et al.14

determined the major groupings for their data prior to a multi-
layered ANN analysis. Their study concluded that vibrational
spectroscopic techniques are well suited to automatic classifi-

cation and can therefore be used by nonexperts and at low
cost.

A drawback associated with the methods previously used is
that they require feature engineering (or preprocessing) and
don’t necessarily scale easily to problems involving a large
number of classes. Motivated by the recent and widespread
success of CNNs in large scale image classification problems
we developed our network architecture for the classification of
1D spectral data. A suitable dataset to test the efficacy of the
CNN is the RRUFF mineral dataset. Previous work15,16 has
focused on identifying mineral species contained in this
dataset using nearest neighbour methods with different simi-
larity metrics such as cosine similarity and correlation (also
used in commercial softwares such as CrystalSleuth). Carey
et al.16 achieved a species classification accuracy on a subset of
the RRUFF database17 of 84.8% using a weighted neigbour
(WN) classifier. Square root squashing, maximum intensity
normalisation, and sigmoid transformations were applied to
the data prior to classification. Accuracy was determined using
cross validation with semi-randomised splits over a number of
trials. The WN classifier compared favourably with the k = 1
nearest neighbour (82.1% accuracy) on which the
CrystalSleuth matching software is believed to be based. In
Table 1 we summarise the sample data used in our own work
and in some previous Raman based spectral classification
studies.

2. Materials and methods

CNNs have become the predominant tool in a number of
research areas – especially in computer vision and text ana-
lysis. An extension of the artificial neural network concept,19

CNNs are nonlinear classifiers that can identify unseen
examples without the need for feature engineering. They are
computational models20 inspired by the complex arrangement
of cells in the mammalian visual cortex. These cells are stimu-
lated by small regions of the visual field, act as local filters,
and encode spatially localised regions of natural signals or
images.

CNNs are designed to extract features from an input signal
with different levels of abstraction. A typical CNN includes con-
volutional layers, which learn filter maps for different types of

Table 1 Summary of Raman datasets used in classification studies

Problems #Classes #Spectra Baseline removal

Sattlecker et al.9 2 1905 N/Aa

Kwiatkowski et al.18 10 N/A Yes
Carey et al.16 1215 3950 Yes
Ours #1 1671 5168 Yes
Ours #2 512 1676 No

aNote that in this work special filtering methods were developed to
discard spectra of bad quality which account for 80% of the total
amount.
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patterns in the input, and pooling operators which extract the
most prominent structures. The combination of convolutional
and pooling layers extracts features (or patterns) hierarchically.
Convolutional layers share weights which allow computations
to be saved and also make the classifier invariant to spatial
translation. The fully connected layers (that follow the convolu-
tional and pooling layers) and the softmax output layer can be
viewed as a classifier which operates on the features (of the
Raman spectra data), extracted using the convolutional and
pooling layers. Since all layers are trained together, CNNs
integrate feature extraction with classification. Features deter-
mined by network training are optimal in the sense of the per-
formance of the classifier. Such end-to-end trainable systems
offer a much better alternative to a pipeline in which each part
is trained independently or crafted manually.

In this work, we evaluated the application of a number of
prominent CNN architectures including LeNets,21 Inception22

and Residual Nets23 to Raman spectral data. All three showed
comparable classification results even though the latter two
have been considered superior to LeNet in computer vision
applications. We adopted a variant of LeNet, comprising
pyramid-shaped convolutional layers for feature extraction and
two fully-connected layers for classification. A graphical illus-
tration of the network is shown in Fig. 1.

2.1. CNN for Raman spectral data classification

The input to the CNN for Raman spectrum classification
is one dimensional and it contains the entire spectrum
(intensity fully sampled at regularly spaced wavenumbers).
Hence we trained one-dimensional convolutional kernels in
our CNN.

For our convolutional layers, we used LeakyReLU24 non-
linearity, defined as

f ðxÞ ¼ x; if x > 0
ax; otherwise

�
: ð1Þ

Formally, a convolutional layer can be expressed as follows:

y j ¼ f b j þ
X
i

k ij*xi
 !

;

where xi and yi are the i-th input map and the j-th output
map, respectively. kij is a convolutional kernel between the
maps i and j, * denotes convolution, and b j is the bias para-
meter of the j-th map.

The convolutional layer is followed by a max-pooling layer,
in which each neuron in the output map yi pools over an s × 1
non-overlapping region in the input map xi. Formally,

yij ¼ max
0�m,s

fxij�sþmg:

The upper layers of the CNN are fully connected and fol-
lowed by the softmax with the number of outputs equal to the
number of classes considered. We used tanh as non-linearity
in the fully connected layers. The softmax operates as a
squashing function that re-normalizes a K-dimensional input
vector z of real values to real values in the range [0,1] that sum
to 1, specifically,

σðzÞj ¼
ezjPK
k¼1 e

zk
for j ¼ 1; :::;K :

To avoid overfitting the model to the data, we applied batch
normalization25 after each layer and dropout26 after the first

Fig. 1 Diagram of the proposed CNN for spectrum recognition. It consists of a number of convolutional layers for feature extraction and two fully-
connected layers for classification.
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fully connected layer. Further details of the architecture are
shown in Fig. 1.

2.2. CNN training

Since the classes in our experiments have very different
numbers of examples, we used the following weighted loss to
train the CNN:

L w; xn; ynð Þ ¼ � 1
N

XN
n¼1

αn
XK
k¼1

tkn ln ykn ð2Þ

where xn is a training spectrum, tn is the true label of the nth

sample in the format of one-hot encoding, yn is the network

prediction for the nth sample, αn / 1
#C

and #C is the number

of samples in the class C that xn belongs to. N is the total
number of samples and K is the number of the classes.

CNN is a data hungry model. To reduce the data volume
requirements we use augmentation which is a very common
approach for increasing the size of the training sets for CNN
training. Here, we propose the following data augmentation
procedure: (1) we shifted each spectrum left or right a few
wavenumbers randomly. (2) We added random noise, pro-
portional to the magnitude at each wave numbers. (3) For the
substances which had more than one spectra, we took linear
combinations of all spectra belonging to the same substance
as augmented data. The coefficients in the linear combination
were chosen at random.

The training of the CNN was performed using the Adam
algorithm,27 which is a variant of stochastic gradient descent,
for 50 epochs with learning rate equal to 1 × 10−3, β1 = 0.9, β2 =
0.999, and ε = 1 × 10−8. The layers were initialised from a
Gaussian distribution with a zero mean and variance equal to
0.05. We applied early stopping to prevent overfitting. Training
was performed on a single NVIDIA GTX-1080 GPU. The train-
ing time was around seven hours. While for inference, it took
less than one millisecond to process a spectrum.

2.3. Evaluation protocol

We tested the proposed CNN method for mineral species reco-
gnition on the largest publicly available mineral database
RRUFF17 and compared it with a number of alternative, well
known, machine learning methods. As there are usually only a
handful of spectra available for each mineral, we use a leave-
one-out scheme to split a dataset into training and test sets.
To be specific, for minerals which have more than one spectra,
we randomly select a spectrum for testing and use the rest for
training. We compared our method to cosine similarity16/
correction18 (which has been used in commercial software
such as CrystalSleuth and Spectral-ID), and to other methods
that have been shown to be successful in classification tasks
including applications based on Raman spectroscopy: nearest
neighbor, gradient boosting machine, random forest, and
support vector machine.28

The proposed CNN was implemented using Keras29 and
Tensorflow.30 The gradient boosting machine method was

implemented based on lightGBM released by Microsoft. All
other methods were implemented using Scikit-learn.31

3. Results and discussion
3.1. Classifying baseline-corrected spectra

We first evaluated our CNN method on a processed mineral
dataset from the RRUFF database. These spectra have been
baseline corrected and cosmic rays have also been removed.
The dataset contains 1671 different kinds of minerals, 5168
spectra in total. Spectra for the mineral Actinolite are shown in
Fig. 2(a), illustrating the typical within-class variance. The
number of spectra per mineral ranges from 1 to 40. The distri-
bution of sample numbers per a mineral species is shown in
Fig. 2(b). We followed the protocol as described in section
2.3 to generate training and test sets randomly using the leave-
one-out scheme.

In a large scale classification, some classes could be quite
similar and differentiating between them could be very
difficult or even impossible. Hence, it is common to report
top-1 and top-k accuracy. In the former, the class that the clas-
sifier assigns the highest probability to is compared to the true
label. The latter reports whether the true label appears among
the k classes with the highest probability (assigned by the
classifier).

We report in Table 2, the top 1, 3 and 5 accuracies of the
compared methods, averaged over 50 independent runs. One
can see that CNN outperformed all other methods and

Fig. 2 (a) Spectra of an example mineral species (Actinolite) indicating
the within class spectrum variation and (b) a frequency plot showing the
imbalance regarding spectra per species.

Paper Analyst

4070 | Analyst, 2017, 142, 4067–4074 This journal is © The Royal Society of Chemistry 2017

Pu
bl

is
he

d 
on

 2
8 

 2
01

7.
 D

ow
nl

oa
de

d 
on

 2
4.

10
.2

02
5 

14
:3

3:
37

. 
View Article Online

https://doi.org/10.1039/c7an01371j


achieved top-1 accuracy of 88.4% and top-3 accuracy of 96.3%.
The difference in classification accuracy between CNN and the
second best method is statistically significant, t (50) = 71.78,
p < 0.001.

To understand the trained model of CNN better, we also
closely examined typical predictions, especially where these
did not agree with the correct labelling. In Fig. 3 the top
spectrum in each set is the test sample (shown in red) which is
followed by the top-3 predictions given by the CNN. The
correct prediction is highlighted in green. We also show scores

in each plot which reflect the confidence level of predictions.
Fig. 3(a) shows the examples where the CNN made the correct
prediction. Fig. 3(b) shows the examples in which the correct
prediction is scored second. In Fig. 3(c), the top-3 predictions
do not include the correct label.

As shown in Fig. 3(a), the CNN successfully predicted the
correct mineral, actinolite, and also ranked Ferroactinolite and
Tremolite as the second and third probable candidates. In fact,
these three minerals are all members of the same mineral
group. This is not uncommon. For instance, in Fig. 3(b), the

Table 2 Test accuracy of the compared machine learning methods on the baseline corrected dataset

Methods KNN(k = 1) Gradient boosting Random forest§ SVM(linear) SVM(rbf) Correlation CNN§

Top-1 accuracy 0.779 ± 0.011 0.617 ± 0.008 0.645 ± 0.007 0.819 ± 0.004 0.746 ± 0.003 0.717 ± 0.006 0.884 ± 0.005
Top-3 accuracy 0.780 ± 0.011 0.763 ± 0.011 0.753 ± 0.010 0.903 ± 0.006 0.864 ± 0.006 0.829 ± 0.005 0.953 ± 0.002
Top-5 accuracy 0.780 ± 0.011 0.812 ± 0.010 0.789 ± 0.009 0.920 ± 0.003 0.890 ± 0.007 0.857 ± 0.005 0.963 ± 0.002

Fig. 3 Examples of successful and unsuccessful mineral species classifications. In each plot, the top spectrum which is marked in red is a test
sample. The three spectra below were the top-3 predictions given by the CNN among which the correct one was highlighted in green. The predic-
tion scores were also shown in each plot which reflect the confidence level of predictions.

Analyst Paper

This journal is © The Royal Society of Chemistry 2017 Analyst, 2017, 142, 4067–4074 | 4071

Pu
bl

is
he

d 
on

 2
8 

 2
01

7.
 D

ow
nl

oa
de

d 
on

 2
4.

10
.2

02
5 

14
:3

3:
37

. 
View Article Online

https://doi.org/10.1039/c7an01371j


most probable mineral Montebrasite (as predicted by the CNN)
belongs to the same group as the correct one, Amblygonite, and
they share similar spectral structure.

If we examine the peak similarity, for instance in
Fig. 3(c), the peak locations of the top-1 prediction,
Hydrokenoelsmoreite, are almost identical to those of the test
sample Russellite. In Fig. 3(d), only the main peaks were
matched correctly. These plots demonstrate that the CNN was
capable of matching the peaks characteristic of a particular
species even when the prediction did not agree with the
correct label.

3.2. Unified Raman analysis using CNN

The results in section 3.1 have shown that CNN was able to
achieve significantly better accuracy compared to other conven-
tional machine learning methods on the baseline-corrected
spectra. Recall that conventional machine learning methods

such as SVM and Random Forest are not capable of handling
Raman signals which are not properly baseline corrected, and
therefore require explicit baseline correction in their proces-
sing pipelines. However, robust baseline correction is a chal-
lenging problem, especially for a fully automatic system.1 On
the other hand, in a variety of applications, CNN has been
shown to be very successful as an end-to-end learning tool
since it can process the data and learn features automatically,
avoiding hand crafted feature engineering.32 Therefore, we
evaluated the proposed CNN and the other classification
methods using both raw and baseline corrected spectra.
Specifically, we were interested in the performance of CNN on
raw data compared to the previous state-of-the-art spectral
classification methods for which baseline correction was
included.

For this set of experiments, we selected another dataset
from the RRUFF database which contains raw (uncorrected)
spectra for 512 minerals and six widely-used baseline correc-
tion methods: modified polynomial fitting,1 rubber band,3 robust
local regression estimation,33 iterative restricted least squares,
asymmetric least square smoothing,6 rolling ball.2 We used
implementations of these methods in the R packages base-
line34 and hyperSpec.35 An example of raw spectra and corres-
ponding baseline corrected ones by asymmetric least squares
is shown in Fig. 4. We followed the training and evaluation
protocol as described in section 2.3. The results are reported
in Table 3.

For the conventional classification methods, used as a com-
parison in our work, PCA was adopted to reduce dimensional-
ity and extract features, except for Random Forest where we
found that PCA decreased the performance. This is indicated
in the table by §. The number of principal components were
determined such that 99.9% of total variance was retained.
One can see that CNN on the raw spectra achieved an accuracy
of 93.3% which is significantly better, t (50) = 77.14, p < 0.001,
than the second best method, KNN with rubber band baseline
correction, that achieved an accuracy of 82.5%.

There are a few remarks which are worth highlighting.
Firstly, it is not a surprise that baseline correction greatly
improved the performance of all the conventional methods by
20%–40%. On other hand, CNN’s performance dropped by
about 0.5%–2.5% when combined with baseline correction
methods. This may indicate that CNN was able to learn more
efficient way of handling the interference of the baselines and
to retain more discriminant information than using an explicit

Fig. 4 Spectra of a mineral, hydroxylherderite, from RRUFF raw data-
base and corresponding baseline corrected ones by asymmetric least
squares.

Table 3 Test accuracy of the compared machine learning methods on raw dataset with or without baseline correction methods

Methods KNN(k = 1) Gradient boosting Random forest§ SVM(linear) SVM(rbf) Correlation CNN§

Raw 0.429 ± 0.011 0.373 ± 0.019 0.394 ± 0.016 0.522 ± 0.011 0.434 ± 0.012 0.310 ± 0.007 0.933 ± 0.007
Asymmetric least squares 0.817 ± 0.010 0.773 ± 0.009 0.731 ± 0.019 0.821 ± 0.012 0.629 ± 0.016 0.777 ± 0.013 0.927 ± 0.008
Modified polynomial 0.778 ± 0.007 0.740 ± 0.016 0.650 ± 0.016 0.785 ± 0.014 0.629 ± 0.016 0.734 ± 0.013 0.920 ± 0.008
Rolling ball 0.775 ± 0.009 0.737 ± 0.008 0.689 ± 0.018 0.795 ± 0.011 0.624 ± 0.013 0.730 ± 0.010 0.918 ± 0.008
Rubber band 0.825 ± 0.007 0.792 ± 0.015 0.741 ± 0.009 0.806 ± 0.015 0.620 ± 0.010 0.789 ± 0.010 0.911 ± 0.008
IRLS 0.772 ± 0.010 0.710 ± 0.008 0.675 ± 0.007 0.781 ± 0.011 0.614 ± 0.010 0.711 ± 0.011 0.911 ± 0.008
Robust local regression 0.741 ± 0.009 0.694 ± 0.008 0.667 ± 0.012 0.759 ± 0.013 0.600 ± 0.013 0.696 ± 0.011 0.909 ± 0.007
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baseline correction method. The advantage of CNNs in achiev-
ing high accuracy of classification while requiring minimal
preprocessing of spectra opens new possibilities for developing
highly accurate fully automatic spectrum recognition systems.

Besides the two datasets from the RRUFF database, we also
validated the proposed method on another (independent)
dataset which includes both baseline corrected and uncor-
rected spectra. The additional dataset, which we refer to as
Unipr-mineral,36 comprises spectra for 107 minerals, 163 spectra
in total. The same training, evaluation protocol, and network
architecture were used. Results for this dataset are presented in
Table 4 and show that CNN is again significantly more accurate
than the second best method (t (50) = 4.20, p < 0.001).

4. Conclusion and future work

In this paper, we have presented a deep convolutional neural
network solution for Raman spectrum classification which not
only exhibits outstanding performance, but also avoids the
need for spectrum preprocessing of any kind. Our method has
been validated on a large scale mineral database and was
shown to outperform other state-of-the-art machine learning
methods by a large margin. Although we focused our study on
Raman data we believe the method is also applicable to other
spectroscopy and spectrometry methods. We speculate that
this may be achieved very efficiently by exploiting basic simi-
larities in the shape of spectra originating from different tech-
niques and fine tuning our network to address new classifi-
cation problems. This process is known as transfer learning
and has been demonstrated previously in many object reco-
gnition applications.
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