Issue 19, 2025

External electric fields drive the formation of P → C dative bonds

Abstract

Chemical interactions driven by external electric fields (EFs) can serve as a catalytic force for molecular machines and linkers for smart materials. In this context, the EF-driven dative bond is demonstrated through the study of interactions between PH3 and curved carbon-based nanostructures. The P → C dative bonds emerge only in the presence of EFs, whereas the interactions in the absence of EFs lead to van der Waals (vdW) complexes. The formation of EF-driven dative bonds can be verified with distinctive signals in vibrational, carbon-13 NMR, and UV/vis spectra. The nature of EF-driven dative bonds was theoretically analyzed with the block-localized wavefunction (BLW) method and the associated energy decomposition (BLW-ED) approach. It was found that the charge transfer interaction plays a dominating role and that even in the presence of EFs, complexes dissociate to monomers once the charge transfer interaction is “turned off”. Notably, the inter-fragment orbital mixing stabilizes the complexes and alters their multipoles, leading to additional stability through field–multipole interactions. This conclusion was supported by further decomposition of the charge transfer energy component, clarifying the precise role of orbital mixing. The inter-fragment orbital mixing, which occurs exclusively in the presence of EFs, was elucidated using “in situ” orbital correlation diagrams. Specifically, both external EFs and intermolecular perturbations remarkably reduce the energy gap between the frontier orbitals of the monomers, thereby facilitating inter-fragment orbital interactions. Significant covalency was confirmed through ab initio valence bond (VB) theory calculations of the EF-driven dative bonds, aligning with the crucial role of the charge transfer interaction. This pronounced covalency emerges as a key feature of EF-driven interactions, setting them apart from traditional dative bonds studied in parallel throughout this work.

Graphical abstract: External electric fields drive the formation of P → C dative bonds

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Mar 2025
Accepted
07 Apr 2025
First published
08 Apr 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 8542-8554

External electric fields drive the formation of P → C dative bonds

T. Ma, X. Wang, X. Peng, J. Li, S. Yin, Y. Mo and C. Wang, Chem. Sci., 2025, 16, 8542 DOI: 10.1039/D5SC01701G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements