Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Here, we found that Thioflavin T (ThT) could specifically bind with a G-GGG unit (named as “Guanine Island”) in double stranded DNA (ds-DNA). Through stacking with G base via hydrogen bonds, the rotation of ThT was restricted and concurrently its planarization was enforced. Such a binding mode produced a significantly enhanced ThT fluorescence. Based on this discovery, with ThT as a lighting-up probe for “Guanine Island” in ds-DNA, the fluorescent detection of single-nucleotide mutation (C mutation) was investigated. With C base in target DNA mutating to G, A or T and further hybridizing with a probe DNA containing a GGG unit at the mutated point, ds-DNA including G-GGG, A-GGG or T-GGG islands was formed, respectively. After binding with ThT, C mutation was clearly recognized. With C mutating to G as an example, the detection limit was as low as 3 nM. Importantly, the developed assay could be applied to recognize C mutating to G in a DNA sequence related to dilated cardiomyopathy for diluted human serum. As a sensing unit (“Guanine Island” in ds-DNA lighting up ThT), it is expected to be applied for various biological or environmental systems.

Graphical abstract: Thioflavin T specifically brightening “Guanine Island” in duplex-DNA: a novel fluorescent probe for single-nucleotide mutation

Page: ^ Top