Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

A particulate solid solution, (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15, was synthesized by the flux method using various amounts of a Cu precursor (to make Cu-deficient, stoichiometric, or Cu-excess specimens) and/or a Na2S additive, to assess the effects of synthesis conditions on photoelectrochemical (PEC) properties. A stoichiometric (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathode prepared with Na2S produced a cathodic photocurrent in a neutral aqueous electrolyte approximately 2.3 times greater than that obtained from a sample made without Na2S. Elemental analyses by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy demonstrated that the presence of Na2S facilitated the incorporation of Li from the flux into the solid solution, in addition to the insertion of O atoms at Se vacancies, during the synthesis. Consequently, a (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathode with appropriate surface modification and back contact demonstrated an onset potential for cathodic photocurrent as high as 0.77 VRHE, a −5.2 mA cm−2 of photocurrent at 0 VRHE and a half-cell solar-to-hydrogen conversion efficiency of 1.1% at 0.37 VRHE. The present study provides new insights into techniques for the preparation of particulate Cu-chalcogenide photocathodes for efficient hydrogen evolution.

Graphical abstract: Particulate photocathode composed of (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 synthesized with Na2S for enhanced sunlight-driven hydrogen evolution

Page: ^ Top