Two new A–D–A conjugated small molecules Por-Rod and Por-CNRod were developed using a porphyrin core as the donor unit and 3-ethylrhodanine and 2-(1,1-dicyanomethylene)rhodanine as the acceptor units. Por-Rod and Por-CNRod show broad absorptions up to ∼850 nm with optical energy bandgaps of 1.47 and 1.45 eV, respectively. Additionally, their blend films containing PC71BM show SCLC hole mobilities of 8.5 × 10−5 and 7.5 × 10−6 cm2 V−1 s−1, respectively. Although bulk heterojunction solar cells containing PC71BM that were processed either without additives, with thermal annealling alone or with only pyridine show very low power conversion efficiencies (PCEs), Por-Rod-based solar cells processed using pyridine and then thermal annealing, show a PCE of up to 4.97% with a remarkable VOC of up to 0.94 V and a very low energy loss of only 0.53 eV. This is the first report in which small molecule-based solar cells show such a low energy loss comparable to perovskite solar cells, while exhibiting a good PCE of about 5% and a maximum external quantum efficiency up to 61%. To further understand the effect of different processing conditions on the blend films, the morphology of the blend films was studied by grazing incidence X-ray diffraction and resonant soft X-ray scattering.