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The ability of proteins to undergo conformational changes in response to varying environmental conditions
has inspired chemists to devise smart materials that can achieve comparable functions. Oligopeptides,
which are simplified versions of proteins, have demonstrated the ability to undergo conformational
changes in response to stimuli, transitioning between two ordered structures: helix and sheet. In
contrast, such conformational transitions in non-peptidic synthetic polymers are generally limited to
order-disorder transitions, specifically shifting between helix and coil states. This report presents a novel
approach in which we designed a periodically functionalized aromatic polyamide that exhibits the
conformational dynamicity between two order structures (helix < pleated-sheet < helix). The
enantiopure pendants of this aromatic polyamide induce a helical structure into the achiral polyamide
backbones. At the same time, incorporating the guest molecule enhances the co-facial -stacking and
mediates a conformational transition from a helix to a pleated sheet-like structure. Subsequently, we
employed photoresponsive merocyanine as the planar guest molecule, which served as a reversible
conformational switch for this aromatic polyamide. The planer merocyanine induces the host—guest
complex with this polymer and transforms the helical structure of polyamides into a pleated sheet-like
structure. When exposed to visible light, the planar merocyanine changes into a non-planar spyropyran,
which breaks apart the host—guest complex and effectively restores the helical structure of aromatic
polyamides. Therefore, we present an intriguing demonstration of the twisting, untwisting, and retwisting
of aromatic polyamides by balancing two key interactions, such as co-facial m-stacking along the
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because the responsiveness of secondary structures makes
them appealing for developing smart materials.”*™® Synthetic
peptides are the most popular choice for study, as their back-
bone is similar to natural proteins.'*'*** Researchers have

Introduction

The secondary structure of polypeptides, including a-helices, -
sheets, and turns, comprises amino acid building blocks crucial

for achieving the functional 3D structure of proteins."™* It is
important to note that changes in these secondary structures,
particularly in response to environmental factors, play a signif-
icant role in various biological processes.>” Beyond the essen-
tial biological functions for survival, improper conformational
transitions of peptide segments can disrupt natural processes,
leading to malfunction. For instance, neurodegenerative
diseases such as Alzheimer's, Creutzfeldt-Jakob, and others are
linked to protein misfolding, where there is an irreversible
transition from o-helix to B-sheet structures.®*** Understanding
these processes is vital not just for biological insights but also
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successfully induced conformational changes in synthetic
polypeptides, switching between a-helices and B-sheets by
manipulating non-covalent interactions among side chains or
applying external stimuli like temperature, pH changes, salt
concentrations, redox potential, light exposure, and metal ion
binding, among others.***** However, most of these peptides
undergo an irreversible transition from o-helices to f-
sheets.>*>?¢2 Along with polypeptides, other synthetic polymer
chains have also been engineered to exhibit a stimuli-
responsive secondary structure.’*>* Yet, the conformational
changes in these macromolecules are generally limited to an
order-disorder (helix < coil) transition.

Herein, we report the design of periodically grafted aromatic
polyamides (non-peptide polymer) exhibiting the conforma-
tional dynamicity between two order structures (helix <«
pleated-sheet). This is achieved by carefully adjusting two
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crucial interactions: the induced chirality, which stabilizes the
helical form, and the co-facial m-stacking interactions, which
support the stability of the intrachain sheet-like structure. The
chirality introduced by the grafted phenylalanine residues
promotes the twisting of aromatic polyamide backbones,
effectively suppressing the co-facial m-stacking interactions
among the pyrene amides. Furthermore, incorporating planar
guest molecules into these helical aromatic polyamides
improves the co-facial m-stacking, inducing the pleated sheet-
like arrangement. Lastly, to facilitate reversible conforma-
tional transitions, we propose using an aromatic guest molecule
capable of shifting its structure from planar to non-planar in
response to external stimuli. We hypothesized that the planar
guest molecule effectively forms a host-guest complex and
enhances the co-facial 7-stacking interactions to promote an
intrachain sheet-like arrangement of the aromatic polyamides.
In contrast, the host-guest complex breaks apart when the
planer guest transitions to a non-planar conformation,
restoring the aromatic polyamides’ twisted structure. As
a result, the stimuli-responsive conformational change of the
guest molecule can be utilized to tune the secondary structure
of these aromatic polyamides.

Result and discussion

A series of periodically functionalized (enantiopure- and
racemic-phenyl alanine derivative) aromatic polyamides have
been synthesized from a common precursor polyamide (P1 in
Scheme 1) via post-polymerization modifications using azide-
alkyne click chemistry.*® The precursor polymers' (P1) pendant
propargyl group served as a reactive handle to transform the
achiral aromatic polyamides into enantiopure or racemic poly-
mers using azide-alkyne click reactions (Schemes 1 and S27).
Moreover, we have also prepared the related model compound
(Scheme S37) to understand the chiroptical properties of these
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Scheme 1 Design and synthesis of azido acid functionalized aromatic
polyamides.
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aromatic polyamides. The experimental section has described
the detailed synthesis and characterization of the azido acid
units, functionalized polymer chains, and the model
compounds (Schemes S1-S3; also see Fig. S1-S5 and S7-S97).
The azide-alkyne click transformation was nearly quantitative
as assessed by comparing the NMR (*H and "C) spectra of the
post-polymerization modified polymer (P1-Phe(r) or P1-Phe(p)
or P1-Phe(p/1)) with the precursor polymer (Fig. 1 and S2-S57).
The characteristic '"H NMR signal of the alkyne proton (-C=CH
at ~3.78 ppm) in the precursor polymer (P1) disappeared (Fig. 1,
S2, S3 and S5;1 highlighted in the purple shade) in the click-
modified final polymers (P1-Phe(L) or P1-Phe(p) or P1-Phe(p/
L)). Additionally, a downfield shift (~0.28 ppm) of the CH,
propargyl group (at 5.25 ppm, ¢’ to ¢” in Fig. 1, S2, S3 and S57)
signifies that post-polymerization modifications underwent
quantitatively. Next, the molecular weights of those periodically
functionalized polymers were estimated using size exclusion
chromatography (SEC) analysis with DMF as the eluent (Fig. S6,
also see Table S17).

Helical induction and single-handedness (twisting)

The secondary structure of the periodically functionalized
aromatic polyamides was studied in a DMSO (dimethyl sulf-
oxide) and triethylamine (99.5:0.5) mixture using absorption
and CD spectroscopy. The details of sample preparations have
been described in the ESI file.t While the precursor polymer
(P1) dissolves well in DMSO, azido acid-functionalized polymers
do not exhibit a similar solubility in pure DMSO. However,
adding less than 1% of organic acids or bases in DMSO
improves polymer solubility significantly. Fig. 2a (also see
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Fig. 1 Stack plot *H NMR spectra of azido acid (Phe(p)-Ns) (bottom),
precursor polymer (P1), and post-polymerization modified aromatic
polyamide (P1-Phe(p)) (top). Inset showing the expanded region (5.05-
5.70 ppm) of P1 and P1-Phe(p). It showcases the downfield shift of —
CH, propargyl protons (c’ to c”) after post-polymerization modifica-
tions (P1-Phe(p)), indicating completion of the click reaction. [All the
NMR spectra were recorded in a mixture of DMSO-dg and trifluoro-
acetic acid-d (TFA-d) at room temperature. A zoomed NMR spectra
(8.2-12 ppm) of Phe(p)-Ns, showcasing the peak for TFA, has been
depicted as the inset].
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Fig. 2

(a) CD spectra of P1-Phe(L), P1-Phe(p), P1-Phe(p/t) (top) and UV-vis of P1-Phe(L), P1-Phe(p), P1-Phe(p/L) (bottom); (b) CD spectra of P1-

Phe() and the model compound (M1-Phe(l)) (top), normalized UV-vis spectra of P1-Phe(l) and the model compound (M1-Phe(l)) (bottom); (c)
normalized fluorescence spectra of P1-Phe(l) and the model compound (M1-Phe(l)) [all the solutions were prepared in DMSO + triethylamine
(TEA) (99.5:0.5) at 50 uM and the arrows (a and b) indicate the corresponding y-axes for CD (left) and UV-vis (right) spectral; (d) structural
comparison of the enantiopure azido acid clicked polymers (P1-Phe(p and P1-Phe(l))) depicting chirality induction from pendant units (enan-
tiopure) to aromatic polyamide backbone and the orientations of the electronic transition moments (the assignment of helical handedness
depicted in this figure is purely illustrative); (e) structural comparison of the model compounds.

Fig. S11%) displays typical absorption and CD spectra of the
functionalized aromatic polyamides in a dilute solution (50 uM)
of DMSO-Et;N (99.5:0.5). The absorption spectrum of the
precursor polymer exhibits a broad, featureless peak with Ap,ayx
=366 nm (see Fig. S11bt), corresponding to the pyrene diamide
residues. After functionalization with azido acid, the absorption

© 2025 The Author(s). Published by the Royal Society of Chemistry

maximum of the pyrene diamides shifts to a higher wavelength
(~385 nm) (Fig. S11b¥). This change suggests a weakening of
the co-facial m-stacking (H-aggregation) interactions along the
aromatic polyamide backbone, likely due to the twisting pyrene
amides induced by the enantiopure pendant units. Next, we
investigated the chiroptical properties of aromatic polyamides
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using CD spectroscopy. Polymers with enantiopure pendants,
P1-Phe(p) and P1-Phe(L), exhibited bisignated cotton effects
corresponding to pyrene diamide backbone in the CD spectra,
which were mirror images of each other (Fig. 2a). In contrast,
the precursor (P1) and the polymer with racemic pendants do
not exhibit a CD signal (Fig. S11a and 2at). Additionally, the
arrangement of electric transition dipole moments in adjacent
pyrene diamides caused exciton-coupled circular dichroism,*”
leading to the observed couplet CD patterns (Fig. 2d). To gain
insights into the secondary structure of aromatic polyamides,
we compared them with related model compounds (Fig. 2e; M1-
Phe(1) and P1-Phe(L), as well as M1-Phe(p) and P1-Phe(p), while
maintaining a pyrene amide concentration of 50 puM). The
absorption spectrum of M1-Phe(r) (Amax = 345 nm) was about
40 nm blue-shifted compared to P1-Phe(r) (Anmax = 385 nm),
indicating significant co-facial m-stacking in the model
compound (Fig. 2b (bottom) and S12at).**** While comparing
the model compound's and polymer's emission spectra
(Fig. 2c), the quenching of monomeric emission followed by
red-shifted broad excimer band at 500 nm in the model
compound reconfirmed the predominant intramolecular -
stacking interactions.***' Notably, the polymer exhibited higher
CD intensity at similar concentrations than the model
compounds. The lower CD intensity of the model compound
could be due to the stronger co-facial 7-stacking in the model
compound outmatched the chiral influence of the pendant
chain, resulting in a weak CD signal (Fig. 2b (top)). Moreover,
the inherent structural differences between the polymer chain
and the model compound may lead to varying m-stacking
distances and electronic coupling among the consecutive pyr-
ene amides. For instance, unlike the model compound, a pyri-
dine spacer separates the pyrene diamides of the polymer
chains at both ends, resulting in lengthier m-stacking distances
than the model compound, which could explain the observed
difference in their photophysical and CD studies. Next, we
visualized the enantiopure aromatic polyamides through high-
resolution transmission electron microscopy (Fig. S137).

Effect of the guest molecule on helical folding (twisting —
untwisting)

In the previous section, we noted that chiral induction from the
pendant groups (ICD) outperformed the co-facial m-stacking
interactions between adjacent pyrene diamides, leading to
a twisted structure in the aromatic polyamides. We then
explored the possibility of altering the secondary structure of
aromatic polyamides by enhancing w-stacking interactions.
This approach aims to counterbalance the predominant chiral
induction and promote an intrachain sheet-like arrangement of
pyrene diamides in the aromatic polyamide backbone. A rigid
pyridine spacer between the pyrene diamide units likely limits
robust co-facial m-stacking interactions along the polymer
backbones. Therefore, a suitable planar guest molecule fitting
into the free space between the consecutive pyrene diamides
might enhance the co-facial w-stacking interactions. However,
two scenarios could arise when an aromatic guest enters into
the twisted pockets of the polyamides (P1-Phe(r), P1-Phe(pn)): (a)
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the guest may adopt a twisted orientation, allowing the ICD
continued to dominate, or (b) the planar w-surface could
strengthen the co-facial m-stacking along the polyamide back-
bone, overshadowing the ICD and resulting in a w-stacked
pleated structure (Scheme S471). We investigated the host-guest
complexation and related structural changes using various
spectroscopic techniques. The 'H NMR spectra of P1-Phe(L) in
DMSO-dg and triethylamine (99.5:0.5) solvent showed broad
signals (depicted as an inset in Fig. 3), likely due to nonspecific
intermolecular interactions involving several H-bond donors
and acceptors (polyamide backbone) at the NMR concentration
(1 mM, much higher than spectroscopic studies carried out
before), leading to diverse rotational conformers (Fig. 3, 1:0).
Notably, as pyrene (guest) is added to the polymer solution, the
"H NMR signals remarkably sharpen, suggesting the formation
of a discrete conformer through successful host-guest
complexation as illustrated in Fig. 3 (P1-Phe(L) : pyrene; also see
Fig. $14-5167).*> An upfield shift of pyrene diamides (host) and
pyrene (guest) proton signals indicates possible co-facial -
stacking interactions between the polymer and the guest
molecules.**** Moreover, the upfield shift of the pyrene proton
(Fig. 3; at ~8.32 ppm, marked a’) increases with the guest-to-
host ratio, leveling off at a ~1 : 1 ratio, indicating the stoichio-
metric nature of the host-guest complex (see Fig. S16 and S177).
Furthermore, the partial NOESY spectra of the 1:1 host-guest
complex at room temperature have been depicted in Fig. S18.7
Strong NOE was observed between pyrene amides (host) and the
guest molecule (pyrene). For example, the pyrene (guest)
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Fig. 3 A stacked plot of the H NMR spectra (aromatic region) of
pyrene, P1-Phe(l) (1:0), and P1-Phe(l) : pyrene (host—guest) complex,
demonstrating the spectral changes upon addition of an increasing
amount of pyrene to the polymer scaffold; a zoomed NMR spectra of
the uncomplexed host polymer (1: 0) has been depicted as the inset;
[*H NMR spectra were recorded in a mixture of DMSO-dg and trie-
thylamine (TEA) ((99.5:0.5)) at 1 mM].

© 2025 The Author(s). Published by the Royal Society of Chemistry
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protons were correlated with the ¢/, ', ¢/, and h’ protons of the
pyrene amides (host polymer).

Next, we investigated the chiroptical properties of host-guest
complexes using CD spectroscopy. In a titration experiment
involving a polymer solution at a concentration of 50 uM, we
observed that as the amount of guest molecules increased, the
intensity of the circular dichroism (CD) signal from pyrene
amides significantly decreased. This effect became particularly
pronounced at a guest-to-host ratio of 1: 1, where the CD signal
nearly disappeared (refer to Fig. 4a, ¢ and S20t). Beyond this
point, additional pyrene had minimal effect on the ICD signal
(Fig. 4b and S20%). These findings suggest that host-guest
complexation results in the planarization of aromatic poly-
amide chains. Notably, pyrene plays a significant role in rein-
forcing co-facial m-stacking by bridging gaps between pyrene
diamide units, converting the twisted structure of aromatic
polyamides into a pleated sheet-like structure (Fig. 4e). Fluo-
rescence studies also support the proposed structural change,
showing a shift in emission from 425 nm in the host polymer to
a structureless broad emission band at 489 nm in the host-
guest complex (Fig. 4d and S21f%). This shift indicates the
formation of an exciplex between the pyrene diamide (host) and
the pyrene (guest), suggesting the likelihood of a co-facially
stacked H-aggregated conformation of the host-guest
complex.*® Overall, the NMR, CD, and fluorescence spectro-
scopic data indicate that the planar aromatic m-surface of pyr-
ene enhances the w-stacking interactions within the host-guest
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complex, outweighing the chiral induction (ICD) and leads to
a conformational change from a one-handed helix to a pleated
sheet-like (untwisted) structure (see Fig. 4e).

Twisting — untwisting — retwisting of aromatic polyamides

Our next objective was to fine-tune the conformational changes
of these aromatic polyamides, enabling a reversible trans-
formation that would dynamically enhance their properties. As
previously demonstrated, a guest molecule featuring a planar
aromatic w-surface can mediate the conformational transition
of this polymer from helix to a pleated sheet-like structure.
Ideally, upon removing the guest, the polyamides would return
to their twisted state. However, selective removal of pyrene (the
guest) from this host-guest complex is challenging. We propose
using an aromatic guest that induces structural changes from
planner to nonplanner in response to external stimuli. The
planar guest molecule effectively forms a host-guest complex,
which is expected to promote a sheet-like arrangement of the
pyrene diamides along the polymer chain. However, this
complex disassembles when the guest shifts to a non-planar
conformation, leading to reforming the aromatic polyamides’
twisted structure. We selected spiropyran as a conformational
switch, which undergoes structural isomerization when
exposed to stimuli.””~*° Spiropyran (Sp) transforms its planar
merocyanine (Mero) form when exposed to UV light (A = 365
nm), characterized by a distinct absorption peak at 557 nm (see
Fig. S22 and S23at). Additionally, the merocyanine reverts to
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(a) CD spectra of P1-Phe(l) : pyrene (host—guest) complex, demonstrating the spectral changes upon addition of increasing amount of

pyrene to the aromatic polyamide scaffold; (b) a titration plot of CD intensity (mdeg) at 428 nm of the P1-Phe(d) : pyrene (host—guest) complex as

a function of added equivalents of pyrene (the solid line represents the

calculated fitting curve for the experimental data point series); (c) CD

spectra of P1-Phe(p) : pyrene (host—guest) complex, demonstrating the spectral changes upon addition of increasing amount of pyrene to the

host polymer; (d) normalized emission spectra of P1-Phe(l) (1:0) and

P1-Phe(l) : pyrene (host—guest, 1:1) complex [all the solutions were

prepared in DMSO + triethylamine (TEA) (99.5:0.5) at 50 uMI; (e) a schematic representation illustrating the untwisting of the helically folded

aromatic polyamide into a planar sheet upon complexation with pyrene
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Fig. 5

(a) CD spectra P1-Phe(p) (1:0, colourless), P1-Phe(p) and merocyanine (P1-Phe(p): Mero, 1:1; brown) host—guest complex; (b) CD

spectral changes of P1-Phe(l) : Mero (host—guest) complex upon irradiation with visible light; (c) CD intensities (at 336 nm) of P1-Phe(p) and
spiropyran (Sp) mixture upon alternative UV and visible light irradiation; (d) UV-vis spectra of the P1-Phe(l) : Mero (host—guest) complex at
different time intervals upon irradiation with visible light [all the solutions were prepared in DMSO + triethylamine (TEA) (99.5: 0.5) at 50 uM]; (e)
schematic representation of twisting — untwisting — retwisting of aromatic polyamide via host—guest complexation using photo-responsive

merocyanine (Mero) as guest.

spiropyran under visible light (557 nm), demonstrating revers-
ible photoswitches to serve our purposes.”* The reverse
isomerization of merocyanine, monitored by its absorbance at
557 nm over time under visible light, displays first-order
kinetics with a conversion rate of 0.228 min~" (Fig. S23b and
S23ct).

Similar to pyrene, merocyanine can act as a planar guest
molecule to induce the transition of helical aromatic poly-
amides into a planar sheet-like structure. In contrast to pyrene,
the light-induced structural change (planner < nonplanner)
between merocyanine and spiropyran acts as a photoswitch,
promoting the reversible conformational changes (helix <
sheet < helix) of aromatic polyamides. At the beginning of our
experiments, spiropyran was converted to planer merocyanine
via UV-light irradiation (A = 365 nm). We then mixed one
equivalent of merocyanine with a P1-Phe(p) polymer solution
(50 pM, DMSO: TEA = 99.5:0.5) and stirred in the dark to
promote host-guest complex formation. The guest molecule-
induced conformational change of the host-guest complex
was monitored using UV-vis and circular dichroism (CD) spec-
troscopy. We observed a shift in the absorption peak of mer-
ocyanine from 557 nm to 550 nm upon host-guest
complexations, changing the solution color from pink to brown
(Fig. S247). The induced CD (ICD) intensity of P1-Phe(p) drop-
ped to zero after complexation with merocyanine (1:1 ratio),
indicating the polymer's secondary structure was untwisted
(Fig. 5a and e). Upon exposing the host-guest (P1-Phe(p)-Mero)
complex to visible light, the ICD signal gradually recovered,
restoring the original CD pattern and reducing the 550 nm

10330 | Chem. Sci, 2025, 16, 10325-10332

absorption peak (Fig. 5b and d). This indicated that mer-
ocyanine was photo-isomerized back to spiropyran, led to its
exclusion from the well-defined pockets of the polymer scaffold
(P1-Phe(p)), allowing the twisted aromatic polyamide structure
to re-emerge (Fig. 5c and e). Thus, we demonstrated the
twisting, untwisting, and retwisting of aromatic polyamides by
utilizing the photoisomerization between merocyanine and
spiropyran as a conformational switch. This approach holds
great promise for the development of responsive materials. The
kinetics of merocyanine's photoisomerization to spiropyran
within a host polymer were studied by measuring absorbance at
550 nm over time. In contrast with the photoisomerization of
the uncomplexed guest molecule (kjuncomplexed guest] =
0.228 min '), the photoisomerization of the host-guest
complex followed second-order kinetics (Kjhost-guesq) = 0.06 L
mol ™" min~") (Fig. 5d and S241). Moreover, the stability of the
merocyanine is remarkably enhanced when it is inside the host-
guest complex.

Conclusion

Our research has revealed the design of aromatic polyamides
with a tuneable secondary structure. By strategically manipu-
lating two fundamental interactions—co-facial w-stacking and
chiral induction from the periodically functionalized pendant
units—we tuned the secondary structure of the aromatic poly-
amide backbone to adopt either helical or planar sheet-like
conformations reversibly. While the extent of chirality
induced by the pendant chain remained consistent, we varied

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the m-stacking interactions wusing controlled host-guest
complexation to fine-tune the secondary structure of these
aromatic polyamides. The synthesis of functionalized aromatic
polyamides from precursor polymer (P1) was accomplished
through precise post-polymerization modifications with suit-
able azido acids (enantiopure or racemic). In these periodically
functionalized aromatic polyamides, the chirality of pendant
units dominated over mw-stacking, leading to helix-sense-
selective twisting of the polyamide backbone. Planar aromatic
guest molecules could revert the twisted helical structure to
a pleated sheet-like conformation due to enhanced co-facial -
stacking from host-guest interactions. We confirmed these
findings with detailed 'H NMR, photophysical, and chiroptical
studies. Finally, we introduced photoresponsive guest mole-
cules, such as merocyanine, enabling dynamic control over the
polymer's secondary structure. Upon complexation with
planner merocyanine, the twisted aromatic polyamide trans-
formed into a pleated sheet-like structure. The subsequent
photoisomerization of merocyanine to nonplanner spyropyran
triggered its expulsion from the host polymer, resulting in the
retwisting of the aromatic polyamide backbone. Therefore,
merocyanine served as a molecular switch to tune these
aromatic polyamides’ secondary structure (helix < sheet <
helix). This innovative approach can open new avenues in
designing conformationally dynamic smart materials.
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