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Plastics, particularly polyethylene terephthalate (PET), are widely used as food contact materials, textiles,

and toys. However, their widespread use and potential for human exposure raise environmental and

health concerns, particularly regarding the leaching of chemical additives. This study assessed hazardous

plastic additives and non-intentionally added substances (NIAS) leached from paired virgin and recycled

PET bottles (soda and water) purchased from Michigan and California and from textiles (toys, pillows, and

clothing) acquired online or in stores in Michigan and Oregon. Results showed differences in

contaminant profiles and concentrations between PET types and products. A total of 12 persistent,

mobile, and toxic (PMT) additives, six organophosphate esters (OPEs), and 15 NIAS were detected.

Notably, recycled PET (rPET) bottles consistently contained benzene, while virgin PET had higher

ethylene glycol and 2-methyl-1,3-dioxolane levels. Additionally, OPEs were detected more frequently in

rPET, indicating recycling as a contamination pathway. Geographically distinct contaminant profiles were

evident, with Michigan bottles exhibiting elevated benzaldehyde, while California bottles showed higher

diethylene glycol levels, suggesting differing manufacturing practices. Textiles exhibited distinct

contamination profiles, highlighting a distinct exposure pathway for watersheds through laundry

processes. Bioactivity assays with PET product extracts revealed moderate to high hormone receptor

antagonism but no clear association with PET type, indicating potential hazardous effects from both

virgin and recycled PET products. This study highlights the necessity of continued monitoring of

contaminants in PET, including non-intentionally added substances and PMT plastic additives that are

not currently regulated.
Environmental signicance

Our ndings demonstrate the pervasive presence of numerous hazardous compounds, including plasticizers and ame retardants, in virgin and recycled PET
bottles and textiles. The detection of these substances, particularly their leaching under environmentally relevant conditions and their observed endocrine-
disrupting activity, indicates a potential environmental and human exposure risk. This research emphasizes that current practices in plastic additive use led
to complex chemical mixtures with potential adverse impacts on water quality, sensitive ecosystems, and vulnerable populations, necessitating a re-evaluation of
material safety and recycling processes.
1 Introduction

Plastics have become integral to modern life and industry;
however, their widespread use has raised increasing concerns
regarding the environmental impact of plastic waste on
nto Metropolitan University, 350 Victoria
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r, MI, 48104, USA

and Department of Pharmacology, Wayne

etroit, M, I 48202, USA

equally.

f Chemistry 2025
ecosystems and human health.1,2 Approximately 33 billion tons
of plastic are estimated to be produced by 2050, with most ex-
pected to end up in landlls or directly as litter in the envi-
ronment.3 To mitigate plastic waste accumulation, substantial
reduction in plastic use and increases in recycling rates are
urgently required.1 To date, approximately 10% of the produced
plastics are recycled, leading to increasing waste management
and environmental pollution challenges.4,5 The majority of
plastic consumption occurs in packaging applications, with
polyethylene terephthalate (PET) particularly prevalent due to
desirable properties such as transparency, durability, light
weight, and affordability.6–8
Environ. Sci.: Processes Impacts, 2025, 27, 3431–3439 | 3431
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Encouragingly, PET has some of the highest recycling rates
and expected recyclability among plastics.9 Used frequently in
bottles, advancements in bottle return systems and bottle-to-
bottle recycling have helped drive these above-average recy-
cling rates for PET.6 In addition, regulatory measures, such as
the Break Free from Plastic Pollution Act (U.S.)10 have mandated
increasing recycled content in PET products.11 While these are
positive developments from a waste and climate impact
perspective, concerns remain that recycling could introduce
additional potentially hazardous substances including plasti-
cizers, monomers, and degradation by-products, into recycled
PET products.12–14

To understand potential risks associated with the use of
recycled PET products it is essential to understand whether (1)
recycled PET contains more or different hazardous contami-
nants than virgin PET, and (2) whether these contaminants can
leach out of the PET into e.g. beverages contained in the bottles,
or the environment.

Previous investigations into chemical contaminants in PET
products have typically either looked at total chemical content
(i.e. extractable substances) or those that are leachable in the
environment, with fewer studies applying both approaches
concurrently (Table SA1 and 2, SI A). Moreover, previous studies
have mostly focussed on specic groups of contaminants that
are detectable with one analytical technique rather than
complex contaminant mixtures; let alone the mixture toxicities.
Lastly, there is a lack of studies comparing contaminant proles
between virgin and recycled PET.

In this study, we aimed to address these knowledge gaps by
evaluating known hazardous plastic additives, non-
intentionally added substances (NIAS), and endocrine disrup-
tive properties of the contaminants mixtures leached from
paired virgin and recycled PET products including bottles (soda
and water) and textiles (plush toys, pillowcases, and children's
clothing) purchased in the United States.
2 Methods and materials
2.1 Sample collection

PET samples included 18 bottles (14 water and 4 soda bottles)
purchased from stores in California and Michigan and 8 chil-
dren's textiles (2 plush toys, 2 pillows, and 4 clothing items)
purchased online or from stores in Michigan and Oregon. Half
of the samples were recycled PET and half were virgin PET
(based on marketing claims), with each recycled PET sample
paired to an equivalent virgin PET product. Among recycled PET
samples, 69% bore a ‘100% recycled’ label, whereas the
remainder offered no indication of recycled-content percentage.
Details on the sample preparation are summarised in the SI A
(Text SA1).
‡ Eurons MTS Consumer Product Testing US, Inc. 11 822 North Creek
Parkway N, Suite 110 Bothell WA 98011.
2.2 Extraction and leaching

To understand the mixture of potential contaminants associated
with these analysed products, a diverse set of known hazardous
plastic additives were analysed, including 124 Persistent, Mobile,
and Toxic (PMT) plastic additives, 23 per- and polyuoroalkyl
3432 | Environ. Sci.: Processes Impacts, 2025, 27, 3431–3439
substances (PFAS), and 26 organophosphate esters (OPEs) (SI B,
Table SB1–3). Fig. 1 illustrate the workow for leaching and
extraction studies on both bottles and textile PET products.
Leaching was conducted following a previously published
method.15 Briey, samples were leached for 34 days on an orbital
shaker set to 30 rpm, under a full-spectrum UV light source
simulating a day–night cycle (14 hours on, 10 hours off), using
ltered lake water collected from Lake Ontario in Toronto,
Ontario, Canada (43.6353360, −79.3224297). Samples were
collected on days 0, 2, 15, and 34. All samples except children's
clothing items (N = 22) were leached and analysed for OPEs and
PMT plastic additives using high-performance liquid chromatog-
raphy coupled with quadrupole time-of-ight mass spectrometry
(HPLC-QToF-MS). Bottles (N = 18) were additionally tested for
PFAS by HPLC-QToF-MS. A detailed description of the analytical
and instrumental methods is presented in the SI-A (Text SA2 and
Table SA3).

20 PET-associated NIAS categorised as glycols, aldehydes,
aromatic hydrocarbons, and volatile organic compounds (Table
SB4) were analysed by an external laboratory‡ from the plastic
samples (N = 26). All samples were analysed for NIAS using gas-
chromatography coupled with mass spectrometry (GC-MS).
Depending on the target analytes, samples were extracted with
either tetrahydrofuran or water, while some NIAS were analysed by
headspace GC-MS without prior solvent extraction (Text SA3).

Element analysis of antimony was conducted using X-ray
uorescence spectroscopy on both bottles (N = 18) and textile
products (N = 6) (Text SA4).

For the evaluation of endocrine disruptive effects, the bottles
and textile products were solvent extracted and screened for
nuclear receptor bioactivities using transient transfection lucif-
erase reporter gene assays for disruption of estrogen receptor
alpha, androgen receptor, thyroid receptor beta, and peroxisome
proliferator activated receptor gamma. Protocols for extraction
and toxicity testing are detailed in the SI (Text SA5).
2.3 QA/QC

Several measures were taken to avoid contamination of samples
with plastic-associated chemicals originating from the laboratory
environment and sample preparation. For PMT and OPE samples,
acid-washed and baked glassware, and solvent-cleaned glass
syringes were used for all sample preparation and collection. For
PFAS samples, plastic labware, sample vials, and pipettes were
used to avoid the adsorption of these compounds onto glass.
Appropriate lake water blanks, method blanks, and sample
duplicates were prepared for leachate samples to account for
contaminants originating from the matrix or other spurious
signals. The limit of detection (LOD) and limit of quantication
were calculated as the average blank + 3 times the standard
deviation and the average blank + 10 times the standard deviation,
respectively. For compounds without detectable blanks, the LOD
and LOQwere determined based on a signal-to-noise ratio of 3 and
10, respectively.
This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5em00615e


Fig. 1 Workflow for virgin and recycled PET bottles and textiles for leaching and extraction experiments. Bottles were obtained from two states
of US: Michigan (MI) and California (CA). N = the number of samples. Each virgin PET samples paired to an equivalent virgin PET product.
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All leaching samples were spiked with appropriate internal
standards (Table SA4) to account for variations in sample volume
and instrument performance. NIAS analyses were conducted in
the external laboratory with accredited methods. All data was
blank and recovery corrected.
2.4 Data analysis

Suspect screening for PMT and quantitation for targeted OPEs and
PFAS were performed on the full MS scan data using Agilent
Technologies MassHunter Quantitative Analysis 10.0, and R
(version 4.3.0; R Core Team, 2024) using RStudio (version
2024.04.0 + 735) (details see Text SA6).

The contaminant proles were evaluated across multiple
factors, including PET material source (virgin versus recycled),
intended product usage (bottles versus textile), beverage type, and
geographic origin. Statistical tests (a = 0.05) were performed to
identify any statistically signicant difference between those
factors above-mentioned (details see Text SA7).
3 Results and discussion

For leaching analyses, blanks were detectable in relative peak
areas (RPA, dened as the ratio of an analyte's peak area to that of
This journal is © The Royal Society of Chemistry 2025
the internal standard whose retention time is most similar) or
concentrations between 1.12 × 10−2 RPA for tris(2-butoxyethyl)
phosphate (TBEP) and 7.68 RPA for 1,10-oxybis[2-methoxy-
ethane] or 1.82 ng mL−1 (of lake water) for triethyl phosphate
(TEP). The suspect screening LODs and LOQs were between 0.40×
10−2 and 1.34 × 10−2 RPA g−1 for N,N0-diphenyl-guanidine and
0.83 and 2.77 RPA g−1 for 1,10-oxybis[2-methoxy-ethane]; as well as
the quantitative LODs and LOQs were between 0.04 and 0.12 mg
kg−1 for TEP and 6.96 and 0.95 mg kg−1 for 2-isopropylphenyl
diphenyl phosphate and 3-isopropylphenyl diphenyl phosphate
(2IPPDPP and 3IPPDPP), respectively. R2 values ranged from 0.879
(3IPPDPP + 4IPPDPP) to 0.997 (TEP) (median = 0.919) for the 26
targeted OPEs. The linear range for all OPEs was 0 to 20 ng mL−1,
except for TDCPP, which had a linear range of 2 to 20 ng mL−1.
Relative standard deviations (RSDs) of the internal standards for
OPEs standards and internal standards for PMT plastic additives
ranged from 7.0% to 17.5% (n = 192). Full method performance
details are summarised in Tables SB6 and SB7 in the SI B.
3.1 Identication and characterization of contaminants
from PET products

3.1.1 Detected contaminants. Across the 26 tested prod-
ucts, twelve PMT plastic additives and ve OPEs were detected
Environ. Sci.: Processes Impacts, 2025, 27, 3431–3439 | 3433
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in the water leachates, while een NIAS were detected in the
solvent extracts of the plastic samples (Table 1). None of the
targeted PFAS were detected in the analysed leachates. Detec-
tion frequencies ranged from one product (4%) for ethyl-
benzene and xylene to 25 products (96%) for diethylene glycol
(Table 1). OPEs were detected in less than half of the samples
with concentrations below the LOQ, indicating that they were
not intentionally added to the plastics (Table 1). Exception was
TEP that was detectable in concentration at 0.18 mg kg−1 in
a recycled bottle. Amongst NIAS, diethylene glycol and ethylene
glycol were most frequently detected (96% and 69%, respec-
tively, N = 26), as well as detected in the highest concentrations
with up to 63 mg kg−1 and up to 15 mg kg−1, respectively (Table
1). Ethylene glycol is a primary monomer used in PET poly-
merisation, while diethylene glycol can be either a comonomer
introduced to increase exibility of PET, particular for produc-
tion of blow-moulded objects such as bottles,16 or a byproduct of
PET production.17 The high detection of ethylene glycol and
diethylene glycol were consistent with previous studies who
reported ethylene glycol concentration up to 6 mg kg−1 in
recycled PET bottles from the Netherlands.18 Similarly, 2-
methyl-1,3-dioxolane was found in 62% of the samples with
concentrations similar to previously published amounts in
recycled PET bottles of between 1 and 2 mg kg−1 (Table 1).18

PMT plastic additives were detected in 91% sample leachates
(Table SB5). Melamine was the most frequently detected PMT
additive with a detection frequency of 32%. Melamine is
commonly used as a non-halogenated ame retardant that can
be used as either surface treatment or as bres in textiles.19,20 It
was recently designated as a substance of very high concern
under the EU REACH regulation as a suspected human carcin-
ogen, endocrine disruptor, and potential reproductive toxin.21

The second most frequently detected plastic additives were
benzophenone (diphenyl-methanone) and the PMT OPE tri-
chloropropyl phosphate (TCPP, 3 isomers), both of which
were found in 27% of the analysed samples (Table 1). Benzo-
phenone is a UV stabilizer that is used in packaging to prevent
photodegradation.22 It is unclear as to whether recycling may
introduce benzophenone contamination, as it has been previ-
ously reported in both recycled and virgin PET food packaging.23

Likewise, the presence of TCPP raised questions about the
potential contamination source. Previous studies have shown
that ame retardants, like TCPP, can end up in recycled food
contact materials due to a lack of oversight on the specic
origins of the recycled plastics.24 However, all detected OPEs
were present in trace amounts, indicating that they were not
intentionally added to the plastics (Table 1). Further plastic
additives found in over 20% of the samples were 1,10-oxybis[2-
methoxy-ethane] and N,N0-diphenyl-guanidine which are pro-
cessing aids/solvents in a variety of plastic production25 and
might therefore be residues from the polymerization or recy-
cling process (Table 1). Generally, the detected PMT plastic
additives were processing aids (86%), llers (64%), intermedi-
ates (57%), colorants, lubricants, or plasticizers (43%).

3.1.2 Inuence of product type. Noticeable differences in
contaminant proles and concentrations were observed between
PET bottles and textiles (Fig. 2). A higher variety of plastic additives
3434 | Environ. Sci.: Processes Impacts, 2025, 27, 3431–3439
and higher concentrations of NIAS were detected in bottles
compared to textiles, while the textiles showed a greater diversity
of NIAS (Table 1). Ethylene glycol was exclusively detected in PET
bottles with a 100% detection frequency, along with 2-methyl-1,3-
dioxolane (89%) and benzene (50%) (Table 1). Additionally, all
soda bottles contained limonene, a well-known avour compound
frequently detected in PET due to its potential adsorption onto
bottle surfaces from the contained beverages.18,26 In contrast, m/p-
xylene showed a high detection frequency (87%) in PET textiles,
alongside triethylene glycol, styrene, and acetaldehyde, each
detected at 50%. Furthermore, formaldehyde (100% detection
within textiles) and toluene (87%) had signicantly higher detec-
tion frequencies in textiles compared to bottles (11% and 6%,
respectively) (Fig. SA1). These variations likely originate from
differences in polymerisation reagents, additives, and
manufacturing conditions specic to each product type. The PMT
plastic additive screening results supported this hypothesis (Table
1), identifying ten additives unique to PET bottles. Conversely, PET
textiles contained three distinctive additives: dibutyl ester phos-
phoric acid (75% detection frequency), isoquinoline (50%), and
bis(1-methyl-1-phenylethyl) peroxide (25%). Additionally, TCPP
exhibited a higher detection frequency in textiles (100%)
compared to bottles (11%). In contrast, antimony, an well-known
contaminant of concern in PET materials, was detected in signif-
icantly higher concentrations in bottles (t-test, p < 0.05, mean =

244 ± 49 mg kg−1) than in textiles (mean = 200 ± 59 mg kg−1)
(Table SA6).
3.2 Virgin vs. recycled PET products

A few differences were found in the contaminant proles between
recycled and virgin PET (Table SA7 and SA8). Ethylene glycol and 2-
methyl-1,3-dioxolane showed statistically different concentrations
in the analysed bottles (Wilcoxon test and Kruskal–Wallis test, p <
0.05) with virgin PET having higher concentrations than recycled
PET in both cases. This lower concentration in recycled PET could
be a result of loss via leaching during bottle usage or intensive
cleaning processes in recycling. Benzene, on the other hand, was
consistently present in recycled PET bottles, in contrast to only one
detection in virgin PET. This discrepancy suggests a potential
contamination introduced during recycling. Benzene formation is
linked to the thermal step during the recycling process,18 partic-
ularly when combined with chlorine-containing materials like
polyvinyl chloride (PVC),27 which may contaminate PET during
recycling due to sorting errors or labelling materials.28 These
results were consistent with previous reports on benzene in PET
bottles.18 The comparatively low concentrations found in our study
(0.11–0.24 mg kg−1) compared to the literature (0.2–1.8 mg kg−1),
could be a result of slightly lower PVC contamination in the bottle
collection systems.18 The isolated benzene detection in one virgin
PET sample may reect incidental contamination during manu-
facture. Although benzene has been reported in virgin PET,29 given
the low detection frequency and small samples size, further
investigation is needed.

Similarly, OPEs were found in 54% of the recycled PET prod-
ucts compared to 36% of the virgin PET products (Table SB5).
OPEs are used as ame retardants and lubricants in plastic
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Comparison of contaminant concentrations and relative composition of NIAS and PMT plastic additives between PET bottles (N= 18) and
textile products (N = 8). Box plots of detected (a) NIAS and (b) PMT plastic additives for bottles and textiles. The y axis of PMT plastic additives is
relative peak area (RPA) as the ratio of peak area of analytes to the peak area of the benchmark standard with smallest retention time difference.
Stacked-bar charts of percentage composition of (c) NIAS and (d) PMT plastic additives detected in bottles and textile samples.
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production and have previously been reported in PET food pack-
aging.30,31 Current literature lacks direct comparative studies of
OPEs in recycled and virgin materials, but our ndings suggest
a greater likelihood of OPE leaching from recycled PET. All OPEs
were found in low concentrations though (nearly all <LOQ), indi-
cating that they likely originated from trace contamination during
the recycling process, rather than intentional use/application in
the plastic products. Further research should be conducted to
investigate the potential sources of OPEs and benzene in the
recycling process, particularly regarding the known carcinoge-
nicity of benzene and chlorinated OPEs.32–34

Antimony in vPET and rPET were found be to at similar
concentration levels (258± 59 and 231± 34mg kg−1, respectively)
with no statistical difference, which aligned with the previous re-
ported content range (200–300 mg kg−1).35,36
3436 | Environ. Sci.: Processes Impacts, 2025, 27, 3431–3439
3.3 Geographical inuence on contaminants in PET
products

PET bottles sampled in this study were purchased from Cal-
ifornia (N = 10, including four soda bottles) and Michigan (N =

8, all water bottles), each with paired recycled and virgin PET
sources. Although the exact manufacturing locations are
unknown, it is reasonable to assume regionally bottling to
minimise transportation cost. Comparative analysis showed
distinct geographic differences between the contaminant
proles, which is consistent with the assumption that the two
states' bottles have distinctly different origins. Bottles from
Michigan showed higher benzaldehyde concentrations with
100% detection frequency and a mean concentration of 2.9 ±

1.1 mg kg−1 (n = 8) compared to only one sample from
This journal is © The Royal Society of Chemistry 2025
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California with detectable benzaldehyde concentrations of
0.6 mg kg−1 (Fig. SA2). Benzaldehyde has previously been found
in rPET but not vPET,37 and the reason for elevated benzalde-
hyde in Michigan bottles, rPET and vPET alike, is unknown.
Diethylene glycol, on the other hand, was found in signicantly
(t-test, p < 0.05) higher concentrations in California bottles with
mean concentrations of 27.0 ± 17.0 mg kg−1 (n = 10) compared
to 2.0 ± 0.4 mg kg−1 (n = 8) in Michigan bottles. Diethylene
glycol has previously been reported as both comonomer16 and
NIAS38 in PET polymerisation. This suggests that the PET bottles
from California, both virgin and recycled, were produced with
different polymerisation conditions than the Michigan bottles.
In addition, the high variability in California bottles compared
to Michigan bottles indicated greater manufacturing variability
in California. However, due to the limited sample size, the
results should be considered exploratory. A moderate negative
correlation (R = −0.67, Fig. SA3) between shelf life and di-
ethylene glycol concentration was observed in California
bottles, suggesting a potential leaching of diethylene glycol
from the bottle into the environment or the contained beverage
over time. However, this interpretation is complicated by the
presence of soda bottles as the soda content may accelerate the
leaching process. All soda bottles exhibited lower diethylene
glycol concentrations and longer shelf lives than water bottles.
The correlation is much less pronounced within each category.
Given the small sample size, further investigation is warranted
to determine the relative contributions of product contents and
shelf life.

Apart from NIAS, six PMT plastic additives were found in
bottles from both Michigan and California, accounting for over
65% of the total detected PMTs in each group. However, some
variation was also evident. For example, 1,10-oxybis[2-methoxy-
ethane], a commonly used solvent, was predominantly detec-
ted in virgin PET bottles from California. N-Butyl-
benzenesulfonamide, a plasticiser was only detected in
bottles, mostly vPET (with 60% detection frequency), from
California. Conversely, TCPP and 1-methyl-4-nitro-benzene
were solely detected in the bottles from Michigan in both
vPET and rPET (Table SB5). This pronounced variation high-
lights the differing manufacturing practices between the two
states and the lack of standardization in PET manufacturing
and recycling. This variability is problematic for effective and
representative risk assessment of PET materials as well as
a potential barrier to the use of recycled materials, because
manufacturers have no way of knowing which substances might
be present in recycled PET.39 More standardization in additive
uses and design for recyclability could help overcome these
challenges, increase recyclability40 of products, and reduce the
presence of hazardous compounds.
3.4 Nuclear receptor bioassays

A diverse array of bioactivities was observed across the eight
receptor-based assays, with measurable responses in ve
endpoints: thyroid hormone b receptor (TR) antagonism,
estrogen receptor a (ER) antagonism, ER agonism, androgen
receptor (AR) antagonism, and peroxisome proliferator
This journal is © The Royal Society of Chemistry 2025
activated receptor g (PPARg) agonism (Table SA9). Broadly,
relatively low ER agonism was observed, with three recycled (17–
45%) product extracts and two virgin (13–24%) extracts exhib-
iting low to moderate agonism. More signicant ER antagonism
was observed, with six recycled (10–65%) and eight virgin (22–
100%) extracts, respectively, exhibiting moderate to high ER
antagonism (Table SA9). One recycled material extract exhibited
AR agonism and ve exhibited antagonism (11–24%), relative to
ve exhibiting antagonism among the virgin materials (15–
35%). Seven extracts both of recycled (11–56%) and virgin (10–
57%) materials exhibited low to moderate TR antagonism. Two
recycled (13–17%) and two virgin (12–26%) material extracts
exhibited a low degree of PPARg agonism (Fig. SA4). Bottles and
textiles extracts exhibited mixed proles: for example, thyroid
hormone receptor b antagonism was higher in textile samples
than in bottles, whereas differences in the other receptor
responses did not reach statistical signicance (t-test, p > 0.05).
Moreover, no clear relationship emerged between PET type
(virgin vs. recycled) and overall bioactivity. This variability
reects the chemical complexity of both vPET and rPET mate-
rials and the potential for PET bottles as well as children's toys
and clothes to contain endocrine disruptive chemicals. The
detection of effects on multiple receptors highlights the need
for follow-up studies employing larger sample sets, other
bioactivities, and further characterisation.

4 Environmental implication

The results of this study highlight the diversity of hazardous
compounds that can be present in virgin and recycled PET
bottles and textiles; additionally, the results did not indicate
signicant contribution of recycling to the overall contamina-
tion of PET other than for benzene in bottles. Their presence in
general suggests that PET may pose exposure risk to people and
the environment via either food contact or leaching in the
environment. Several NIAS previously reported in PET products
and known to migrate16 were also detected in the solvent
extracts in this work. Some were found at lower levels in rPET
than vPET, while benzene was detected in every rPET sample
but in only one vPET sample, echoing concerns regarding new
contaminants introduced by the PET recycling process, in part
due to PVC and other foreign materials mixed into PET recy-
cling. The detection of PMTs and OPEs includingmelamine and
other ame retardants in water leachate is notable because
these were leached under environmentally relevant, aqueous
conditions. As such, these substances may pose a more imme-
diate contamination risk to the beverages and environments
where these plastics can end up. Child textiles, which can pose
contamination risk to watersheds via laundry, and exposure risk
to children via dermal exposure or mouthing, showed
a different prole than bottles, with much more abundant
styrene, triethylene glycol, acetaldehyde, and formaldehyde.
Importantly, recycled and virgin PET and textiles exhibited
endocrine disruptive effects in in vitro assays, indicating a need
to further evaluate the potential environmental and human
health risks associated with these materials and their inherent
chemical mixtures.
Environ. Sci.: Processes Impacts, 2025, 27, 3431–3439 | 3437
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The diversity in detectable additives and NIAS in the ana-
lysed items also highlighted the need for standardization of
plastic additive uses in plastic products – especially products
with high potential for human exposure such as beverage
bottles and children's items. Currently, plastic additive use is
predominantly driven by producer needs and preferences,
ignoring the potential impacts that the resulting chemical
cocktails have on product recyclability as well as the health and
well-being of our environment and children.
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