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To meet the growing demands of the electric vehicle market, it is urgent to search for high-nickel
cobalt-free layered cathodes for lithium-ion batteries (LIBs) to boost electrochemical energy storage.
However, their practical application is severely limited by some disadvantages in terms of relatively high
cost, inherent structural instability and severely detrimental phase transitions. Herein, an Na-doped
LiNig.oMng 06Alo.040, sample was fabricated by a simple high-temperature solid-state method. When
evaluated as a cathode for LIBs, it delivers prospective electrochemical performance with a high
capacity of 252.98 mA h g™t at 0.1C and excellent cycling stability of 86.7% after 100 cycles at 0.5C. The
significant improvement of electrochemical performance is primarily attributed to the broadened Li
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interlayer spacing and stabilized crystal structure by introducing sodium ions. The present work may

Published on 25 Waxabajjii 2025. Downloaded on 16/10/2025 3:00:55 PM.

rsc.li/pccp

1. Introduction

The excessive emission of carbon dioxide and other greenhouse
gases has intensified the greenhouse effect, resulting in a series
of negative consequences such as the deterioration of the global
climate." To address these problems, the persistent pursuits of
advanced electric energy storage devices have stimulated plenty
of research efforts on the development of new energy storage
components. Lithium-ion batteries (LIBs) have aroused increas-
ing interest in recent years due to their high energy density, long
cycle life, lack of memory effect, and so on.*” Among many
components of batteries, the cathode plays a pivotal role in
determining the capacity, operating voltage, and energy
density.>®*° As is well known, the most widely utilized ternary
cathode materials for LIBs are LiNi,CoMn,O, (NCM) and
LiNi;_,_,Co,ALO, (NCA). However, the application of cobalt
element in these cathode materials is severely hindered due to
the scarcity of cobalt resources and high toxicity.'"""* Therefore, it
is a necessary trend to design well-suited cobalt-free ternary
cathode materials with enhanced electrochemical properties.
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demonstrate great potential in high-performance electrode materials by an Na-doped strategy.

Generally, high-nickel cobalt-free cathode materials suffer
from inherent structural and chemical instability, transition metal
dissolution and serious Li'/Ni** cation mixing caused by the
similar ionic radii of Li* (0.76 A) and Ni** (0.69 A)."*'* Moreover,
the rapid accumulation of internal stress in the highly delithiated
state could cause the continuous formation of microcracks, which
may lead to some side reactions by allowing the electrolyte to
penetrate the bulk phase along the cracks.”>'® These problems
significantly hinder the application of high-nickel cobalt-free
cathode materials. Consequently, many efforts have been con-
ducted to explore effective strategies to enhance the electrochemi-
cal performance of these materials, such as element doping,"”>°
surface coating,”’** and microstructure adjustment.>*>°

Among these strategies, element doping is widely utilized
because of its high flexibility. The ionic radius of Na ions is
1.02 A, which is closest to Li* (0.76 A) in size. Through Na-doping
strategies, sodium ions could occupy the site of lithium ions and
result in the expansion of the interlayer spacing due to its larger
ionic radius, which could facilitate the transport of lithium-ions
and enhance the electrochemical performance by accommodat-
ing more lithium ions.*”*® Furthermore, they can act as pillar
ions in high-nickel ternary materials to stabilize the material
structure. Park et al. synthesized Na-doped LiNi, gMn, ,0, cath-
ode material by Ph-dependent polymer-assisted surface dense
doping (Nax@NM).* The study showed that Na-doping provides
a larger channel for lithium-ion diffusion by expanding the
interlayer spacing, and effectively inhibits the formation of oxygen
vacancies and structural degradation under high-voltage cycles.
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These reports suggest that Na-doping can strengthen the elec-
trochemical properties of high-nickel ternary cathode materials.

Herein, we have proposed an Na-doping strategy for
LiNiy oMnyg 06Alg.040, high-nickel cathode materials by using a
simple high-temperature solid-state method. The unique Na-
doping strategy could expand the interlayer spacing of Li" and
enhance the diffusion coefficient of Li ions; meanwhile, it could
reduce the Li*/Ni*" cation mixing and improve the structural
stability of the target material. As a result, when used as an
electrode for LIBs, it exhibits high specific capacity, superior
rate performance and excellent cycling stability.

2. Experimental section
2.1. Material synthesis

Firstly, 1 L of deionized water was added to a three-neck flask filled
with N, for 2 h, and heated at 50 °C to accelerate the removal of
dissolved oxygen. Subsequently, a certain amount of NiSO,-6H,0,
MnSO,-H,0, Al(NO3);-9H,0, PEG6000 and 10 mL of PEG200 (as
dispersant) were dissolved in deionized water, and completely
mixed in a three-neck flask at 82 °C; di-n-butylamine was then
added into the three-neck flask as a precipitant. Afterward, the
synthesized precursor was filtered, washed, and dried at 80 °C for
12 h. Finally, the obtained NijoMny sAlp04(OH), precursor was
mixed with LIOH-H,O at a molar ratio of 1:1.02. Finally, the target
LiNip oMng 06Alp.040, (NMA964) sample was obtained by pre-
calcinating at 500 °C for 5 h and calcinating at 750 °C for 15 h
with a flowing oxygen atmosphere.

Na-doped LiNiyoMng g6Alp.040> (Na-NMA964): the Nijo-
Mny 6Aly.04(OH), precursor, LIOH-H,0, and Na,CO; were mixed
in a beaker filled with alcohol in the molar ratio of 1:1.02 — y:y
(y =0.01, 0.02, 0.03). The mixture was then placed in an ultrasonic
machine at 60 °C for 90 min. Afterward, the mixture was dried
in a constant-temperature oven at 120 °C for 4 h. Finally, the
Na-NMA964 samples (labeled as 1%Na-NMA964, 2%Na-NMA964,
and 3%Na-NMA964) were fabricated by pre-calcinating at 500 °C
for 5 h and calcinating at 750 °C for 15 h.

2.2. Material characterization

The crystal phases of the pristine and Na-doped samples were
analyzed by using X-ray diffraction (Smartlab, Rigaku) in the
Cu Ko range at a scanning rate of 10° min~" in the 20 range of
10-80°. Rietveld refinement was conducted through the software
FullProf to obtain the detailed crystal parameters. Scanning
electron microscopy (SEM, JSM-7900F) was used to study the
surface morphology. The elemental composition of the material
was analyzed by using energy-dispersive spectroscopy (EDS). The
internal structure of the material was further investigated by
transmission electron microscopy (TEM, Tecnai G*> F30). The
surface valence states of the elements were obtained using X-ray
photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi).

2.3. Electrochemical measurements

The electrode material, polyvinylidene fluoride (PVDF) and
carbon black were evenly mixed with a weight ratio of 8:1:1,
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and an appropriate amount of NMP was added to form a slurry.
Then the slurry was coated on aluminum foil and dried in a
vacuum drying oven at 80 °C. The diaphragm is porous poly-
propylene, the electrolyte is a mixture by dissolving 1.0 M of LiPF¢
into the component solvent of ethylene carbonate/dimethyl
carbonate/diethyl carbonate (EC:DMC:DEC = 1:1:1 vol%).
CR2032 coin batteries were assembled in an Ar gas glove box
(0O, < 0.1 ppm, H;O < 0.1 ppm). The electrochemical perfor-
mance tests were performed by using a Neware battery test
system (CT-4008T) with a voltage range of 2.5-4.3 V (vs. Li/Li")
at room temperature. Cyclic voltammetry (CV, scan speed =
0.2 mV s~ ', voltage window = 2.5-4.3 V) (Chenhua, Shanghai,
China) and electrochemical impedance spectroscopy (EIS, fre-
quency range = 100 mHz-100 kHz, Chenhua, Shanghai, China)
were performed on a CHI660E electrochemical workstation.

3. Results and discussion

The effect of Na-doping on the structure and electrochemical
properties of high-nickel ternary cathode materials is system-
atically studied. As shown in Fig. 1a, all of the strong diffraction
peaks can be indexed to the hexagonal structure of a-NaFeO, with
the R3m space group. Notably, no impurity peaks are detected,
indicating that Na-doping does not induce the formation of
additional impurity phases. Compared with the NMA964 mate-
rial, the (003) peak of the Na-NMA964 sample shifts towards a
lower angle, which signifies an expansion of the lattice parameter
and is conducive to enhancing the transport characteristics of
lithium ions (see Fig. 1b).*° Furthermore, the (018)/(110) diffrac-
tion peaks in Fig. 1c of all samples are well split, signifying the
higher ordered layered structure.*’> Fig. 1d illustrates the
corresponding crystal structure of the NMA964 and Na-NMA964
samples, revealing a possible structural change in which sodium
ions replace the positions of the lithium ions. Generally, the
intensity ratio of the (003) and (104) peaks is closely related to the
Li*/Ni** cation mixing, and a value exceeding 1.2 delivers a lower
degree of Li'/Ni** cation mixing and a more ordered crystal
structure.”*>® As shown in Fig. le, the intensity ratios of the
(003)/(104) peaks of all samples exceed 1.2, suggesting that all
samples present relatively lower degree of Li*/Ni** cation mixing.
Notably, the 2%Na-NMA964 sample exhibits the highest intensity
ratio of the (003)/(104) peaks, implying that an appropriate
Na-doping amount could effectively reduce the degree of
Li*/Ni*" cation mixing of the target NMA964 sample. In other
words, insufficient or excessive Na-doping amount may result in
a negative impact on the orderliness of the crystal structures.
The structures of all samples are further identified by XRD
refinement, and shown in Fig. 1f-i. The corresponding refine-
ment parameters are listed in Table 1, and the R, and R,,;, values
are all lower than 10%, confirming that the refinement results are
reliable. It is noted that the c-axis tends to increase, which is
consistent with the observed shift of the (003) diffraction peak.
The c/a ratio in the Na-NMA964 material is about 4.9, suggesting
that the Na-doping procedure has little impact on the crystal
structure and delivers a well layered structure.*” From the visual
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Fig. 1 (a) XRD patterns of the as-prepared NMA964, 1%Na-NMA964, 2%Na-NMA964 and 3%Na-NMA964 samples. (b) and (c) Enlarged characteristic
peaks of (003) and (018)/(110). (d) The crystal structure diagrams of NMA964 and Na-NMA964. (e) Selected 003/104 planes. (f)—(i) Rietveld refinement
results. (j) c-axis, c/a, and the content of Ni?* in the Li layer under varying doping amounts.

Table 1 Crystal structure parameters of all samples

1003)/  Ni**in Li
Sample a(A) c(A) cla 1(104)  layer (%)
NMA964 2.8753 14.2130 4.9431 1.6121 4.80
1%Na-NMA964 2.8765 14.2165 4.9423 1.4579 5.94
2%Na-NMA964 2.8770 14.2185 4.9421 2.0118 2.48
3%Na-NMA964 2.8782 14.2188 4.9402 1.3269 6.40

bar chart in Fig. 1j, the proportion of nickel ions replacing
lithium ions is consistent with the 1(003)/I(104) ratios. It is
confirmed that moderate Na-doping amount can not only reduce
Li*/Ni*" cation mixing, but also maintain a well-ordered layered
structure. In addition, sodium ions occupy the sites of lithium
ions in the crystal structure of NMA964, and the interlayer
spacing will expand due to the larger ionic radius of sodium
ions, which is conducive to the intercalation/deintercalation of
lithium ions during the discharge/charge process.*®

The morphologies of the as-synthesized NMA964 and
Na-NMA964 samples were examined by SEM, and shown in

14256 | Phys. Chem. Chem. Phys., 2025, 27,14254-14263

Fig. 2a-d. All samples show secondary quasi-spherical particles,
and there are no significant changes in the morphologies
between Na-doped samples and the pristine sample, which
may be related to the relatively low amount of doping. A large
number of fine particles on the surface can increase the specific
surface area of the material, thereby shortening the diffusion
distance of lithium ions. EDS analysis was further performed to
investigate the elemental distribution of the Na-doped NMA964
sample, and shown in Fig. 2e. As can be seen, the target Ni, Mn
and Al, and Na elements are uniformly distributed on the
surface of the 2%Na-NMA964 sample, indicating that the Na
element was successfully incorporated into the NMA964 mate-
rial with a uniform distribution during the high-temperature
calcination process. Furthermore, Fig. 2f, g, i and j displays the
low-resolution and high-resolution TEM images of the NMA964
and 2%Na-NMA964 samples. Obviously, some clear lattice
fringes can be observed in all samples, indicating that the
prepared materials deliver good crystallinity.>®™*' From Fig. 2h
and k, the SAED patterns of all samples present well-defined
diffraction spots in the reciprocal space, revealing a typical

This journal is © the Owner Societies 2025
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Fig. 2 SEM images of (a) NMA964, (b) 1%Na-NMA964, (c) 2%Na-NMA964 and (d) 3%Na-NMA964. (e) EDS elemental mappings of the 2%Na-NMA964
sample. (f)—(k) TEM images of NMA964, 2%Na-NMA964, and the corresponding SEAD patterns.

single crystallized structure. Compared with the NMA964 sample,
the interlayer spacing of the (003) plane in the 2%Na-NMA964
structure enlarges from 0.478 to 0.486 nm, confirming that Na" is
successfully introduced into the crystal lattice. The above results
indicate that Na-doping does not change the objective material’s
structure, which is well consistent with the XRD patterns. More-
over, the increased interlayer spacing could effectively expand the
diffusion channels of lithium ions, which may significantly
accelerate the kinetic transport characteristics and improve the
structural stability of the NMA964 sample.

To acquire more detailed information on the surface chemical
composition of the high-nickel cathode materials, XPS was carried
out and presented in Fig. 3. As can be seen in Fig. 3a, the Ni 2p
spectra for both the NMA964 and 2%Na-NMA964 samples can be
fitted into two peaks. The Ni 2p,/; peaks at the binding energies of
854.28 and 855.88 eV are attributed to Ni** and Ni*',
respectively.>*> It is noted that the proportion of Ni** on the
surface of the NMA964 sample is higher than that of the 2%Na-
NMA964 sample, which could have resulted from the Na-doping
strategy by mitigating the cationic mixing degree.*® In contrast, the
peak positions of Mn 2p do not significantly shift, indicating that
Na-doping has almost no influence on the valence state of Mn
(Fig. 3b). The evident Na 1s peak in Fig. 3c is located at about
1068.8 eV, demonstrating that Na® is doped into the NMA964
material.** In addition, Fig. 3d shows the C 1s fine XPS spectra of
the NMA964 and 2%Na-NMA964 samples, and the characteristic
peaks at 284.4, 285.7, 288.5 and 289.9 eV could be ascribed to the
C-C, C-0, C=0, and CO;*" groups, respectively.”> According to
the C 1s fine XPS spectra of the NMA964 and 2%Na-NMA964
samples, the integral area ratio of CO;>~ in 2% Na-NMA964 is
smaller, confirming the reduction in Li,CO; on the surface. It

This journal is © the Owner Societies 2025

needs to be emphasized that the lower residual alkali content on
the surface of the 2%Na-NMA964 material can effectively reduce
the release of CO, and O, during cycling, thereby enhancing the
structural stability of the electrode material.

The influence of Na-doping on the electrochemical perfor-
mance of the NMA964 cathode materials is evaluated by
assembling coin-type cells. Fig. 4a-d show the CV curves for
the initial three cycles of the NMA964 and Na-NMA964 samples.
Obviously, three pairs of redox peaks can be observed for all
electrodes, which correspond to the typical H1-M, M-H2, and
H2-H3 phase transitions, respectively.’®*” It is generally con-
sidered that the potential difference (AV) of the first pair of
redox peaks reflects the interfacial polarization of the cathode
material.*®*° The potential differences for the NMA964, 1%Na-
NMA964, 2%Na-NMA964, and 3%Na-NMA964 samples are
0.241, 0.206, 0.181, and 0.277 V, respectively. Predictably, the
2%Na-NMA964 sample exhibits optimal reversibility and mini-
mum degradation of the redox peaks, implying that Na-doping
could effectively improve the stability of the layered structure of
the material. Consistent with the CV curves, three oxidation/
reduction peaks are observed in the dQ/dV curves of the
Na-NMA964 and 2%Na-NMA964 samples, corresponding to
the H1 - M, M — H2, and H2 — H3 phase transitions during
the delithiation process (see Fig. 4e and f). Therein, the phase
transition between H2 and H3 could lead to an abrupt contrac-
tion and expansion of the c-axis lattice, which may cause
irreversible pulverization of the structure and rapid attenuation
of the capacity.’>>" As a result, the higher reversibility of the
transition between H2 and H3 is observed in the 2%Na-
NMA964 sample, suggesting a greatly enhanced structural
stability after Na-doping modification.

Phys. Chem. Chem. Phys., 2025, 27,14254-14263 | 14257
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Fig. 5a shows the initial galvanostatic charge-discharge similar platforms, indicating that the incorporation of sodium
(GCD) curves of all samples at 0.1C within a voltage range of element could not induce additional redox reactions. The
2.5-4.3 V. As can be seen, the GCD curves for all samples exhibit initial discharge capacities of the NMA964, 1%Na-NMA964,
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Fig. 5 (a) The initial charge/discharge curves. (b) Rate capability. (c) Bar chart of rate performances. (d) and (e) Galvanostatic discharge curves at different

rates of the NMA964 and 2%Na-NMA964 samples. (f) Cycling performances.

between Z' and w2,

2%Na-NMA964 and 3%Na-NMA964 electrodes are 220.93,
236.78, 252.98, and 205.90 mA h g~ ', respectively. The 2%Na-
NMA964 sample exhibits an optimum initial discharge capacity
with a relatively high coulombic efficiency of 97.47%, which is
primarily attributed to the fact that the larger ionic radius of
the sodium ion could expand the diffusion channels of the
lithium ions.>® The rate capability of the NMA964, 1%Na-
NMA964, 2%Na-NMA964, and 3%Na-NMA964 samples was
evaluated at various discharge current densities from 0.1 to
5C, and shown in Fig. 5b and c. With the increase of the current
density, the discharge capacity of all samples decreases. Nota-
bly, the 2%Na-NMA964 sample delivers minimum capacity
attenuation, which is mainly attributed to the broadened
diffusion channels of lithium ions by the larger ion radius of
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(g) Cycling performances at 1C. (h)—-(j) Nyquist plots and linear fitting plots

Na'. Additionally, the discharge voltage difference AV for the
2% Na-NMA964 sample between 0.1C and 5C is 0.4231 V, which
is less than that for the pristine material with AV=0.4892V (see
Fig. 5d and e), showing a great electrochemical reversibility.
Fig. 5f shows the cycling performance of the fabricated
samples. As can be seen, the pristine NMA964 electrode has
an initial discharge capacity of 195.60 mA h ¢~ ' at 0.5C, which
is slightly lower than that for the 2%Na-NMA964 sample
(202.75 mA h g ). In addition, the NMA964 sample displays
a relatively high capacity retention of 82.19% after 120 cycles,
while the capacity retention for the 2%Na-NMA964 sample is
83.15%. Such great improvement in cycling performance is
mainly attributed to the fact that Na-doping with an appro-
priate amount can effectively decrease the extent of Li*/Ni**
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Table 2 Comparison of the electrochemical performances of the Na-NMA964 material with previously reported similar materials
Modification 1st discharge Discharge capacity  Capacity Voltage Current
Material methods capacity(mAhg™) (mAhg) retention/cycles  window (V)  density  Ref.
LiNig g5C00.09Al0.0305 Ta doping - 171 93%/100 2.7-4.3 1C 52
LiNig.025C00.03MNg 0450, B doping 195.7 149.3 76.3%/150 2.8-4.3 1C 53
LiNiyoMng 10, Al doping 185.8 166.1 89.4%/180 2.7-4.3 1C 54
LiNig oMng 10, Y/W doping 183.0 150.2 82.1%/100 3.0-4.3 1C 55
LiNig g3C0¢.11Mng 60, K doping - - 63.8%/200 2.8-4.3 1C 56
LiNig.9sMng 04Alp.0205 Mg/Nb/Zr co-doping  199.6 147.6 73.94%/200 3-4.5 1C 57
LiNip oMy 6Alo 0402 Na doping 181.94 135.30 74.37%/250 2.5-4.3 V 1C This
work

cation mixing and expand the channels of Li" transmission,
thereby improving the discharge capacity.**”* Moreover, the
Na-doping strategy could stabilize the crystal structure by acting
as a pillar-ion. However, the capacity retention of the 3%Na-
NMA964 sample is significantly lower than that of the NMA964
material, which may be associated with the lattice distortion
caused by excessive Na-doping.**** In order to further evaluate
the electrochemical properties under harsh conditions, long-term
cycling at a high current density was performed. As exhibited in
Fig. 52, the 2%Na-NMA964 sample achieves a reversible capacity
of 135.30 mA h g~ " at 1C after 250 cycles, corresponding to the
capacity retention of 74.37%, while the NMA964 sample only
obtains 70.27%. Table 2 shows the comparison of the cycling
performance of the optimized 2%Na-NMA964 sample with
related nickel-rich cathode materials at 1C.>*"’

EIS is used to investigate the kinetic processes for the
NMA964 and 2%Na-NMA964 samples before and after 100 cycles,
and plotted in Fig. 5h and i. As can be seen, the EIS curves are
generally composed of two semicircles in the high and mid-high
frequency region, along with a slash in the low-frequency region.
The intercept on the real axis indicates solution resistance (R;),
while the high-frequency region reflects the cathode material
surface-film impedance (R.). The mid-high and low-frequency
regions correspond to the charge transfer impedance (R.,) and
Warburg impedance (Z,).>®*° The fitting results are given in
Table 3. The R value of NMA964 increases from 18.90 to 59.60 Q
after 100 cycles, much higher than the R, value of 2%Na-NMA964
(7.13 to 15.62 Q). This may be due to the fact that Na-doping
inhibits the harmful phase transition and enhances the kinetics
of charge transfer between the electrode material and the electro-
Iyte interface.*®

Furthermore, to investigate the impact of Na-doping on
lithium ion diffusion kinetics, the diffusion coefficients of the
lithium ion for NMA964 and 2%Na-NMA964 are calculated
based on the low-frequency region of the EIS. The calculation
equation is as follows:

Z' = Ry + Ry + 00~ 12 (1.1)
Dy = RPT?/(2A%n* F* C*6°) (1.2)

In the equation, R represents the gas constant (8.314 ] (mol K) ™),
A signifies the surface area of the electrode, and T stands for the
absolute temperature (298.15 K at 25 °C). F is Faraday’s con-
stant (96485 C mol~'). The symbol n denotes the number of
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Table 3 Impedance parameters for NMA964 and 2%Na-NMA964 elec-
trodes obtained from equivalent circuit fitting

Sample Cycling Re(Q) Reei (Q) R (Q) Dy (em?s™)
NMA964 Fresh 1.82 9.25  18.90 1.01 x 10 *3
100 cycles 2.11 34.70 59.60
2%Na-NMA964 Fresh 3.26  10.03 713 3.74x 107"

100 cycles 3.10 25.36 15.62

electrons transferred in the electrochemical reaction, C repre-
sents the lithium-ion concentration in the material phase, w is
the angular frequency in the low-frequency region, and ¢ is the
Warburg coefficient.®®®' The calculated Dy;+ value of 2%Na-
NMA964 is 3.74 x 10" em® s, which is much higher than
1.01 x 107" cm? s ! for NMA964. This result further demon-
strates that Na-doping effectively enhances the insertion and
extraction of Li" by expanding the interlayer spacing.

The XRD pattern of the NMA964 and 2%Na-NMA964 after
250 cycles is shown in Fig. 6a and b. Compared to the 2%Na-
NMA964 sample, the split peaks corresponding to 018/110 in
the crystal structure of NMA964 nearly vanish, which implies the
layer structure disruption. This is consistent with the aforemen-
tioned results of electrochemical performance. Secondary par-
ticle cracking has been considered as the failure mechanism of
the Ni-rich cathode.®® Fig. 6¢ and d reflects the morphologies of
NMA964 and 2%Na-NMA964 after 250 cycles at 1C. The NMA964
sample contains several cracks, which may induce electrolytes
to penetrate the particles along the crack and lead to side
reactions. In contrast, the cycled 2%Na-NMA964 sample second-
ary microsphere maintains the original morphology, which may
relate to inhibition of the lattice expansion and contraction
during the H2-H3 phase transition, thanks to the lattice insertion
of Na to enhance the structural stability.

4. Conclusion

In summary, a Na-doped 2%Na-NMA964 sample has been
successfully synthesized by using a high-temperature solid-
state method. Na-doping could effectively broaden the inter-
layer spacing due to its large ionic radius, and reduce the Li'/
Ni*" cation mixing degree by occupying the Li* site. Moreover,
as a pillar ion, it can inhibit the migration of Ni** to the Li"
layer at the deep delithiated state. As expected, the 2%Na-
NMA964 sample has a relatively high initial capacity of

This journal is © the Owner Societies 2025
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250 cycles at 1C.

252.98 mA h g~ at 0.1C within a voltage range of 2.5-4.3 V, and
delivers an excellent capacity retention rate of 86.70% after
100 cycles at 0.5C, which is higher than that of the pristine NMA964
sample. The findings may provide an effective approach for
exploring high-performance electrode materials for LIBs.
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