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Valorization of shoe sole waste into
high-performance cationic dye sorbents via
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Ethylene-vinyl acetate (EVA)-based copolymers are widely employed in various applications such as
packaging, adhesives, and shoe soles due to their relatively low cost and versatile properties, which are
controlled by their chemical composition. Noteworthily, EVA in shoe soles is commonly crosslinked,

which is necessary to increase their melt strength and other material properties for durable use. However,
this crosslinked nature precludes traditional melt reprocessing to address the end-of-life of crosslinked
EVA materials, posing a critical sustainability challenge for waste management which necessitates new re-

cycling methods. This work develops a simple sulfonation-based method to valorize virgin EVA and shoe

soles from real-world waste, imparting sulfonic acid groups on to the polymer backbones, while partially

retaining the macroscopic foam structures. The reaction kinetics of sulfonation-based functionalization

and their impact on the development of pore structures of EVA and their derived shoe wastes are system-

atically investigated. Importantly, the presence of acid groups from the upcycled shoe wastes leads to

strong interactions with cationic micropollutants, enabling their high performance as sorbent materials
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1. Introduction

Copolymers composed of ethylene and polar repeating units
represent an important class of high value commodity
materials, whose properties can be tuned by their chemical
composition for addressing various applications, such as
adhesives, packaging films, and foams. In these systems, ethyl-
ene monomers are typically polymerized with the presence of
a variety of different polar vinyl comonomers, including vinyl
esters, vinyl acrylates, and acrylic acids under reaction con-
ditions similar to established methods for low-density poly-
ethylene (LDPE) synthesis. Generally, radical polymerization
greatly favors the insertion of polar monomers like vinyl
esters, acrylates, and acrylic acids, resulting in their relatively
low incorporation into polyolefin backbones (<20 wt% of the
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for water remediation. The resulting materials can efficiently remove methylene blue and crystal violet
from aqueous solution, exhibiting high sorption capacity and fast kinetics. Collectively, this work demon-
strates a simple method to convert real-world shoe sole waste into value-enhanced sorbent products
with high potential to address emerging micropollutant threats.

comonomers). However, ethylene and vinyl acetate monomers
exhibit very similar reactivity in free radical polymerization,*
and this feature enables the synthesis of ethylene-vinyl acetate
(EVA) copolymers with access to a wide range of vinyl acetate
contents (from 0%-100%),> controlled by adjusting the relative
molar ratio of these two monomers. As a result, the varied
chemical composition of EVA-based polymers leads to the
control over their material properties, including crystallinity,
glass transition temperatures, and solubility; here we note that
EVA copolymers make up the majority of all polyethylene copo-
lymer production which is estimated to be 4.8 million tons in
2024.%*

The broad use of EVA in consumer products requires the
development of effective recycling methods to sustainably
manage their end-of-life, preventing them from becoming
landfilled or incinerated, which can lead to the formation of
microplastic pollutants and greenhouse gas. To “close-the-
loop” of plastic materials, mechanical recycling is a widely
employed method. However, it can result in downgraded
material properties and processability of the recovered pro-
ducts due to the process involving high temperature and high
shear environments. To reduce the negative impacts of re-
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cycling on EVA material properties, multiple studies have
investigated alternative recycling methodologies, such as the
conversion of EVA into dynamically crosslinked networks with
improved mechanical performance retention upon multiple
reprocessing cycles.”” While these methods represent an
effective strategy for increasing the properties of recycled EVA
materials with potentially enhanced product value, they often
involve multiple processing steps, and cannot be applied to
address crosslinked EVA wastes. In fact, greater than 50% of
EVA produced is employed to manufacture crosslinked foams,
which are primarily utilized in the soles of shoes within the
footwear industry. Therefore, developing methods to repurpose
and enhance the value of crosslinked EVA waste is crucial for
advancing environmental sustainability.

Currently, conventional methods for recycling crosslinked
EVA copolymer-based post-consumer wastes primarily rely on
mechanical grinding, which converts the foams to usable
powders with small particle sizes. The deconstructed foams
can then be employed as fillers in various composites includ-
ing virgin polymer/waste EVA blends for flexible foam pro-
duction and polymer-toughened cements.®**? For instance, Li
et al. demonstrated that deconstructing waste EVA from the
footwear industry through solid-state shear milling enabled
the production of micron-sized porous particles, which could
then be blended with thermoplastic polyurethane and sub-
sequently foamed via supercritical carbon dioxide to generate
new composite materials.® Using this method, the composite
foam containing recycled EVA exhibited reduced residual
strains after compression, as well as enhanced compressive
strengths, indicating that these waste-containing products
could be re-used in the original intended use in footwear.
While these methods for recycling crosslinked EVA are
effective for waste repurposing, they can involve multiple pro-
cessing steps and potentially limit the value of the starting
material.

Alternatively, upcycling of crosslinked EVA wastes could be
accomplished by employing chemical functionalization to
enhance their performance. For instance, Leibfarth et al. have
developed a versatile platform for functionalizing hydrocarbon
chains that can be employed to upcycle polyolefin-derived con-
sumer products through the addition of different functional
groups, including various ionic functionalities.'® It is note-
worthy that ionic functionalization of commodity polymers
can also be employed to tune their chemical properties, which
can be leveraged to increase their affinity toward guest mole-
cules such as environmental contaminants. Currently, indus-
trial and agricultural activities have resulted in the increased
contamination of water sources with multitudes of different
organic and inorganic micropollutants. The presence of in-
organic metal cations like mercury, lead, and cadmium,
among others, and organic cations from the textile and agri-
culture industries has been linked to multiple negative health
effects in exposed populations."*’® Functionalizing polymer
materials with anionic functionalities has previously been
leveraged to remediate these cationic pollutants from contami-
nated water.'® In particular, many commercial ion-exchange
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resins derived from highly crosslinked styrene/divinyl benzene
copolymers containing acidic functional groups can be used to
remove specific pollutants from aqueous media.'”” As an
example, Dawson et al. synthesized hypercrosslinked polymers
from styrene and divinyl benzene monomers which were func-
tionalized with sulfonic acid functional groups for the targeted
adsorption of heavy metal ions.'® The polymers exhibited high
adsorption capacities for cesium and strontium even in the
presence of other competing cations like sodium and potass-
ium. Liu et al. employed a sulfonated polystyrene-based resin
system for the removal of a cationic micropollutant, specifi-
cally methylene blue, from water with high efficiencies."
While these materials have demonstrated excellent capacities
for removing cationic contaminants, their widespread use in
the water treatment industry can be prohibited by production
costs and challenges in sourcing raw materials. Currently, the
functionalization of EVA copolymers for the purpose of water
remediation has not been thoroughly explored in the literature.
Some works have employed sulfonation of EVA for improved
adhesive properties, but only employ the functionalization as a
surface treatment, limiting the utility of the resulting
materials.”® Previous works have demonstrated that poly(ethyl-
ene-co-vinyl alcohol) (EVOH) copolymers, the hydrolyzed
counterpart of EVA copolymers, can be functionalized through
reacting various sulfonating reagents like sulfosuccinic acid
and chlorosulfonic acid with the free hydroxyls attached to the
repeat unit to improve the material’s ability to adsorb ions for
applications as actuators and materials for blood clot
prevention.>** However, these functionalization processes
could be challenging to apply to EVA waste materials as they
require multiple reaction steps to achieve the final products.
Developing simple methods to upcycle waste materials into
sulfonated resins could enable their widespread use across
many applications.

This work demonstrates a simple approach for the conver-
sion of crosslinked EVA copolymer wastes, sourced from dis-
carded shoe soles (real-world waste), into sulfonic acid-functio-
nalized sorbents for the remediation of chemical contami-
nants from aqueous media. Importantly, the versatility of the
upcycling strategy developed herein enables the upcycling of
waste with unknown compositions, which can be exceedingly
challenging, yet vital for addressing plastic waste management
in practice. Specifically, our approach involves a one-step treat-
ment to functionalize the EVA-derived materials, resulting in a
high content of sulfonic acid moieties along the polymer back-
bone. During this process, portions of the inherent cell struc-
tures of the crosslinked and foamed waste materials can be
retained. We note that previous works using similar tech-
niques to sulfonate polyolefins require long reaction times due
to diffusion limitations, but the presence of the vinyl acetate
repeat unit and fuming sulfuric acid as the sulfonating agent
accelerates the functionalization process. Using this method,
shoe sole waste can become high performance sorbents for
removing cationic contaminants from aqueous media, with
high sorption capacity and fast kinetics. This work demon-
strates an efficient route for repurposing crosslinked EVA

© 2024 The Author(s). Published by the Royal Society of Chemistry
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waste, typically found in the footwear industry, into highly
functional materials for environmental remediation.

2. Experimental section
2.1 Materials

Ethylene-vinyl acetate (EVA) (M, = 150000 g mol™', vinyl
acetate content = 40 wt%) was obtained from Scientific
Polymer Products Inc., which was used as a model system, and
the crosslinked EVA foams were sourced from used footwear
from two different brands. Fuming sulfuric acid (20%-30%
free SO3) was purchased from Fisher Scientific and methylene
blue hydrate and crystal violet hydrate were purchased from
TCI Chemicals. Sodium chloride (NaCl, 99.0%) was purchased
from VWR, and sodium hydroxide (NaOH, >98%) and phe-
nolphthalein were purchased from Sigma-Aldrich. All com-
pounds were used as received. Deionized water was produced
through filtering tap water with a Millipore Mill-Q Type 1 fil-
tration system.

2.2 Preparation of sulfonic acid-functionalized polymers

The shoe soles were cut into 10 mm X 10 mm x 10 mm cubes
prior to reaction. In a typical sulfonation reaction, 500 mg of
the EVA polymer or crosslinked waste foams were introduced
into a 100 mL reaction vessel and 25 mL of fuming sulfuric
acid was added to the vessel. It is worth noting that the reac-
tion mixture was not stirred, and the individual shoe waste
cubes were weighted down with glass Pasteur pipettes to
ensure they remained submerged in the acid. The vessel was
then placed into a crystallization dish filled with thermal
beads (Lab Armor) heated using a hotplate at 150 °C. After the
desired reaction time, the vessel was removed from the crystal-
lization dish and allowed to cool, and the contents were separ-
ated using a glass fritted funnel. After the acid was removed,
the polymer was thoroughly washed with deionized water
(200 mL at least 3 times) to remove residual acid and bypro-
ducts. After washing, the polymer was dried under vacuum at
60 °C for 4 h before use.

2.3 Characterization

A Nicolet 6700 spectrometer (Thermo Fisher) with an attenu-
ated total reflectance (ATR) attachment was employed for
Fourier transform infrared (FTIR) spectroscopy experiments
using 32 scans with a resolution of 1 cm™. Gel fraction
studies were performed by submerging the samples in di-
chloromethane (DCM) for 24 h and measuring the remaining
mass after drying under vacuum at 30 °C for 3 h.
Thermogravimetric analyses were performed on a Discovery
550 thermogravimetric analyzer (TGA) from TA Instruments.
The samples were heated from room temperature to 800 °C at
a ramp rate of 10 °C min~" under a nitrogen atmosphere. TGA
experiments were also performed in air to determine the
residual inorganic contents of the foams by heating the
samples to 800 °C with a ramp rate of 10 °C min "

Differential scanning calorimetry (DSC) experiments were con-
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ducted using a Discovery 250 DSC from TA Instruments. A
heat-cool-heat procedure was used from —90 °C to 200 °C at a
ramp rate of 10 °C min™" during heating and 5 °C min™*
during cooling. The amount of acid incorporated through the
sulfonation procedure was determined through Mohr’s titra-
tions, following an established method. Briefly, the sulfonated
samples were soaked in 0.25 M NaCl for 24 h to exchange the
protons of the sulfonic acid with sodium ions. The resulting
solution was titrated with 0.025 M sodium hydroxide solution
using phenolphthalein as an indicator. The amount of sulfo-
nic acid installed in the polymer was determined using the fol-
lowing equation:

. 1% M,
Acid content = 20N NOH (1)

My

where Vyaon is the volume of NaOH used to achieve pH 7 (L),
Myaon is the molarity of the NaOH solution (mmol L), and
my, is the mass of the polymer sample (g). Scanning electron
microscopy (SEM) images were recorded using a Zeiss Ultra 60
field-emission scanning electron microscope with an accelerat-
ing voltage of 17 kV. Nitrogen physisorption experiments
were carried out at 77 K to investigate the sulfonated polymer
porosity. The Brunauer-Emmett-Teller (BET) method was
employed to determine the specific surface area. Ultraviolet-
visible (UV-vis) spectroscopy experiments were conducted with
a Genesys 30 visible spectrophotometer from Thermo
Scientific using a wavelength range of 400-700 nm at a resolu-
tion of 1 nm using a quartz cuvette as the sample holder.

2.4 Adsorption experiments

Adsorption experiments were conducted using methylene blue
hydrate and crystal violet hydrate as model cationic micropol-
lutants. Solutions of each dye were prepared at known concen-
trations (in the range of 1-15 mg mL™") and measured through
UV-vis spectroscopy to determine the extinction coefficients of
the dye molecules using the Beer-Lambert law (eqn (2)):

A =¢ebC, (2)

where A is the absorbance measured through UV-vis, ¢ is the
extinction coefficient, b is the path length, and C is the concen-
tration of the solution. The extinction coefficients were then
employed to determine the concentration of dye in the solu-
tion after adsorption, and thus used to calculate the amount
of dye adsorbed by the sorbent. All adsorption experiments
were carried out at a sorbent dosage of 0.4 mg mL™" and all
sorbents were dried under high vacuum at 60 °C for 12 h prior
to the adsorption experiment. To study the adsorption kinetics
of both dyes, the sorbents were added to 50 mg L™ dye solu-
tions and shaken at 800 rpm using a Basic Vortex Mixer from
Thermo Scientific. At regular time intervals, 50 pL were
removed and diluted to 1 mL with DI water for UV-vis measure-
ments. The quantity of dye adsorbed was calculated using

eqn (3):
(Co—CyV

q="—" 3)

M
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where q is the quantity adsorbed (mg g™'), C, is the initial con-
centration (mg L"), C, (mg L") is the concentration of dye
after a given time, V is the volume of the dye solution (L), and
M is the mass of the sorbent used in the adsorption experi-
ment (g). The adsorption kinetics results were fit to a pseudo-
second order model using eqn (4):

t_+,. 1
Q: Qe kQe2’

where Q. is the quantity of dye adsorbed at equilibrium, Q; is
the quantity of dye adsorbed at a given time, ¢, and & is the rate
constant. Adsorption isotherms were developed using the same
procedure (0.4 mg mL™" sorbent dosage, 800 rpm) in dye solu-
tions ranging in concentration from 50 mg L' to 400 mg L.
After 12 h of adsorption, aliquots were taken for UV-vis measure-
ments. The resulting isotherms were fit to both Langmuir and
Freundlich models using eqn (5) and (6), respectively:

(4)

C,
Qezl—e

G
kQm
where Q. is the quantity of dye adsorbed at equilibrium, C. is

Qm
the concentration of dye at equilibrium, k is the adsorption
capacity constant, and Q,, is the maximum adsorption

capacity.

(5)

Qe = kCJ/", (6)

where Q. is the quantity of dye adsorbed at equilibrium, C, is
the concentration of dye at equilibrium, % is the adsorption
capacity constant, and n is a constant that describes the het-
erogeneity of adsorption sites.

3. Results and discussion
3.1 Midsole waste characterization

Shoe midsoles represent a common class of EVA copolymer-
derived materials that are challenging to repurpose or recycle
into new products at the end of their intended service life.
This difficulty is associated with their crosslinked nature,
which is necessary to provide the polymer with sufficient melt

Discarded Shoe Waste

Sulfonation

_— SO;H

HO

Poly(ethylene-co-vinyl acetate)

Sulfonated EVA Sorbent
OH
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strength and to enhance their performance durability.”
However, their crosslinked nature prevents the melt processing
of EVA waste materials into new products. As a result, innova-
tive recycling methods and alternative end-of-life solutions
must be developed to address the sustainability challenges
posed by these materials. This work demonstrates an effective
method for producing functional sorbent materials for water
remediation from crosslinked EVA wastes through a solid-state
reaction that installs sulfonic acid functionalities into the
polymer matrix. In turn, the additional functionality can be
employed to tune interactions between the polymer material
and cationic micropollutants, as demonstrated in Fig. 1. In
particular, this work focuses on foams from two different
brands of athletic shoes (discarded after being used for ~5
years by the first author) that are used as model waste precur-
sors, referred to as Brand 1 and Brand 2, respectively. Gel frac-
tion experiments in dichloromethane indicate gel fractions of
97% and 96% for Brand 1 and Brand 2, respectively, while a
commercially available virgin EVA copolymer can be completely
dissolved, confirming that the waste foams are crosslinked from
production (Fig. S1f). We note that, typically, EVA copolymers
are crosslinked through a peroxide-initiated reaction which pri-
marily occurs at the ester of the vinyl acetate repeat units.’

The chemical compositions of the shoe soles and the virgin
EVA copolymer were first investigated through Fourier trans-
form infrared (FTIR) spectroscopy experiments which are dis-
played in Fig. 2(A). The virgin EVA copolymer and the two
waste foam samples exhibit alkyl stretching vibrations between
3000 cm™" and 2800 cm™', which are a result of the olefinic
backbone of the copolymer. Additionally, all three samples
exhibit characteristic bands associated with the vinyl acetate
repeat units. Specifically, the bands at 1740 cm™*, 1237 cm ™,
and 1020 cm™" are assigned to the C=0, C-C-O, and C-O
bonds of the vinyl acetate repeat units, respectively. It is worth
noting that there are multiple dissimilar bands in the spectra
of the shoe soles compared to the virgin EVA system, which is
likely a result of additives included for processing and per-
formance enhancement. We note that the crosslinked nature
of the shoe foams makes quantifying the amount of vinyl
acetate incorporation through solution state spectroscopic
techniques such as nuclear magnetic resonance spectroscopy

-SO;H: @  Cationic Pollutant: &

Fig. 1 Schematic illustration of employing discarded shoe waste midsoles as precursors for producing sulfonated polymer sorbents to address

micropollutant contamination.
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Fig. 2 (A) FTIR spectra and (B) TGA thermograms of the EVA copolymer
and waste shoe soles. The FTIR and TGA results are vertically shifted for
clarity.

challenging. However, the TGA thermograms in Fig. 2(B),
which were recorded under a nitrogen atmosphere, depict 2
distinct degradation steps which are associated with vinyl
acetate and ethylene repeat unit degradation; this result can be
leveraged to estimate their relative amounts. The virgin
polymer exhibits a degradation onset at 327 °C which results
in a 36.5% mass decrease, followed by a secondary degradation
starting at 452 °C. The degradation at lower temperatures typi-
cally corresponds to the decomposition of vinyl acetate repeat
units and is in good agreement with previously determined lit-
erature values.” Therefore, this suggests that the EVA copoly-
mer is composed of 36.5% vinyl acetate repeat units by mass
(manufacturer’s specification is 40% by mass). We note con-
sistency of the mass loss at lower temperatures of the uncros-
slinked virgin EVA and the manufacturer’s specification indi-
cates the accuracy of using TGA results to estimate vinyl
acetate content. In this study, Brand 1 and Brand 2 exhibit
onsets of degradation at similar temperatures of 294 °C and
302 °C, respectively, with mass losses that indicate the pres-
ence of 20.0 wt% and 16.0 wt% vinyl acetate repeat units
within the polymer foams. These results are further supported
in the DSC thermograms in Fig. S21 as well as in additional
discussion which can be found in the ESL{>*** Additionally,
the residual masses depicted in the TGA thermograms of
Brand 1 and Brand 2 are 7.0 wt% and 6.5 wt%, respectively,
which can be associated with the presence of inorganic fillers
that are commonly included to alter the polymer optical or
mechanical properties, as confirmed through additional TGA
experiments conducted in air, as presented in Fig. S3.t

3.2 Functionalization through sulfonation-induced crosslinking

The EVA copolymer-derived materials were functionalized
through a solid-state sulfonation reaction, which has been
established in the literature for converting polyolefins into sul-
fonated crosslinked polymers for various applications.*™>” At
elevated temperatures with the presence of a sulfonating agent
like concentrated sulfuric acid, fuming sulfuric acid, or chloro-
sulfonic acid, sulfonic acid groups can be introduced into the
olefinic polymer backbone, which can also dissociate to form
alkenes that lead to radical initiation and thus enables the for-
mation of intermolecularly crosslinked polymer chains.?$7°
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The progress of this reaction can be monitored as a function
of time through multiple characteristic bands in the FTIR
spectra depicted in Fig. 3(A-C). It is important to note that the
characteristic bands of the EVA-derived precursor change as a
function of the sulfonation reaction, making it very challen-
ging to normalize spectra to any internal standard. Therefore,
only qualitative conclusions regarding the presence of func-
tional groups can be made through analysis of these results.
Specifically, the contributions from the alkyl stretching
vibrations between 3000 cm™" and 2800 cm™" are no longer
present after 5 min of reaction across all three samples upon
the addition of sulfonic acid groups. The presence of sulfonic
acid functionalities is indicated by the bands at 1107 cm™*
and 1010 cm™" which correspond to the symmetric and asym-
metric stretch, respectively, of the sulfonic acid. Generally,
these bands are present at all reaction times for all three
samples, indicating that the addition of sulfonic acid groups
occurs very readily. Additionally, the weak stretch at 1665 cm ™"
and the vibration at 875 cm™ observed in all samples are
associated with the introduction of alkenes, due to dis-
sociation of some of the sulfonic acid groups from the
polymer backbones during the crosslinking process. It is also
worth noting that even at short reaction times, the previously
identified bands that are associated with the vinyl acetate
repeat unit are no longer present in the spectra. This could
suggest that the highly acidic conditions drive the hydrolysis
of the ester within the repeat unit, resulting in the conversion
of the ester into hydroxyl functionalities, which has been
observed in the literature.*!
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Fig. 3 (A) Generalized chemical structure of crosslinked EVA through

the sulfonation-induced crosslinking process with the characteristic
functional groups highlighted to correspond with the highlighted
regions in the FTIR spectrum. FTIR spectra of (B) the virgin EVA precur-
sor, (C) Brand 1, and (D) Brand 2 as a function of sulfonation time.
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In addition to FTIR spectroscopy results, the progress of the
sulfonation-induced crosslinking process can be monitored
through determining the amount of acid incorporated into the
polymer via Mohr’s titrations; these results are provided in
Fig. 4. After very short reaction times (5 min), the acid content
is essentially saturated in the virgin EVA copolymer sample.
The acid content value after 5 min of reaction is 7.1 mmol g,
which slightly varied throughout the progress of the reaction.
We found that the incorporation of acid into both waste foams
exhibits slower kinetics compared to the virgin EVA material.
This is an interesting observation, as the sulfonation tempera-
ture for reacting the EVA components of these waste materials
(150 °C) was above both the melting point and the glass tran-
sition temperature (T, typically between —50 °C and 0 °C) of
the polymer. The sulfonating agent should readily diffuse
throughout the material and allow for the reaction to occur.
However, despite the porous nature of the post-consumer
waste foams which should facilitate the transport of the sulfu-
ric acid into the polymer system, the sulfonation kinetics are
slower than that in the virgin polymer. One explanation could
be associated with the increased vinyl acetate content in the
virgin EVA material which can be hydrolyzed through acid-cata-
lyzed hydrolysis, thus increasing the hydrophilicity of the
material to facilitate the sulfonation reaction; the enhanced
hydrophilicity at short reaction times may allow for the
diffusion to occur throughout the solid polymer more readily.
While the kinetics are slightly reduced, the maximum acid
content is achieved after only approximately 30 min of reac-
tion, reaching values of 11.4 mmol g~* and 13.6 mmol g™* for
Brand 1 and Brand 2, respectively. It is worth noting that the
reaction kinetics for the sulfonation of the EVA-derived
materials is greatly enhanced compared to those of other poly-
olefin materials that have been reported before. For instance,
thermoplastic elastomers containing a saturated polyolefin
backbone, such as poly(styrene)-block-poly(ethylene-ran-buty-
lene)-block-poly(styrene), as well as semicrystalline polypropyl-
ene and PE can require multiple hours of sulfonation using
concentrated sulfuric acid to achieve similar results.**** There
are multiple reasons for the enhanced reaction kinetics in the
EVA system presented here. Firstly, fuming sulfuric acid is
employed as the sulfonating agent which is known to be more
highly reactive than concentrated sulfuric acid due to the
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Fig. 4 Amount of acid incorporated into virgin EVA, Brand 1, and Brand
2 as a function of reaction time determined through titrations.
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increased presence of free SO; moieties. Secondly, as the sulfo-
nation reaction of polyolefin materials is typically diffusion-
controlled, the incorporation of the vinyl acetate repeat unit
into polymer backbones improves their hydrophilicity, thus
facilitating the sulfonating agent to penetrate and react more
readily. Moreover, after the sulfonation reaction, the waste
foams exhibit higher acid contents in comparison with the
EVA copolymer as well as other commercial sulfonated
polymer resins. For comparison, Amberlyst-15™, a commercial
ion exchange resin with sulfonic acid functionalities derived
from hyper-crosslinked styrenic polymers, has an acid content
of 4.66 mmol g~'. Similarly, multiple literature examples
which employ sulfonic acid-functionalized, hyper-crosslinked
materials typically exhibit acid loadings between 3 mmol g
and 5 mmol g~ *;**?° these values are all lower in comparison
with both the crosslinked EVA and the waste-derived sorbents
presented here. This is likely a result of these styrenic hyper-
crosslinked polymers being limited to the addition of 1 sulfo-
nic acid per styrene repeat unit while having a much higher
repeat unit molecular weight than that of the EVA copolymer.
When normalized by the mass of the sulfonated polymer, the
EVA-derived materials have higher acid contents, while the
number of functionalized repeat units may be similar.
Previously, Woodward et al. demonstrat