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Semi-quantitative determination of active sites in
heterogeneous catalysts for photo/electrocatalysis

Jing Ren,? Haoyuan Chi, ©? Ling Tan, Yung-Kang Peng, ©° Guangchao Li,°
Molly Meng-Jung Li,% Yufei Zhao @ *2 and Xue Duan®

Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly
active exposed facets via defect engineering is considered to be the most promising strategy for optimizing
the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative
determination and calculation of the concentration of defect structures related to the highly exposed
active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted
increasing attention. This work not only summarizes the existing defect characterization methods and
the calculation methods of defect concentrations reported in recent years but also proposes a semi-
quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the
determination and classification of active sites related to the active surface, which can be applied for the
semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In
addition, we emphasize the deficiencies of current defect concentration quantitative methods and look
forward to the future development of defect characterization methods under working conditions. This
review further reveals the structure—activity relationship between the content of active sites and the
reaction performance.

1. Introduction

Heterogeneous metal or metal oxide catalysts play a key role in
the chemical industry, in which more than 85% of chemical
processes involve at least one catalytic step." It is well known
that heterogeneous catalysts provide a wide range of active sites
such as edges, corners, and facets (¢f. homogeneous catalysts
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that the performance of catalysts is highly correlated with the
elemental composition, and the active center of catalysts is
contributed by some elements, which are relatively crude.**
With the development in the preparation of catalysts and
characterization tools, the current focus has been geared to the
surface features of catalysts such as corners, edges, and related
defect sites, which are believed to determine the observed
activity/selectivity.>® Taking the active crystal surface of the
catalyst as an example, some crystal surfaces with high indexes
have a higher surface energy because of the existence of more
suspended bonds, so they form an open surface structure and
exhibit a higher catalytic activity.”® There is no doubt that
defects inevitably exist in all imperfect crystalline materials, and
when they appear on the crystal surface, they can significantly
regulate the electronic structure of the surface, bringing about
changes in their physicochemical properties. Therefore, the
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defect structure on the active crystal surface has the structural
particularity of the active crystal surface.

A defect is a place in a material where atoms or molecules
arranged in perfect periodic are broken or destroyed, which has
been regarded to play a prominent role in determining the
catalytic activity, and it can be divided into four types according
to the size: zero-dimensional point defects (such as vacancies
and dopings), one-dimensional linear defects (such as spiral
and edge dislocations) mainly existing as edges or corners, two-
dimensional planar defects (such as grain boundaries and twin
boundaries) that can also be regarded as facets, and three-
dimensional volume defects (such as lattice disorders and
voids)® (Fig. 1). On the one hand, the formation of defects can
further reduce the coordination number of adjacent atoms and
provide unsaturated sites for the reactants to adsorb and
transform. On the other hand, the existence of defects will
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Fig. 1 Quantitative analysis of defects in heterogeneous catalysts for
photo/electrocatalysis.
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change the electronic structure of the material to promote the
interaction between the active site and the reactant intermedi-
ates, which regulates the catalytic performance. Thus, the
defect engineering of nanomaterials has been widely applied in
the field of heterogeneous catalysis.'** Previous studies have
shown that defect engineering can not only affect the physico-
chemical properties of heterogeneous materials,*>'* but also
improve the catalytic performance of photo/electrocatalytic
materials.">?® Recently, in order to enhance the efficiency of
atom utilization, single-atom catalysts have also come into
existence in the research field, and the introduction of defects
on the supports of single-atom catalysts can effectively stabilize
the single metal atoms and prevent the aggregation of active
sites,** benefiting the catalysis.

Among the catalysts involved in the chemical production
process, heterogeneous metal or metal oxide catalysts have
become essential in most refining and petrochemical processes.
Metal (hydrogen) oxides represented by layered double hydrox-
ides (LDHs) such as NiO, ZnO, and TiO, have attracted extensive
research attention due to their excellent photo/eletrocatalytic
performance. For instance, transition metal (such as Ni, Co
and Fe)-containing LDHs are the most promising materials for
electrocatalytic oxygen evolution reactions (OERs).>*** The cata-
lytic performance of LDHs can be further improved by intro-
ducing defects via exfoliation,” etching,”” and plasma
processes.” With the help of defect engineering, the over-
potential of LDHs for OERs has decreased from more than
300 mV to about 190 mV at 10 mA cm™ >, as reported by Sun and
coworkers.* Density function theory (DFT) revealed that vacancy-
related defects (O vacancies or metal vacancies) can facilitate the
adsorption of H,O* and, hence, reduce the activation barrier for
OERs.*" For the photo/electrocatalytic CO, reduction reaction,
the electronic structure of the catalyst and the adsorption
configuration of the intermediates are changed by regulating the
defects, which promotes the formation of C,, products.**** The
presence of defects in the electrocatalytic N, reduction can also
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improve the intrinsic activity and stability of the catalyst.** In the
photolysis water-coupled benzyl alcohol oxidation, the defects
can be used as active sites of the reaction and also effectively
inhibit the photogenerated electron-hole recombination.*
Therefore, defect engineering is an efficient strategy to prepare
catalysts in improving photo/electrocatalysis. In view of these
encouraging results, researchers began to study the defects in
more depth and detail. However, how to determine the catalytic
active site qualitatively or semi-quantitatively is still a challenge
at this stage. Therefore, it is crucial to develop a route to identify
the key active site of the target catalysts, particularly in in situ or
operando conditions.***°

At present, defects can be well characterized by electron
microscopy and spectroscopy analyses such as transmission
electron microscopy (TEM), aberration-corrected high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM), X-ray absorption fine structure (XAFS), electron
spin resonance (ESR), positron annihilation spectroscopy (PAS),
nuclear magnetic resonance (NMR), X-ray photoelectron spec-
troscopy (XPS), and photoluminescence spectroscopy (PL).
Some peers have summarized the synthesis and characteriza-
tion methods of defects."” The catalytic performance as well as
the selectivity of a given reaction is known to change with the
number/type of defects. Note that the appearance of certain
defects generates positive/negative effects. For example, our
group found that the selectivity of methane increases and that
of H, decreases with the increase in defects in NiAl-LDH*® from
photocatalytic CO, reduction. Furthermore, Zhao and co-
workers investigated the concentration ratio between bulk
and surface defects in TiO, and concluded that bulk defects will
lead to the recombination of carriers, resulting in a decreased
photocatalytic activity.** Therefore, understanding the rela-
tionship between defect concentration and performance can
help us rationally design smart catalysts.

Herein, we summarize the current representative work of
constructing defects on the exposed active facet to improve
photo/electrocatalytic activity, and quantification of the defects
via various characterizations such as TEM, XAFS, NMR, PAS,
ESR, XPS, PL, and FT-IR, as shown in Fig. 1. On the basis of
previous works on quantifying defects, we also propose a semi-
quantitative defect concentration method based on highly
active facets using XAFS and related methods, and provide
a description on the location, type and concentration of defect
sites. By using this calculation, we can obtain the concentration
information of defects in the target facet, which is helpful to
accurately quantify the role of defect sites in the reaction
process using in situ technology and to design efficient catalysts
via defect engineering in the future.

2. Advanced methods for
determining and semi-quantifying
defects

2.1. Electron microscopy

The electron microscope is an indispensable microscopic tool
in the field of materials science, which can clearly and

This journal is © The Royal Society of Chemistry 2023
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intuitively show the morphology of the nanomaterials at
atomic-level resolution. With the use of TEM, scanning
tunneling microscopy (STM), and HAADF-STEM, we can
unambiguously identify the thickness, size, exposed facets,
surface defects, etc., of the nanomaterials. For example, long-
range and local structural details of electrodes and solid elec-
trolyte materials were revealed using advanced TEM techniques,
which provides a new view on the energy conversion and
storage.*”> Moreover, the morphology, multiphase distribution,
and even the atomic arrangement around the structural defect
regions of nanostructured materials can also be distinguished
from (S)TEM images. Recently, Wang and co-workers have
covered the visualized observation of the morphology of SnS,,
and the presence of defect regions in the structure.*® As shown
in Fig. 24, the lattice spacing of pristine SnS, is about 0.587 nm,
which corresponds well to the (001) facet of SnS, (0.585 nm).
While the discontinuous lattice fringes can be clearly observed
in the HRTEM image of SnS, featuring Al doping (Fig. 2B), it can
be inferred that the fractional crooked fringes observed in the
fuzzy region may donate the existence of defects. These conse-
quences represent that Al doping successfully introduced
defects in the (001) crystal plane of SnS,. By observing the
HRTEM images, it can also be clearly found that B-Ni(OH),
ultra-thin nanosheets are distributed with nanopores of size 3-
4 nm, further indicating the wide existence of defects in some
traditional materials.** To gain insights into the defects of the
material, Xie's group used HAADF-STEM to reveal the micro-
structure of Bi,O; with rich oxygen vacancies.*” The apparent
lattice disorder in Fig. 2C verified the existence of a metal
coordination unsaturated structure in the material. Further-
more, the fast-scanning Aarhus STM and time-lapsed sequen-
tial STM images allow us to detect the presence of defects and
monitor the diffusion behavior of some small molecules such as
H,0** and 0,.*”*® For instance, as shown in Fig. 2D-F,
Besenbacher's team successfully tracked the diffusion behavior
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Fig. 2 HRTEM images of (A) pristine SnS, and (B) SnS, featuring Al
doping®®* copyright © 2021 Elsevier B.V. (C) HAADF-STEM images of
Vo-rich-Bi,O3 nanosheets, the scale bar is 2 nm.** Copyright © 2019,
Springer Nature Limited. STEM image of cross-sectional TiO,(110)
single crystal (D) and large region (E). (F) Concentration of O vacancies
increased from inner to surface regions. (G) STM image of the TiO,
surface in the empty state. (H) STM image of the same region of (G), but
in the filled state*® copyright © 2018 American Chemical Society.
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of a single O, molecule on O vacancies of TiO,(110) by STM
technology.*® They observed that the diffusion of O, molecules
only along the (001) direction and the O, hopping rates are
related to the content of O vacancies on the surface: the oxygen
jumping rate increases with the increase in the content of O
vacancies at an appropriate temperature. Using STEM, Dou's
team revealed that the O vacancies on the TiO,(110) surface
promote HER processes in alkaline media.*® The O vacancy
concentration decreased with the increase in surface depth
(Fig. 2D-F). In the HER process, H,O molecules preferentially
adsorbed onto the O vacancy surface, and one O vacancy could
induce two Ti*" (Fig. 2G and H). The O vacancies and Ti** ions in
the surface region determine the conductivity and the number
of electrocatalytic active sites of TiO,.

As the most intuitive and clear evidence, microscopy plays an
indispensable role in estimating the presence and location of
defects in heterogeneous catalysts. In last several years, the
development of in situ electron microscopy has also led to its
application in many fields such as ion migration in lithium-ion
batteries,*** the interaction between metal nanoparticles and
oxide support under redox conditions,****** and the structural
transformation of metals in the gas phase® or during heating
up.”® Even though electron microscopy cannot accurately
quantify the concentration of defects at present, it is still
making an important contribution to the study of the transition
process of defects under working conditions.

2.2. X-ray absorption fine structure (XAFS)

X-ray absorption fine structure (XAFS) spectrum is one of the
most powerful tools for determining the local structures.
Therefore, via the X-ray absorption fine structure (EXAFS)
analysis, the following information such as the coordination
number, bond length, defect concentration, and disorder
degree of the coordination atoms around the central absorption
atom can be accurately obtained. Compared with EXAFS, X-ray
absorption near edge structure (XANES) is more ingenious to
spatial structure information and can obtain valency and
symmetry information qualitatively and effectively. Via combi-
nation with the AFM and TEM information, the defect
concentration and the density of the defect can be accurately
obtained as follows:

Taking layered double hydroxides (LDHs), layered materials
consisting of brucite-like positively charged laminates, and
negatively charged interlaminar anions and water molecules,*®
as examples, our group synthesized the defect-containing
ultrathin LDH photocatalyst for photocatalytic phenol oxida-
tion. We used XAFS technology to study the local structure of
defective NiFe-LDH synthesized by a co-precipitation method,
as shown in Fig. 3A.>* As can be seen from the R-space of Ni
shown in Fig. 3B, the coordination number of the first shell (Ni-
O) and the second shell (Ni-Ni/Fe) of NiFe-LDH nanosheets
(Nni-o = 5.3, Nni-ni/re = 5.4) are much lower than that of the
NiFe-LDH bulk counterpart (Nxi_o = 6, Nni_ni/re = 6). The same
result can be also observed in Fe K-edge EXAFS (Fig. 3C), further
indicating the presence of O, Ni and Fe vacancies (Vou, Vi, and
Vre) in NiFe-LDH nanosheets. However, the quantification of
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Fig. 3 (A) Structural model of NiFe-LDH nanosheets and NiFe-LDH
bulk; R space of the (B) Ni and (C) Fe K-edge EXAFS spectra.>* Copy-
right © 2020 Royal Society of Chemistry. (D) R space of Ni K-edge
EXAFS spectra. (E) Schematic illustration of the basic unit cell of
monolayer NiAl-LDH.*® Copyright © 2019 Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim.

defects and the provision of their location on the LDH/
nanoparticles are both unclear.

In order to further explore the relationship between the
defect concentration and performance, our group prepared
bulk, few-layer, and monolayer NiAl-LDH nanosheets (denoted
as b-NiAl-LDH, f-NiAl-LDH, and m-NiAl-LDH, respectively) for
photoreduction of CO,.*® The coordination numbers of Ni and
O decreased with the decrease in the thickness of NiAl-LDH,
indicating that the Ni and O vacancies increased sequentially,
and the selectivity of the target product CH, also increased
sequentially (Fig. 3D). It is easy to find that the selectivity of
target product CH, and the quantity of Ni vacancies and O
vacancies are closely related.

According to the coordination number information obtained
by XAFS and the detail of the basic unit cells, a method for
quantifying defect concentration was summarized. Taking m-
NiAl-lLDH as an example (Fig. 3E), the surface area of one
LDH cell can be calculated as 1.2 nm x 1.2 nm x sin60° =
1.247 nm®. The cell parameter ¢ of LDHs is related to interlayer
anions, and different interlayer anions lead to different layer
thicknesses and eventually lead to differences in c; therefore,
the volume of the LDHs can be obtained as follows: surface area
of the cell x thickness (nm), where the thickness is measured by
atomic force microscopy (AFM) results (1 nm). The corre-
sponding oxygen number in this m-NiAl-LDH model is referred
to as 32, and the metal (Ni and Al) atom number is 16. As ob-
tained from the EXAFS results of m-NiAl-LDH, the corre-
sponding coordination number of the first Ni-O shell is 5.5,

2532 | J Mater. Chem. A, 2023, 1, 2528-2543
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compared with the pure LDH with a coordination number of
6.0, the ratio of the defect concentration of the Ni-O shell in m-
NiAl-LDH is proposed to be around (5.5 — 6)/6 = 8.3%. There-
fore, in the whole model, the defect intensity of O vacancies can
be inferred as follows: oxygen vacancies density (nm *) = ratio
of the defect concentration x the total oxygen number in the
model per nm® = 8.3% x 32/(1.247 nm® x 1 nm) = 2.14 nm .
The above-mentioned equation can also be extended to calcu-
late the metal vacancies density, and the metal vacancies
density (nm?) in m-NiAl-LDH can be obtained as: the ratio of
the defect concentration x the total metal number in the model
per nm® = (6.0 — 5.0)/6.0 x 16/(1.247 nm* x 1 nm) = 2.14 nm .
Accordingly, the defect density of O and Ni vacancies in f-NiAl-
LDH was calculated to be 1.80 nm > and 1.20 nm >, respec-
tively. Defect density provides a guideline for regulating the
selectivity/activity of catalytic reactions and exploring the cor-
responding structure-activity relationship. In addition, our
proposed method can also be applied to other LDH materials
such as CoFe-LDH,**° ZnAI-LDH,* and NiFe-LDH.®***> The
concentrations of oxygen defects and metal defects for other
LDHs in recent reports were also calculated, and the results are
presented in Table 1. It is worth noting that the concentration of
oxygen defects and metal defects ranges from 0.05 to 10.69
nm >, and is closely related to the types of metal elements that
compose the LDH laminate. Then, a defect location site
description can be defined as follows: material-defect type-
active exposed facet-concentration, like NiAl-LDH-Vq.(g01)-2.14
nm >, This semi-quantitative calculation method of defect
concentration provides guidance for accurate defect engi-
neering design to achieve better performance control.

The above-mentioned calculation can also be applicable to
other catalysts such as ZnO, NiO, and TiO,. Chergui and co-
workers quantitatively analyzed the oxygen and Zn vacancies
for colloidal ZnO nanoparticles with different sizes.®® With the
help of EXAFS, the peak intensity of the first shell (Zn-O) of the
three samples with different sizes is similar to the R space
spectrum, indicating that the number of their oxygen vacancies
is comparable. However, the relative intensity of the second
shell (Zn-Zn) peak decreases with the size of ZnO, indicating
that the number of Zn vacancies increases with the decrease in
ZnO transverse size. Besides, Passerini and co-workers also
performed EXAFS to obtain the quantitative structural infor-
mation of Fe/Co-doped ZnO.** They found that Fe doping leads
to more cation and oxygen vacancies in ZnO than Co-doped
ZnO. With the introduction of O and Zn defects, the optical
properties and ferromagnetism of ZnO materials were
improved.®® Some papers also give the fitting results of EXAFS,
and then combined with the crystal cell information of ZnO, we
can calculate the defect density of Zn and O vacancies accord-
ingly. The volume of the ZnO cell can be obtained as follows: a x
b x ¢ x sin 120° = 0.324927 nm x 0.324927 nm X 0.520544 nm
x sin 120° = 0.0476 nm®, The number of O and Zn atoms in the
ZnO unit model is 2, and the coordination number of oxygen
and Zn is 4 and 12, respectively. As obtained from the EXAFS
results of ZnO, the defect density of the Zn-O shell in ZnO was
calculated to be around (4 — No)/4 x 2/0.0476 nm > and
the defect density of the Zn-Zn shell in ZnO is thus around

This journal is © The Royal Society of Chemistry 2023
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Table 1 Calculation of oxygen defect and metal defect density in LDH materials

No.  Sample Thickness (nm) Ny o Vo (nm™?) Nyi-m Vy (nm ™) Reference
Bulk NiAl-LDH 27 Nnio=6.0 Voo =0 Nuim =60  Vigon=0

1 Fewlayer NiAl-LDH 5 Nnio =57  Vo(oor) = 0.26 Nyim =56  Vagon =017 55
Monolayer NiAl-LDH 1 Nni-o = 5.5 Vo-(oo1) = 2.14 Nniim = 5.0 Vm-(o01) = 2.14

2 CoFe-LDH 4.5 Npeo = 6.0 Vo(oon) =0 Neem =57 Voo =0.14 57
NiCoFe-LDH 3.3 Nreo=52 Voo = 1.04 Neem =41  Viggon = 1.23

3 Bulk NiFe-LDH 20 Npeo = 6.0 Vo(oon) =0 Neeni = 6.0 Var(oon) =0 61
Monolayer NiFe-LDH 1 Nge_o = 5.9 Vo-(oo1) = 0.43 Ngeni = 5.8 Vm-(o01) = 0.43
Ultrafine NiFe-LDH 0.6 Nreo =58 Voo = 1.43 Neenwi =55  Var(oor) = 1.78

4 Pristine CoFe-LDH 27.5 Neoo=49 Voo = 0.17 Neom =53  Vagon =005 58
H,O-plasma exfoliated-CoFe LDH 1.54 Neo-o = 4.7 Vo-(oo1) = 3.61 Neoom = 4.4 VM-(001) = 2.22

5 Bulk CoFe-LDH 20.6 Nreo =47 Voo = 0.27 Nrem =44 Vapon =0.17 59
Ultrathin CoFe-LDH 0.6 Nreo =45 Voo =10.69 Nrem=3.6  Viroor) = 8.55

6 Monolayer NiFe-LDH 0.8 Nreo=59  Voon=0.53 Neem =57  Vargoon = 0.80 62
Porous monolayer NiFe-LDH 0.8 Nge-o = 5.7 Vo-(o01) = 1.60 Nge-m = 5.1 Va(oo1) = 2.41

(12 — Nzp)/12 x 2/0.0476 nm . The calculated results of the

ZnO defect density are listed in Table 2.

The study of O and Ni defects in NiO materials also makes an
important contribution to the interpretation of the structure-
activity relationship. Langell and co-workers used XAFS to study
the coordination environment of bulk, 25 nm, and 5 nm NiO
nanomaterials.®® Gutiérrez and co-workers revealed from the
XAFS results that the resistivity of NiO films is intimately in
connection with the Ni defects.®” Therefore, the quantification
of defect density is instructive for NiO defect engineering. By
fitting the R space, the defect densities of O vacancies and Ni
vacancies can also be calculated from the coordination number
results obtained by XAFS. The volume of the NiO cell can be
obtained as follows: @ x b x ¢ = 0.41684 nm x 0.41684 nm X

0.41684 nm = 0.0724 nm®. The number of O and Ni atoms in the
NiO unit model is 4, and the coordination number of O and Ni
is 6 and 12, respectively. As obtained from the EXAFS results of
NiO, the defect density of the Ni-O shell in NiO was calculated
to be around (6 — No)/6 x 4/0.0724 nm > and the defect density
of the Ni-Ni shell in NiO is around (12 — Ny;)/12 x 4/0.0724
nm >, Via calcination of the NiTi-LDH monolayer precursor,
the (110) facet-exposed NiO can be obtained.®® Together with the
results of AFM, TEM, and XAFS, the synthesized NiO(110) facet
contains abundant O and Ni defects, which promote water
adsorption and later charge transfer process in the OER. Our
group also successfully synthesized NiO enclosed by the (110)
facet using a NiAl-LDH precursor.® Via the calculation of defect
concentration in Table 2, it was found that the photocatalytic

Table 2 Calculation of oxygen defect and metal defect density in ZnO and NiO

No. Sample Nvi-o Vo (nm™?) Nyvim Vyp (nm ™) Reference
Standard ZnO Nzno=4 Vo=0 Nzpzn = 12 Von =0

1 ZnO doping Ni 5% Nzno = 3.3 Vo = 7.35 Ngnozn = 11.5 Vi = 1.75 65
ZnO doping Ni 12.5% Ngno = 2.8 Vo = 12.61 Nynzn = 10.9 Vin = 3.85

2 ZnO aliquot 1 — — Ngnzn = 6.7 Vi = 18.56 79
ZnO aliquot 2 — — Nyzpzn = 8.7 Vyn = 11.55
ZnO aliquot 3 — — Ngpzn = 11.5 Von = 1.75
Standard NiO Nyico = 6 Vo =0 Nuini = 12 Vai =0

3 NiO from Ni(CH;COO), Nyico = 5.7 Vo = 2.76 Nuini = 10.7 Vai = 5.99 72
NiO from Ni(acac), Nyni-o = 5.5 Vo = 4.60 Nnini = 7.5 Vni = 20.72
NiO from Ni(acac), without TOPO Nnio =6 Vo=0 Nyini = 10.3 Vni = 7.83

4 NiAl-275 Nyico = 5.5 Vo-(110) = 4.60 Nyiom = 7.2 Va110) = 22.10 69
NiAl-600 Nyi-o = 5.8 Vo(i10) = 1.84 Nuiom = 10.1 Vat(i10) = 8.75
NiAl-800 Nyico = 6.0 Vo-(110) = 0 Nuim = 10.7 Va110) = 5.9

5 NiO/SiO, Nyiso = 6.0 Vo=0 Npini = 11.6 Vi = 1.84 73
NiO/Ti-anat Nyio = 5.3 Vo = 6.45 Nuini = 10.9 Vi = 5.06
NiO/Ti-P25 Nyio = 5.2 Vo = 7.37 Nuini = 10.4 Vi = 7.37

6 Fe-doped NiO, nanotubes Nyi-o = 5.2 Vo =7.37 Nyini = 10.2 Vi = 8.29 74

7 NiO-10% oxygen Npio =6 Vo =0 Nypini = 11.8 Vi = 0.92 75
NiO-40% oxygen Nyico = 6 Vo =0 Nuini = 11.4 Vi = 2.76
NiO-70% oxygen Nyico =6 Vo =0 Nuini = 11 Vai = 4.60

8 Bulk NiO Nnjo =6 Vo=0 Nnini = 12 Vni=0 76
25 nm NiO Niico = 5.5 Vo = 4.60 Nuini = 10.6 Vi = 6.45
5 nm NiO Nyio = 5.4 Vo = 5.52 Nuini = 10.4 Vi = 7.34

9 Mono-NiTi-MMO Niico = 5.7 Vo-(110) = 2.76 Nyini = 7.7 Vni110) = 19.80 68
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selectivity of CO, reduction to CH, increased with the increase
in metal defect concentration in NiO. Quantifying defects in
NiO can provide a new perspective for exploring the relationship
between the structure and the performance.

Based on this method, we can quantitatively calculate the
number of metal defects and oxygen defects per cubic nano-
meter of metal (hydrogen) oxides. The defect concentrations of
the most widely reported materials such as LDHs, NiO, and ZnO
for photo/eletrocatalysis in recent years were thus calculated, as
shown in Fig. 4. It is not difficult to find that the concentration
of defects affects the catalytic performance of the material. The
proposed method solves the problem of defect quantification to
some extent and helps understand the structure-activity rela-
tionship between defect concentration and catalytic perfor-
mance. With the development and application of in situ XAFS,
the real atomic and electronic structures of catalysts can be

10
@ Fewlayer NiAl
@ Monolayer NiAl
@ CoFe [+ ]
8 @ NiCoFe
(/] @ Monolayer NiFe
T Ultrafine NiFe
=) Q Pristine CoFe
= 6 J @ H,0-Plasma Exfoliated CoFe
@ Bulk CoFe
£ @ Uitrathin CoFe
— @ Monolayer NiFe
@ @ Porous monolayer NiFe
£ 41
(=]
-
5 2. 0 o
@
0{ @
T T T T T T
0 2 4 6 8 10 12
B Vo (nm2) in LDHs
20
@ zno
@ 2nO doping Ni5%
@ ZnO doping Ni7.5%
16 4 @ 2no doping Ni10%
o) & Zno doping Ni12.5%
@ 2no Aliquot 1
c @ Zno Aliquot 2
N 12 @ ZnO Aliquot 2
= 10
-— "
—
L
E 8
-
=
>
4 q
3
o 2
0 o °
T T T T T T T
0 2 4 6 8 10 12 14
C Vo (nm2) in ZnO
25
@ NiO from Ni(CH,C00), 5] Fe doped NiO,
@ Nio from Ni(HCOO), NiO-10% Oxygen
204 @ wiofromNiacac), Q Ni0-20% Oxygen
(o) @ Nio from Ni(acac), without TOPO NiO-30% Oxygen
= @ NiaL275 Ni0-40% Oxygen
4 NiAI-400 NiO-50% Oxygen
e 154 9 niasoo Ni0-60% Oxygen
= Q@ NiAI-800 . NiO-70% Oxygen
<l @ Niorsio, 25nmNio
P @ NIOPCH-Ti SnmNiO
£ 10 @ wiormi-anat MonoNITMMO
£ @ NomPzs o
= T ¢, o
51 9
"
0
T T T T
0 2 4 6 8

Vo (nm2) in NiO

Fig. 4 Oxygen defect and metal defect density in (A) LDHs; (B) NiO;
and (C) Zno_55,57—59,61,62,68—76
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monitored under working conditions.”””® It is promising that in
situ techniques can be used to reveal the active sites of catalysts
and accurately quantify the concentration of defects.

However, this quantitative method is limited to XAFS results,
which only show the changes in the overall material coordina-
tion environment, and it is difficult to distinguish which defects
cause the changes. Therefore, the defect density calculated by
this method cannot represent the density of a certain type of
defect. In addition, the coexistence of multiple metal oxides and
amorphous phases also set up obstacles for the selection of
appropriate cell elements, which hinders the accurate calcula-
tion of defect density, and still needs to be explored in the
future.

2.3. Nuclear magnetic resonance (NMR)

NMR is a mighty characterization technique for materials con-
taining a large number of spin-active nuclei. By this technique,
we can acquire information about the regional structure of
materials, like the micro-arrangement of cations. It also makes
up for some light metal elements such as Mg and Al, which are
difficult to characterize by XAFS to a certain extent. Taking
*’Mg-NMR as an example, although the development has been
challenged by low sensitivity due to low gyromagnetic ratio and
natural abundance, combined with large quadrupole moment
of isotopes, they have gained much research interest in Mg-
containing LDH structures. By studying the "H and >*Mg NMR
spectra of MgAl-LDH with different Al contents, Grey's team first
revealed the arrangement order of cations in the material.®
When the ratio of Mg to Al was 2:1 with a “honeycomb”
ordering, the arrangement of Mg and Al was perfectly ordered,
while in the case of low Al contents, cations were randomly
arranged in the case of no AI**~AI’" close contacts. Inspired by
this work, Massiot's group used 'H and >’Al NMR spectroscopy
to identify and quantify the defect in cation arrangement of
MgAI-LDH.*" The cation distribution of MgAI-LDH was pre-
dicted by 'H solid-state NMR technology combined with DFT
theoretical calculations, as shown in Fig. 5A, and the optimized
model of LDH intercalated with nitrate as shown in Fig. 5B was
proposed. The ascendant peak of 3.8 ppm in Fig. 5A was iden-
tified as the Mg,AlOH species, while the shoulder peak at
4.6 ppm corresponded to interlaminar or adsorbed water. The
little peak at 1.6 ppm was contributed by the Mg;OH. The defect
concentrations of different Mg to Al content ratios can be esti-
mated according to the fitting and integration of 'H NMR
spectra, as shown in Fig. 5C, and the specific calculation
formula is as follows:*'

Al defects:
defects defects defects
xdefects _ I’lM3+ _ I’ZMH XoH NoH
3+ = = ts
M Ry ndoe]flez.h X n(M2+ + M3+)
Mg defects:

defects defects defects
ydefeets _ e _ Lven *on Non
% = - S
M Ry ngEes J\ 1= x ) |n(M* + M*")
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