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Antimony chalcogenides (SbyoXs, X = S and Se) are intriguing materials for the fabrication of next-
generation, flexible/wearable, lightweight, and tandem photovoltaic (PV) devices. Recently, the power
conversion efficiency (PCE) of 10.75% and 11.66% has been demonstrated in (single junction) Sb,Xs and
Sb,X3/Si (tandem) solar cells, respectively. However, the inevitable presence (>10® cm™) of deep-level
defects (especially Sbs and Sbs. antisites) induces Fermi-level (Ef) pinning, accelerates Shockley—Read—
Hall (SRH) recombination, and shortens the carrier lifetime. Unambiguously, these defects result in

Received 28th July 2023, sluggish charge transport and high open-circuit voltage (Voc) deficits in the corresponding Sb,Xs solar

Accepted 12th October 2023 cells. Therefore, a comprehensive understanding of the deep-level defects and their passivation
strategies can be instrumental in reducing the Vo deficits and boosting the PCE values. In this regard,

the present review highlights the expanding toolbox of defect-engineering strategies for Sb,Xs films,

DOI: 10.1039/d3ma00479a

rsc.li/materials-advances laying a solid foundation for improving the PCE of Sb,X3 solar cells.
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1. Introduction

The unique quasi-one-dimensional (Q-1D) crystal structure,
economical fabrication, and power conversion efficiency (PCE)
evolution have stimulated significant scientific and industrial
interest towards antimony chalcogenide (Sb,X;, X= S, Se)
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photovoltaics (PV). Furthermore, Sb,X; has the advantages of
earth-abundance, low eco-toxicity, high absorption coefficient
(>10° ecm™'), low Urbach energy (~30 meV), low exciton
binding energy, readily tunable bandgap (E, ~ 1.1-1.7 eV,
depending on the Se/S ratio), superior physicochemical stability,
balanced (ambipolar) charge transport, and ultra-flexibility,
satisfying most of the requirements of an ideal PV material."”
Due to the rapid progress in film deposition strategies and
composition and device engineering, PCE values of 8.00%,°
10.57%,” and 10.75%'° have been reported for Sb,S;, Sb,Ses,
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and Sb,(S,Se); solar cells, respectively. Recently, a PCE of 11.66%
was demonstrated in an Sb,(S,Se);/Si tandem solar cell.' Sb,S;
(Eg ~ 1.7 eV) and Sb,Se; (E; ~ 1.1 eV) are promising materials
for the fabrication of the top-cell and bottom-cell in tandem
solar cells, respectively.">*® In addition to generic power produc-
tion (terawatt levels), Sb,X; solar cells are well suited for integra-
tion in futuristic, lightweight, flexible, and wearable electronic
devices.">®

A comprehensive understanding of the defect-formation
mechanism and control of defects via passivation strategies
has been a cornerstone in the successful technological deploy-
ment of established semiconductor technologies. However, this
profound understanding is limited in the case of Sb,X; solar
cells, which severely suffer from large open circuit voltage (Voc)
deficits (>0.6 eV) owing to their high density of (electrically
active) deep defects. These defects are localized in real space,
dictate the carrier transport, and restrict the PCE of the
corresponding devices from reaching the theoretical limit
(~30%).'%1°
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To date, various reviews have covered different critical
aspects of Sb,X; PV, with particular emphasis on presenting
either a generic overview (of anisotropy, crystal-structure, band-
structure, photophysical properties, deposition techniques,
and recent advances),'®*°° doping,”” device and interfacial
engineering,'®*** or commercialization prospects,*® while the
defect engineering aspect has largely remained unexplored.
Recently, Wijesinghe et al.®' published a review emphasizing
defect engineering in Sb,Se; solar cells. However, to the best of
our knowledge, the present review is unique, highlighting the
origin of deep-level defects in Sb,X; (covering Sb,Ss;, Sb,Ses,
and Sb,(S,Se)s), their passivation strategies, and strategies for
boosting their PCE beyond the state-of-the-art. This work is
organized into five main sections. Firstly, we briefly elucidate
the charge transport properties of Sb,X; materials. Next, we
summarize the defect engineering investigations, discussing
the origin of deep-level defects and their influence on the
performance of Sb,X; solar cells. Subsequently, we present
the engineering strategies for defect passivation and PCE
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improvement in Sb,X; solar cells. Finally, we present a sum-
mary and technological outlook, outlining potential challenges
and future research directions. We anticipate that this work will
inspire the development of novel strategies for defect regula-
tion in Sb,X; films and solar cells, laying a solid foundation for
improving their PCE.

2. Charge carrier dynamics in Sb,X3

Although the anisotropic structural and optoelectronic proper-
ties of Sb,X; have been investigated comprehensively, there is
no consensus on its charge-carrier dynamics, which critically
affects the performance of Sb,X; solar cells. Specifically, the
nature of the carrier transport remains ambiguous, regarding if it
is band-like or thermally activated hopping. Moon’s group per-
formed several time-resolved studies to understand the carrier
dynamics involved in Sb,Se; nanostructures.*> Time-resolved
terahertz (tr-THz) spectroscopy revealed that the photoexcited
carriers in Sb,Se; undergo effective mobility loss within 30 ps
owing to the carrier localization, while time-resolved photolumi-
nescence (TRPL) suggested the recombination of photogenerated
carriers in a lengthier (ns) time scale. Furthermore, the carrier
localization was attributed to the soft/deformable and anharmo-
nic crystal structure, strong electron-phonon coupling and carrier
interaction with crystal distortions in Sb,Se;.*® Zhu’s group con-
ducted an in-depth investigation on the carrier dynamics in Sb,S;
single crystals and thin films via transient absorption spectro-
scopy (TAS).** They concluded that the red-shifted PL (Stokes shift
of 0.6 eV), picosecond carrier trapping, polarized trap emission,
and hopping transport were strongly correlated with the intrinsic
self-trapping of photogenerated carriers by lattice deformations in
Sb,S;. The self-trapping model rationalizes the high Voc-deficits
in Sb,S; solar cells, pinning the upper limit of the Voc at 0.8 V
and PCE at 16%. Grad et al®® performed time-resolved two-
photon photoemission experiments to study the photoexcited
carrier dynamics in single-crystal Sb,S;. They proposed a model
of self-trapping of free charge carriers by optical phonons and the
formation of intrinsic traps. Consistent with the above-mentioned
hypothesis, Tao et al. reported a Stokes-shifted (x0.5 eV) broad-
band emission and (barrierless) ultrafast (~20 ps) carrier self-
trapping in Sb,Se; and Sb,(S,Se);, regardless of their crystallinity
and stoichiometry.>®

To counter the proposed intrinsic self-trapping model, various
studies revealed that carriers are localized by extrinsic (bulk and
interface) defects. Yang’s group investigated the anisotropic photo-
conductivity in Sh,Se; single crystals via tr-THz spectroscopy.’” The
temporal evolution of photoconductivity revealed that electron
trapping resulted in a variation in photoconductivity anisotropy,
which was accompanied by a decline in the photoconductivity
magnitude, while electron-hole recombination only reduced the
magnitude but did not affect the anisotropy. Photoconductivity
decay and the accompanying anisotropy reversal revealed that at
low pump intensities (relevant to the solar insolation), electron
trapping outpaced charge recombination and dictated the photo-
conductivity dynamics. Leng’s group investigated the charge carrier
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transfer and trap state localization process in Sb,Se; films and
heterostructures (CdS/Sb,Se; and SnO,/Sb,Se;) via visible-pump
terahertz-probe spectroscopy (VPTPS).*® In the case of the CdS/
Sb,Se; heterostructure, the band edge electron transfer time
(~50 ps) was almost double that for the trapping process
(~30 ps), revealing that the intrinsic trap-assisted carrier recombi-
nation dominates the loss mechanisms.

Walsh’s group investigated the tendency of polaron-trapping
and its effect on the charge-carrier transport in Sb,X; using
density functional theory (DFT) and Boltzmann transport
calculations.® The modeling of electron and hole polarons in
Sb,X; indicated the intrinsic formation of large polarons, in
contrast to prior suggestions of small polarons (ie., self-trapped
carriers). As illustrated in Fig. 1(a), the isotopically averaged mobi-
lities (for both electrons and holes) exceeded 10 cm* V' s™* at
room temperature and declined with an increase in temperature,
confirming the band-like transport in Sb,S; and Sb,Se;. It was also
revealed that the intrinsic mobility is limited by scattering from
polar optical phonons at low and moderate defect densities. In the
case of high charge defect concentrations (>10'® em ), impurity
scattering dominated. Yang’s group employed Tr-THz and TAS to
investigate both the free and trapped carrier dynamics in Sb,Se;
films.>® The results revealed that the trapped carriers remain
mobile and reach charge-collecting interfaces prior to recombina-
tion. Interestingly, in addition to free carriers, trapped carriers were
also found to contribute to the photocurrent in Sb,Se; solar cells, as
schematically depicted in Fig. 1(d).

Although Sb,S; and Sb,Se; are isomorphous and exhibit
similar material properties, they exhibit minor differences in
their electronic properties. Generally, Sb,S; exhibits intrinsic to
weakly n-type conductivity, in contrast to weakly p-type con-
ductivity in Sb,Se;. Strong electron-phonon coupling-induced
(intrinsic) self-trapping is prominent in Sb,Ss, limiting the V¢
and FF values in Sb,S; solar cells. However, it is conceivable
that there is ambiguity regarding the self-trapping in Sb,Se;
and Sb,(S,Se); and the extent to which it impedes carrier
transport in these materials.>>*° The suppressed or non-
existent self-trapping in Sb,Se; and Sb,(S,Se); facilitates
improved charge transport, which is reflected in their better
device performance than their Sb,S; counterparts (Table S1,
ESIT). Notably, the upper limit of the Vo (~ 0.8 eV) projected by
the self-trapping model for Sb,S; solar cells was experimentally
reported by Maity et al.*' and Peng et al.** In this regard, any
further improvement in Vo will provide evidence for the
validity and efficacy of this model. Engineering strategies to
suppress electron-phonon coupling (such as stiffening the
elastic properties by strain) can counter the ultrafast self-
trapping in Sb,X; films.

3. Defects in Sb,Xs materials and their
implication in the performance of
solar cells

Computational and experimental studies on Sb,X; thin films
revealed the highly complicated and sensitive (to film deposition

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Calculated average mobility (u) values for electrons and holes in Sb,Sz and Sb,Ses as a function of (a) temperature and (b) defect concentration
(Np). Calculated total (TOT) and component mobilities as a function of bulk defect concentration at 300 K. ADP, acoustic deformation potential; POP,
polar optical phonon; and IMP, ionized impurity. Adapted under the guidelines of the Creative Commons CC BY license from ref. 6 Copyright 2022, the
American Chemical Society. (c) Dependence of trapped carrier lifetime (z) on film thickness. (d) Schematic illustration of the free and trapped charge
carrier transport. The free carrier cooling (0.35 ps) and subsequent trapping (23 ps) time constants are shown. The trapped carriers hop among the bulk
trap sites with a narrow energy distribution. Surface recombination leads to the depopulation of the trapped carriers. Adapted with permission from

ref. 39 Copyright 2019, the American Chemical Society.

conditions) nature of defects. The following defects in Sb,X;
films dictate the performance of Sb,X; solar cells: (1) intrinsic
zero-dimensional (0D) defects, including vacancies, interstitials
and antisites; (2) 0D defects caused by impurities (doped or
permeable ions); and (3) 2D defects (grain boundaries, inter-
faces, and surface defects). In addition, defects in the transport
layer and poor contact between the transport layer and electro-
des also affect charge extraction, resulting in a higher series
resistance (Rg). Moreover, severe defects such as microcracks and
scratches on the surface cause a rough surface topography,
lowering the FF in devices. However, in this review, we focus
on the point (0D) defects in the absorber layers. Point defects can
be classified as deep or shallow, depending on whether the
thermal activation energies for the electrons (Ey,) are higher or
lower than kgT (kg is the Boltzmann constant and T is the
absolute temperature). Point defects with deep-energy levels
are prone to tightly trapping free electrons and holes, resulting
in defect-mediated Shockley-Read-Hall (SRH) recombination,
and thus curtaining the average lifetime (t.) of the charge
carriers and V¢ of PV devices. In contrast, shallow defects are
benign and instrumental tools for regulating the carrier density
and electrical conductivity. Solar energy conversion requires the

© 2023 The Author(s). Published by the Royal Society of Chemistry

photoinduced generation of long-lived charge carriers, which
necessitate their separation and collection at the respective
electrodes to generate a discernible Vo and Jsc. Thus, mitigating
all the possible charge carrier loss channels is indispensable for
attaining excellent PCE values.*®

Suppressing the rate of trap-assisted SRH recombination
enables devices to achieve higher Vo values before the Js¢ is
canceled completely by recombination. The V¢ can be formu-
lated in terms of non-radiative voltage loss (AVgoe) from the

maximum achievable voltage (AVoe),** as follows:
Voc =Voe — A og (1)
max k
= Vo — L log(EQEg; ) 2)

where EQEg; is the external electroluminescence quantum effi-
ciency, T is the absolute temperature, and e is the elementary
charge. Naturally, reducing the defect density and the non-
radiative recombination in solar cells is the key to reducing EQEg;.

Voc and FF are closely related to the defect-assisted recom-
bination losses caused by bulk traps and interface defects
(improper energy-level alignment, lattice-mismatching, and

Mater. Adv., 2023, 4, 5998-6030 | 6001
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dangling bonds). The FF of a solar cell is defined as the product
of its current and voltage values at the maximum power output
relative to the product of jsc and Vpc. Therefore, the FF is
strongly affected not only by the series and shunt resistance but
also by carrier recombination (at the maximum power point
conditions). The latter effect is well illustrated by the semiem-
pirical expression, showing the dependency of FF on the diode
ideality factor (i7) and Voc,** as follows:

Vm  Voe — In(vy + 1)

FF = 3
Vm + 1 voe(1 —evoc) ©)
Voc
- = 4
Voo = p T (4)
Vi = Voo — IN(Voe + 1 — Invge) (5)

The Voc of a solar cell is directly related to the splitting of the
(electron and hole) quasi-Fermi levels in its semiconducting
absorber (and thus excess-charge carrier densities, An and Ap,
excited under specific illumination conditions, usually at one
sun). In turn, An (~Ap) directly depends on the effective free-
carrier lifetime (teg)through tegr = AN/uegr, Where ueg is the
effective recombination rate.*>*® Notably, t.s is often used to
assess the electronic quality of semiconductors and is usually
extracted experimentally by TRPL, TAS or transient photo-
voltage (TPV) studies. Given that the recombination rates are
additive in nature, 7. depends on the bulk (tyuy) and surface
(Tsurface) Tecombination lifetimes, as follows:*”

1 1 1

Teff  Thbulk

6
Tsurface ( )
The bulk carrier lifetime (tp,1) depends on the defect-induced
(SRH) recombination lifetime (tgry), band-to-band radiative
recombination lifetime (7.,4) and Auger recombination lifetime
(Tauger), as follows:*®

1 1 1 1
= + + (7)

Thbulk Trad TSRH TAuger

In Sb,X; solar cells, the rate of interface recombination is faster
(Tsurface ~ 0.1 — 1 ns) than that at the bulk (tpu ~ 5-60 ns.
However, biexponential fitting of the decay curve (TRPL,
TAS, and TPV) to get individual values of longer and shorter
lifetimes and corelate the values with the 7y and Teyurface 1S
challenging.'®*!

To intuitively assess the influence of individual types of deep-
level defects on the device performance, the (o-Ny)~ " values are
evaluated and compared. According to the trap-assisted-SRH
recombination model, the tggy value associated with a specific
defect depends on the carrier thermal velocity (vy,), capture cross
section (¢), and trap density (Ny), as follows:***°

1
Viho N1

TSRH = (8)

Deep-level transient spectroscopy (DLTS), thermally stimulated
current (TSC), and admittance spectroscopy are the most
frequently used techniques for characterizing defects in

6002 | Mater. Adv, 2023, 4, 5998-6030
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semiconductors.’” In general, TSC is limited by its low sensitiv-
ity, shallow detection depth, and complicated operation.’*"*
Alternatively, admittance spectroscopy can analyze faster emis-
sion processes, and thus is effective in probing shallow defects
and dopant energy levels. However, although this technique
facilitates the detection of single trap species (majority-carrier
trap only), its sensitivity decreases for deeper trap levels.>*"
Compared with the two above-mentioned methods, DLTS is a
powerful tool to probe (bulk) deep-level defects (located >0.3 eV
from the band-edges) in semiconductors with higher sensitivity,
wider observation range of trap depth, and more versatile and
convenient operation and analysis. It employs the transient
capacitance of the p-n junction (during emission of carriers
from the traps) at different temperatures as the probe to monitor
the changes in the charge state of deep-level traps. This techni-
que has been widely explored for the characterization of defects
in mature PV technologies (e.g., Si,>® GaAs,*”*® CIGS,*® and
CdTe®”®"), and emerging perovskite solar cells.®* **

However, conventional DLTS has the major limitation of
unreliable minority-carrier trap detection. In this regard, a
novel optical-DLTS (O-DLTS) technique has emerged, which
can effectively probe the majority and minority-carrier traps
simultaneously. Deconvolution of DLTS spectra reveals distinc-
tive (positive) peaks and (negative) valleys, which correspond to
the majority and minority carrier traps, respectively. As a
standard procedure, the defect activation energy (E,) and
capture cross-section (o) are calculated using the Arrhenius
plot line-fitting (APL) method. The Shockley-Read-Hall emis-
sion of carriers from the trap states is a thermal activation
process. The emission rate (v) of carriers from the defect is
essentially the Arrhenius equation, as follows:

E,
= e~ (1) ©)

where v, is the attempt-to-escape frequency (enveloping infor-
mation of the carrier capture cross section), kg is the Boltzmann
constant, and T is the absolute temperature. In the case where
vo and E, are not dependent on the temperature, the Arrhenius
plot, i.e., log(v) vs. T~ " converges to a straight line. The values of
Vo and E, can be calculated from the Y-intercept, and slope of
the plot respectively. In the case of a non-Arrhenius process, v,
and E, are dependent on the temperature, and consequently
the Arrhenius plot is curved. An in-depth understanding of the
DLTS instrumentation, operation, and data interpretation can
be obtained in the literature.®>*” Notably, DLTS measurements
reveal a lower number of defect types than that predicted by
theoretical calculations. Fundamentally, this inconsistency
arises because all possible defect types are considered in
theoretical calculations, but most defects are unstable (with
high formation energies), and thus cannot be probed experi-
mentally. Moreover, DLTS is effective in detecting only the
deep-level defects in the depletion region and insensitive to
shallow-level defects or interface defects.

The distinctive Q-1D crystal structure and low structural
symmetry in Sb,X; induce unconventional and complicated
defect physics. When defects are formed on non-equivalent

© 2023 The Author(s). Published by the Royal Society of Chemistry
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sites (two non-equivalent Sb sites, i.e., Sb1 and Sb2, and three
non-equivalent X sites, i.e., X1, X2, and X3), the formation
energies and charge-state transition levels are different, resulting
in multiple inherent defects.®®®® Unambiguously, the defect
types are closely related to the growth conditions, in which Vg/
Vse (S/Se-vacancy) and Sbg/Sbs. (Sb-antisites) defects are formed
under Sb-rich conditions, whereas Vg, (Sb-vacancy) and Sesy,/Ssp,
(Se/S-antisites) are dominant under Se- or S-rich conditions.>*
Interestingly, these defects are located at around the mid-gap
with densities (Ny) in the range of 10'°-10" em ™2, and 7.y is
measured to be in the range of 1.3-67 ns.”%”" Huang et al.®®
performed an in-depth study on the defects in Sb,Se; via first
principles calculations. Owing to presence of two non-equivalent
Sb sites (Sb1 and Sb2), and three Se sites (Se1, Se2 and Se3), there
are two Sb vacancies (Vsp; and Vgy,), three Se vacancies (Vser, Vses
and Vse3), two Seg;, antisites (Segp,; and Segp,), and three Sbg.
antisites (Sbse1, Sbsey and Sbses). The cation-replace-anion (Sbge)
and anion-replace-cation (Sesp,) antisite defects can have high
concentrations and be dominant in Sb,Se;. Interestingly, two Se
replacing one Sb (2Seg;,) antisite defect can also have a high
concentration under Se-rich conditions owing to the large space
between different [Sb,Seg], ribbons and produce a shallow

View Article Online
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acceptor level. Computational studies revealed that cation-anion
antisite defects have low formation energies and are located
near the middle of the bandgap, acting as recombination
centers,®*%7>73
Lian et al.”* conducted an O-DLTS study to probe the deep-
level defects in Sb-rich and S-rich Sb,S; films and solar cells.
The results showed that the Sb-rich film displayed three donor
defects (E1, E2 and E3, acting as electron traps), with the energy
level of 0.31, 0.60, and 0.69 eV below the CBM, respectively
(Fig. 2e). In contrast, the S-rich film exhibited only two acceptor
defects (H1 and H2, acting as hole traps) with the energy levels
of 0.64 and 0.71 eV above the VBM, respectively (Fig. 2h). The
E1, E2, E3, H1, and H2 carrier traps were attributed to the
Sb-interstitial (Sb;), S-vacancy (Vg), Sbg antisite, Sb-vacancy
(Vsp), and Sgp, antisite defects, respectively. The E2 (Vs) and E3
(Sbs) traps in the Sb-rich Sb,S; films had a larger capture cross-
section, higher trap density, and located closer to the Fermi
energy level (Er) compared to H1(Vsp) and H2 (Ssp) in the S-rich
Sb,S;. There is a high possibility that the electron quasi-Ef is
pinned near the E2 and E3 traps in Sb-rich Sb,S;. In contrast,
S-rich Sb,S; displayed a reduced capture cross section and
defect density, resulting in suppressed recombination and
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(a) J-V characteristics and (b) EQE spectra of the fabricated Sb,Ss solar cells. (c) Transient kinetic decay (scatter) and fittings according to

biexponential decay function (solid lines) monitored at 545 nm of Sb-rich and S-rich films. (d) DLTS signals of Sb-rich and (g) S-rich Sb,Ss films at different
pulse voltages ranging from 0.1 to 0.5 V, synergized with an identical pulse-width optical pulse. (d) Conduction band (E¢), valence band (Ey), Fermi
level (Ef), and trap energy level (E1) of Sb-rich and (h) S-rich Sb,Ss films. (f) Schematic diagram of V¢ derived from splitting of the electron and hole
quasi-Fermi levels. Adapted under the guidelines of the Creative Commons CC BY license from ref. 74 Copyright 2019, Nature Springer.
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Table 1 Defect state, energy level (E), cross-section (o), defect density (N+1) and carrier density (Ns) of the detected defects in Sb,Xs thin-films and solar
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cells. Capture cross-sections of ~107-10"* cm? indicate that defects may act as effective trapping or recombination centers

Defect characterization

Material Deposition technique  technique Trap Type Er (eV) ¢ (cm?) Nr(em™)  Ref.
Sb,S; Chemical bath O-DLTS H1  Sgpo Ey +0.500 1.24 x 107" 1.85 x 10" 8
deposition (CBD) H3  Sgp1 Ey +0.776  6.59 x 107*® 1.57 x 10%*
Hydrothermal H1 Vg E.—0.572 2.98 x 1077 4.22 x 102 82
H2  Sbs, E.— 0.671 3.81 x 107 '® 2.69 x 10'*
H1 Vg Ey+0.576 2.52 x 1077 6.67 x 10" 81
H2  Sg Ey+0.701 4.37 x 10°'® 1.08 x 10™
DLTS H1 Vg Ey +0.536 2.39 x 107 '® 3.71 x 10"® 5
H2  Sbg Ey +0.709 4.49 x 10°** 3.67 x 10~
Thiourea-treated H1 Vg Ey +0.537 1.68 x 107 '® 3.52 x 10'°
Sb,S; H2  Sbg Ey +0.697 2.62 x 107 4.50 x 10'*
E1 S Ec — 0325 1.12 x 107 1.16 x 10™
Sb,S; H1  Sbg Ey+0.445 6.14 x 107" 2,16 x 10 77
H2 Ey +0.698 2.31 x 107 *® 4.25 x 10™*
(NH,),S-treated H2 Ey +0.708 6.85 x 107'® 6.29 x 10
Sb,S;
Sb,S; El Vg Ec — 0325 6.90 x 1077 6.57 x 10** 83
H1  Sbg Ey+0.546 8.33 x 1077 1.20 x 10%°
H2 Ey +0.673 1.14 x 107 '® 2.26 x 10"®
El Vg Ec — 0.255 6.39 x 107** 1.02 x 10'® 84
H1 Vg Ey+0.321 2.15x 107" 1.15 x 10™
H2  Sbs, Ey + 0.467 5.08 x 107 *® 1.55 x 10'*
H3  Sbg; Ey+0.579 7.5 x 1077 3.14 x 10*°
H4  Sbg; Ey+0.781 8.42 x 107 2.10 x 10'®
O-DLTS H1  Sb, Ey +0.664 4.05 x 107 *® 1.26 x 10'* 76
H2 Ey +0.713 4.47 x 107 1.19 x 10™
H3 Ey+0.741 239 x 10°** 7.30 x 10"
H1 Sbs, Ey +0.507 1.27 x 107" 1.46 x 10° 80
H2  Sbg; Ey+0.689 4.95 x 1077 3.42 x 10%°
H3  Sbg; Ey +0.762 4.45 x 107 7.62 x 10"°
Sb,(S,Se); H1 Sbg, Ey+0.502 1.05 x 107%7 2.24 x 10**
H3  Sbg; Ey +0.766 1.28 x 107 1.21 x 10*®
DLTS O-DLTS E1  Sbge, Ec — 0.57 2.48 x 107 1.45 x 10"° 85
E2  Sbge; Ec—0.71 4.39 x 107** 4.78 x 10~
H1  Sbg Ey+0.761 3.97 x 107" 6.45 x 10"°
KlI-treated E1  Sbge, Ec — 0.584 1.99 x 107 6.49 x 10'*
Sb,(S,Se)s H1  Sbg Ey+0.784 1.6 x 107 297 x 10*°
Sb,(S,Se); H1  Sbg; Ey +0.500 1.99 x 107" 6.28 x 10'* 10
H2  Sbs, Ey+0.671 5.91 x 10°Y 1.88 x 10%?
El Vg E. — 0.747 1.60 x 107'® 2.47 x 10"® 49
H1  Sesp Ey+0.290 6.61x 107" 6.55 x 10*?
H2  Sbg; Ey +0.638 3.18 x 107 4.15 x 10'?
H3  Sbg, Ey+0.483 1.48 x 107 '° 4.64 x 10
H4  Sbge, Ey+0.682 3.67 x 10°** 8.63 x 10™*
H5 Sbg; Ey +0.790 4.87 x 10°** 9.75 x 10™
DLTS H1  Sbg Ey +0.560 5.98 x 107 4.97 x 10"° 86
H2 Ey +0.770 2.68 x 107 '® 6.40 x 10"°
El  Sg E. — 0.563 1.40 x 107 '® 1.97 x 10"
Admittance Spectroscopy H1 Vg Ey +0.203 2.43 x 107" 5.37 x 10'* 87
H2  Sbs. Ey +0.364 3.85 x 107 ® 1.27 x 10%°
Sb,Se; CBD O-DLTS H1  Seg: Ey +0.609 3.23 x 1077 1.01 x 10 9
H2  Sesy Ey +0.691 3.30 x 107 4.27 x 10'?
Vapor transport Admittance spectroscopy H1  Bulk trap Ey+0286 3.2 x 107 246 x 10" 88
deposition (VTD) H2 Ey+0.188 9.9 x 107> 1.36 x 10"
H3 Interface trap Ey +0.570 4.1 x 107" 1.15 x 10'®
Rapid thermal evapora- Temperature-dependent H1  Segp Ey+0.111 — 1.3 x 10" 89
tion (RTE) (dark) conductivity and H2 — Ey+0.578 — —
admittance spectroscopy
VTD DLTS H1 Vg Ey+0.48 1.5x 107" 1.2 x 10" 90
H2  Seg, Ey+071 49 x10 2 1.1 x 10
E1  Sbse Ec—0.61 4.0x10 2 2.6 x 10™*
Injection vapor deposi- El Vg Ec — 0.206 5.34 x 107>' 2.74 x 10" 91
tion (IVD) E2  Sesh Ec — 0.569 1.24 x 10°'® 8.02 x 10™
H1  Segy, Ey +0.531 3.79 x 107 *® 3.48 x 10'*
Closed-space sublima- El Ve Ec-0.359 1.03 x 107 2.70 x 10" 15
tion (CSS) E2  Sbgp, Ec-0.609 1.54 x 10°'® 1.73 x 10"
H1  Segy Ey +0.691 1.37 x 107 *® 8.76 x 10™*
Spin coating H1 Vg Ey+0.479 2.07 x 10°'° 6.10 x 10** 92
H2  Seg Ey+0.713 1.53 x 107 1.00 x 10%®
6004 | Mater. Adv, 2023, 4, 5998-6030 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 (continued)
Defect characterization

Material Deposition technique  technique Trap Type Er (eV) ¢ (cm?) Nr(cm™®)  Ref.

E1  Sbse E.— 0.628 7.05 x 107" 6.49 x 10'*
(2.21%) Te- H1 Vg Ey+478 271 x 107 5.34 x 10™
doped Sb,Se; El  Sbs. E. — 0.637 9.48 x 107'® 3.32 x 10™
(5.23%) s-doped H1 Vg Ey +0.500 6.80 x 107" 6.93 x 10
Sb,Se; H2  Seg, Ey+0.721 819 x 10°** 1.43 x 10"

E1  Sbse E.— 0.633 2.54 x 107 *® 6.60 x 10'*

prolonged carrier lifetimes. The trap state distribution is sche-
matically shown in Fig. 2d-h and the parameters are listed in
Table 1. The TAS decay profile (Fig. 2¢) revealed that the S-rich
Sb,S; films exhibit much longer carrier lifetimes (18.7 ns) than
the Sb-rich Sb,S; films (3.8 ns). The reduced defect type (and
density) contributed to the prolonged -carrier lifetimes,
improved Voc and PCE. The S-deficit in the Sb-rich Sb,S;
resulted in the inevitable formation of Vs. Subsequently, the
excess Sb preferentially filled the Vg, rather than entering the
interstitial site, given that the formation energy for Sbg was
lower than that for Sb;. Therefore, the E2 (Vs) and E3 (Sbs)
defects were predominant in the Sb-rich Sb,S;. However, in the
S-rich Sb,S;, initially, the S atoms entered the crystal structure
to passivate Vs. Under the S-rich conditions, the formation of
Sbs and Sb; defects was suppressed due to their increased
formation energy, while the formation of a large amount of H1
(Vsp) was induced due to its low formation energy. Furthermore,
some S atoms may even occupy the Vg, and form the H2 (Ssp)
antisite to maintain structural stability. It was also revealed that
the Sb; defect did not have a critical influence on the carrier
lifetimes, indicating the high tolerance of the Q-1D crystal
structure. The space in (Sb,Se), ribbons can easily accommodate
impurities/defects to a certain extent. Cai et al.”® performed a
first principles study on Sb,S; and concluded that the for-
mation energies of the dominant acceptor defects (Vgpz, Sbss,
and Sgp,,) and donor defect (Vs,) in intrinsic Sb,S; are similar.
This results in E level pinning near the middle of the band gap.
These results are consistent with the experimentally observed
high resistivity values (~10® Q c¢m) in undoped Sb,S; thin
films. It is widely accepted that the high resistivity in Sb,S;
originates from the compensation between its intrinsic donor
(Vs) and acceptors (Vgp, Sbg, and Ssp), which have comparably
high densities and low formation energies. This compensation
also limits the improvement in conductivity through direct
extrinsic doping.

Wang et al.® fabricated Sb,S; solar cells via chemical bath
deposition (CBD) employing six different routes. It was demon-
strated that using multiple S-sources (sodium thiosulfate and
thioacetamide) accelerated the release of $>~ ions, leading to
the formation of S-rich Sb,S; films with better morphology
(average grain size ~2.8 um), crystallographic orientation,
prolonged carrier lifetimes and less defects. Energy dispersive
X-ray (EDX) analysis revealed atomic ratios of S/Sb of >1.5 for
all the Sb,S; films, indicating the (desirable) S-richness in the
films. The defects in the n-Sb,S; films were characterized via

© 2023 The Author(s). Published by the Royal Society of Chemistry

O-DLTS. The O-DLTS signal revealed only negative peaks,
suggesting the presence of minority traps (holes), i.e., H1, H2
and H3, with E, of ~0.51, 0.66, and 0.77 €V, respectively
(Fig. 3). H1 and H3 were attributed to the antisite defects
(Sspz and Sgps, respectively), while H2 to Vgp,. All three traps
were found to be located below the intrinsic Ex. Compared to
the H2 and H3 traps, the H1 trap was located further away from
Eg, which was generally submerged in electrons and remained
passive. The H1 trap exhibited a lower trap density and smaller
capture cross-section, and thus a less detrimental effect on
carrier trapping. On the contrary, the deep-level H3 (Sgp,) trap
was located closer to Er and exhibited a larger capture cross-
section than the other traps, and thus was the most active in
charge trapping. The devices fabricated using the modified
recipe were free from the H2 deep-level defect (Vgy) and
demonstrated a record PCE of 8.0% in Sb,S; solar cells.
Furthermore, bi-exponential fitting of the TAS curve revealed
a prolonged carrier lifetime of 9298 ps in the FTO/CdS/Sb,S;
stack, indicating efficient transport and reduced recombina-
tion. Furthermore, an excellent diode ideality factor of 1.31 and
low reverse saturation current were obtained, suggesting the
substantial suppression of non-radiative (SRH) recombination
in the device.

Huang et al.”” demonstrated in situ sulfurization by introducing
tartaric acid (TTA) additive in the hydrothermal deposition process
of Sb,S;. The consensus is that reducing the density of Sbs defect is
one key aspect to enhance the PCE of Sb,S; solar cells. S atoms
easily volatilized from the Sb,S; thin films during annealing to
form Vs. Given that the formation energy of Sb; is much higher
than that of Sbs, excess Sb preferentially filled the Vg voids, thus
forming Sbg antisite defects. In situ sulfurization induced S-richness
in the annealed Sb,S; films. Consequently, this increased the
formation energy of Sbs defects. To accommodate the stability of
the structure in S-rich Sb,S; films, some of the S atoms occupied
Vsp to form Sg, defects. In situ sulfurization successfully compen-
sated the S-loss occurring during annealing and suppressed the
formation of Sbs. Three hole traps (H1, H2 and H3) were obtained
for the control Sb,S; sample, which are attributed to Sbg defects.
In the case of the sulfurized sample, only H1 and H3 traps were
obtained. The passivation of the Sbg defects and improvement in
crystallinity led to an improved PCE (6.31%) in the in situ-sulfurized
device, outperforming the control device (PCE of 5.46%).

Huang et al.”” demonstrated a novel (NH,),S-induced hydro-
thermal sulfurization process for the fabrication of Sb,S; solar
cells. (NH,4),S undergoes hydrolysis to produce H,S, a strong

l. 76
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Fig. 3

(a) O-DLTS signals and high-resolution evaluation simulations for Sb,Sz solar cells based on recipes A-F. (b) Corresponding Arrhenius plots

obtained from the O-DLTS signals. (c) Histogram of the calculated ¢ x Nt values of different hole traps in Sb,Ss solar cells based on recipes A-F. (d)
Schematic diagram of an Sb4Sg ribbon with five nonequivalent atomic sites and Ssp1, Ssp2, and Vsp, defects in the Sb,Ss lattice. (e)—(g) Energy levels and
defect levels of the devices based on recipes B, D, and F, respectively. Adapted with permission from ref. 8 Copyright 2022, Wiley-VCH.

sulfurization agent. The XRD patterns revealed improvements
in crystallinity, while the SEM micrographs suggested no
improvement in morphology on adopting the sulfurization
strategy. DLTS analysis revealed the presence of two minority
carrier (hole) traps, i.e., H1 and H2, in the control films, with
the activation energy of 445 and 698 meV, respectively, which
were both attributed to Sbg antisite defects. The sulfurization
process annihilated H1, given that only H2 was detected in the
sulfurized films. The PCE of the solar cell (FTO/CdS/Sb,Ss/
spiro-OMeTAD/Au) improved from 6.01% to 6.92% on adopting
the sulfurization strategy. The reverse (leakage) current density
(Jo) value decreased from 4.85 x 107> mA cm > to 2.07 x
10~°> mA cm ™2 in the respective devices, indicating a significant
improvement in diode quality and rectification characteristics.
Choi et al.’® investigated the trap-state distribution in CBD-
deposited and post-deposition thioacetamide (TA, CH;CSNH,)-
treated Sb,S; films using capacitance transient-based DLTS,
where Sb,S;/Au-based Schottky diodes (500 mm diameter) were
fabricated for the measurement. TA decomposed into volatile

6006 | Mater. Adv., 2023, 4, 5998-6030

acetonitrile (CH3CN) and hydrogen sulfide (H,S) gas on anneal-
ing at temperatures exceeding 150 °C in an inert atmosphere.
The released H,S readily reacted with the surface of the
Sb,S; film, passivating the Vg defects and reducing the oxide
phase (oxidized sulfur, sulfates, and Sb,0;). Interestingly, the
untreated sample demonstrated a single hole trap with
an activation energy of E, +0.52 eV, capture cross-section of
1.34 x 10~ em? and density of (2-5) x10"* cm™?, while no trap
was found for the TA-treated sample. TA treatment was found to
be instrumental in boosting the Vo and PCE values from 570.5
meV and 5.5% (in the control device) to 645.7 meV and 7.5% (in
champion device), respectively. This spectacular improvement
was attributed to the annihilation of Vs defects (near the Sb,Ss/
HTL) by H,S-assisted sulfurization. H,S-assisted sulfurization
has also been found to be instrumental in passivating Vgse
defects, reducing the (detrimental) Sb,O3 phase (at the surface)
and boosting the carrier lifetimes and mobility in Sb,Se; films.”®

Similar to TA, thiourea (TU, SC(NH,),) treatment has also
been used as an effective sulfurization strategy (by releasing

© 2023 The Author(s). Published by the Royal Society of Chemistry
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H,S during decomposition at temperatures of >150 °C) for
passivating Vg/s. defects in Sb,X; films. Qi et al.® performed an
investigation on the trap physics in hydrothermally deposited
Sb,S; films using DLTS. The as-deposited films exhibited two
minority (hole) traps, i.e., H1 and H2 (attributed to Vg, and Sbsg,
respectively). These defects possessed high ionization energies
of 0.536 and 0.709 eV, respectively, and served as severe
recombination centers. H2 was highly effective in charge trap-
ping and Vo loss (owing to its high density and large capture
cross-section), while H1 was less effective (low capture cross
section of ~10'® cm?). TU treatment on Sb,S; films led to the
suppression of the H2 (Sbg) defect density by one order,
suggesting the alleviation of S-deficiency at the surface.

Liang et al'® fabricated flexible Sb,Se; solar cells (Mo/
Sb,Se;/CdS/ZnO/Al:ZO/Ag) on a polyimide (PI) substrate and
investigated the influence of an ultra-thin PbSe layer (at the Mo/
Sb,Se; interface) on the device performance. The control device

Control
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Control
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Fig. 4
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(without a PbSe interlayer), i.e., C-Sb,Ses, was found to under-
perform (PCE of 3.04%) compared to the device with a PbSe
interlayer, ie., Pb-Sb,Se; (PCE of 8.43%). The improved
performance of the latter was attributed to the synergistic
influence of the PbSe layer in suppressing the unfavorable
[1kO]-orientated grains, alleviating the Schottky barrier height
(at the Mo/Sb,Se; interface) and mitigating the bulk-defects in
the absorber layer. The TPV study revealed longer carrier life-
times (~0.78 ms) in the Pb-Sb,Se; devices in comparison to
the C-Sb,Se; devices (~0.02 ms). The defect dynamics in both
devices were investigated using DLTS (Fig. 4c-f). The Arrhenius
plots (Fig. 4d) were found to be straight lines, suggesting that
the activation energy E, (slope of the plots) and capture cross-
sections (calculated from the Y-intercept) were strictly indepen-
dent of temperature. Two electron traps (E1 and E2) and one
hole trap (H2) were identified from the DLTS signal in both
devices (Fig. 4c). Trap E1 was attributed to the Vg, vacancy

C-El
54 —— ————————
24 26 28 30 32 34 36 38 4.0
1000/T (1/K)
(f) PbSe
Ec -3.99¢V
E1:330 mV
E2:698 mV
Ep 456V
H1:500 mV
Ey
-5.26eV

(a) Photograph and (b) schematic device structure of flexible Sb,Ses solar cells fabricated on Pl in a substrate configuration of PI/Mo/Sb,Sez(Pb—

Sb,Ses)/CdS/ZnO/AZO/Ag. (c) DLTS signals of Pb—Sb,Ses and the control devices. (d) Arrhenius plots obtained from DLTS signals. (e) and (f) Energy states
and defect levels of the control device and Pb—Sb,Ses solar cells. Adapted with permission from ref. 15 Copyright 2023, the American Chemical Society.
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defect. Vg, exhibited a low formation energy under both Se-rich
and Se-poor conditions and acted as shallow-level electron
traps. Also, Vg, exhibited a lower density and capture cross-
section (listed in Table 1), and thus ruled out as a stringent
recombination center. E2 and H1 were found to be located
close and deeper in the forbidden gap, resulting in ambiguous
interpretations. These traps could be either attributed to the
donor-acceptor pair of the same (amphoteric) defect (Sbs.) or
[Sbse + Segp] antisite complexes. The E2 and H1 defects in the
Pb-Sb,Se; solar cells were attributed to Vge3 and Pbgy, respec-
tively. H1 was found to be located much shallower and with
(one order) lower capture cross-section in Pb-Sb,Se; than in
C-Sb,Se;, suggesting its impact in alleviating the carrier life-
times, and the Vo was limited in the Pb-Sb,Se; device.

Che et al.*® investigated the influence of the annealing
process on the defect formation mechanism in hydrothermally
deposited n-type Sb,(S,Se); films. High-temperature annealing
(200-425 °C) led to a two-step defect transformation process,

e., the formation of Vg./Vg vacancy defects (with high for-
mation energies), followed by the migration of Sb ions to fill the
vacancy defects (forming antisite defects with low formation
energies). O-DLTS analysis revealed the presence of one elec-
tron trap (E1) and five-hole traps (H1, H2, H3, H4, and H5) in
the samples. The former was assigned to S-vacancy (Vs,), while
the latter to antisite defects (Segp, Sbsi, Sbsz, Sbsez, and Sbsgs,
respectively). H2-H5 acted as amphoteric defects. E1 (Vs,), H1
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(Sesp) and H2 (Sbg;) defects with high formation energies
appeared in the as-deposited (unannealed) film (Fig. 5c).
After post-annealing, these traps gradually decreased and
transformed into H3-H5 antisite defects (i.e., Sbg,, Sbge,, and
Sbgs), respectively, with lower formation energies. It was con-
cluded that post-annealing provided a driving force for the
formation of relatively low-energy defects. S-volatilization left
sulfur vacancies (E1, Vs), which were subsequently occupied by
the Sb atoms, as depicted by the P3 process (Fig. 5¢), thus creating
Sb-substituted S (H3, Sbs,) anti-site defect. Furthermore, owing to
the instability (high formation energy) of the Seg;, (H1) defect, the
Se atoms (in Seg,) migrate to occupy neighboring V() under the
thermal driving force, leading to the mitigation of H1, as shown
by the P1 process. Se-volatilization forms Vs, which gets occupied
by the neighboring Sb atoms, forming Sb-antisite defect
(H4, Sbg.,), as shown by the P4 process (Fig. 5e). Concurrently,
the further loss of S (during annealing) creates more Vs, which
prompts the Sb atoms to occupy these unstable Vg; (P5 process in
Fig. 5e), leading to the creation of a new low-formation energy
defect, i.e., Sbg; (H5). Interestingly, the elevated annealing tem-
perature propelled the Sb atoms in the high-formation energy
defect H2 (Sbg,) to migrate to the surrounding Vge) and form
defects Sbg) (depicted by the P2 process). Vg, Sbg;, Sbse,, and
Sbs; are all located near the Eg-level, which significantly influ-
enced the carrier lifetimes and Voc. The transient absorption
spectroscopy (TAS) results revealed that the Sby(S,Se); film
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Fig. 5

(a) Dependence of defect density (N) on annealing temperature and (b) lifetime associated with specific defects obtained from the O-DLTS

signals of the devices. Schematic of (c) three types of point defects in the as-deposited films (without post-annealing). (d) Loss of S and Se atoms to
generate vacancy defects during annealing and (e) formation mechanism of antisite defects in the Sb,(S,Se)s films. Adapted with permission from ref. 49
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annealed at 350 °C for 10 min exhibited the longest carrier
lifetime (7.0 ns) compared to the films annealed at other tem-
peratures and for higher durations. It was concluded that the
Sb,(S,Se); films annealed at 350 °C exhibited the lowest defect
concentrations and longest carrier lifetimes, thus leading to a
high photovoltaic performance (PCE of 9.7%).

Tang et al.*° investigated the defect properties in hydrother-
mally deposited Sb,S; and Sby(S,Se); films using O-DLTS.
Three-hole traps (H1, H2 and H3) were detected in all the
samples. Also, similar E, values were obtained for the traps in
all the samples, suggesting similar origins for each type of
defect. Specifically, H1, H2 and H3 were located at about
0.50 €V, 0.68 eV and 0.76 eV above the valence band and
assigned to antisite defects (Sbs,, Sbsy, and Sbs;), respectively.
Notably, the capture cross section exhibited a decreasing trend
(up to two orders) with an increase in the Se-content in the
films. Also, the H2 defect disappeared in the films with a higher
Se-content, indicating that the defect properties are strongly
correlated with the elemental composition and stoichiometry.
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An increase in Se-content not only induced preferred [hk1]-
oriented growth, but also favored efficient carrier transport by
alleviating the defect density and capture cross-section, leading
to a PCE of 10.10% in the device employing the Sb,(S,Se); thin-
film (with 29% Se-content), outperforming the Sb,S;-based
device (PCE of 6.02%).

Zhao et al.® conducted O-DLTS measurements in Se-rich
Sb,Se; films, which were synthesized using the CBD technique.
Antimony potassium tartrate (APT) and sodium selenosulfate
(SSS) were used as the Sb and Se sources, respectively, while
thiourea (TU) and selenourea (SU) were used as additives.
The films were synthesized via three routes, ie., APT + SSS
(no additive), APT + SSS +TU (additive) and APT + SSS + SU
(additive). The additives were found to be instrumental in
regulating the reaction kinetics and defect properties of the
Sb,Se; films (Fig. 6d). The detailed defect parameters extracted
from the Arrhenius curves (Fig. 6e) and DLTS signals are
summarized in Table 1. Two types of hole traps (H1 and H2)
were detected in all the samples, which are attributed to
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Fig. 6 (a) Cross-sectional SEM image of Sb,Ses planar heterojunction solar cell. (b) J-V curves and (c) EQE spectra of the Sb,Ses solar cells fabricated via
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obtained from O-DLTS signals. (f) Values of Ny (left) and (o-N7)™*
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Se-antisites (Sesp; and Sespy, respectively). Under Se-rich con-
ditions, the Segp; and Segp, antisite defects have relatively low
formation energies (<1 eV), making the replacement of Sb with
Se feasible. The Se-antisite defects form deep-level defects,
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inducing Eglevel pinning and serving as proactive SRH-
recombination centers. Furthermore, the Se-antisite defects
are specifically amphoteric defects with similar carrier capture
cross-sections for both electrons and holes, thus severely
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impeding the carrier transport and limiting the final PV per-
formance. The H2 trap level is located deeper in the band gap
than H1, implying that H2 is the dominant defect in these
films. The control Sb,Se; device had a higher trap density
(6.65 x 10" ecm ™) of H2, which is consistent with its poor
film quality. After regulating the CBD reaction in the deposition
processes, the values of Ny significantly decreased. Particularly,
the H2 defect density of the SU-Sb,Se; device was reduced by
one order of magnitude, alleviating the SRH recombination.
The mitigation of the non-radiative recombination pathways is
consistent with the Jj-V measurements in the dark and at
different light intensities. It was concluded that the sensitive
manipulation of the reaction kinetics via the additive-assisted
CBD technique offers an effective route for the fabrication of
high-quality Sb,Se; films and high-PCE (10.57%) solar cells.

Wu et al.®! investigated the structure-property—performance
relationship in Sb,S; thin-film solar cells via the in-depth
characterization of the crystal orientation, carrier transport
and device performance. The study revealed that by merely
controlling the post-annealing process, the grain growth, orien-
tation and defect physics can be regulated. Normal grain
growth occurred when the Sb,S; film was subjected to a low-
temperature treatment process, yielding [#k1]-oriented films.
Alternatively, direct annealing at high temperature promoted
abnormal grain growth and favored [hkO]-oriented Sb,S; film
growth. The device using the [Akl]-oriented Sb,S; thin-film
demonstrated a PCE of 6.82%, outperforming the devices based
on an [hkOJ-oriented absorber (6.27%). The O-DLTS results
suggested that the [ak1]-oriented Sb,S; film (with normal grain
growth) exhibited only one type of hole trap (Ssp), while the
[hko0]-oriented film (with abnormal grain growth) demonstrated
two types of hole traps (Ssp and Vgp). The dark j-V measure-
ments revealed a higher leakage current in the latter device.
Furthermore, the TAS analysis suggested a shorter average
lifetime (tuy of ~3924 ps) in the device with [hk1]-oriented
Sb,S; films than that with the [#kO]-oriented films (t..,, of
~4818 ps). The shorter lifetime and better performance were
attributed to the rapid electron extraction by the ETL (CdS)
layer and lower density of deep traps in the devices with the
[hk1]-oriented Sb,S; films than their [#k0] counterparts.

Chen et al.'® demonstrated a solvent-assisted hydrothermal
deposition (SHD) technique for the deposition of high-quality
Sb,(S,Se); films. Ethanol was used as an additive and found to
be instrumental in regulating the reaction kinetics during the
deposition procedure and stoichiometry in Sb,(S,Se); films. The
devices fabricated using the ethanol-SHD technique demon-
strated a substantial reduction in trap density and dark current
density and higher recombination resistance (R...) than the
control devices (Fig. 7c). The FTO/Sb,(S,Se)s;/Au structure was
adopted to measure the conductivity of the Sb,(S,Se); films, reveal-
ing an improvement in conductivity from 1.65 x 10~ * S cm ' to
4.07 x 10°* S cm ™' on adopting the novel route. The deep level
defects in the films were probed using O-DLTS. Two-hole traps
(H1 and H2) were obtained in the control films, which were
attributed to Sbg, and Sbg; defects, respectively (Fig. 7a). The films
synthesized using the SHD protocol exhibited one order of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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suppression in trap density of H1 and H2 defects, greatly benefiting
the carrier transport. Consequently, the fabricated device (FTO/
CdS/Sby,(S,Se)s/spiro-OMeTAD/Au) delivered a PCE of 10.75%, a
record for Sb,X; solar cells.

Li et al.®® investigated the role of potassium iodide (KI)
surface treatment on Sh,(S,Se); thin films and solar cells. KI
treatment was found to successfully improve the crystallinity
and morphology of the Sb,(S,Se); films, inhibit the deep-level
defects and improve the band alignment for efficient charge
transport. It was revealed that I diffused into the Sb,(S,Se)s
crystal and induced the benign [211]-crystal orientation. The as-
deposited films were Sb-rich, with Sbs and Sbg, antisites as the
two dominant defects. The diffused I interacted strongly with
the Sb atoms, forming Sb-I bonding. Therefore, I passivated
the Vg defects, and thus inhibited the formation of the
detrimental Sbg and Sbs. antisite defects. Fig. 8(a) illustrates
the DLTS signal from the control and Kl-treated device. Two
majority (electron) traps and one minority (hole) trap were
identified for the control device, which were denoted as E1
(Sbse,) and E2 (Sbge;) and H1 (Sbg), respectively. KI treatment
suppressed the density of E1 and H1, while annihilating
the E2 defect (defect parameters summarized in Table 1).
Furthermore, the KlI-treated device exhibited a lower dark
(reverse) current density and higher PCE (9.22%) than its
untreated counterpart (PCE of 8.19%).

Wen et al°® demonstrated a vapor transport deposition
(VID) technique to deposit Sb,Se; thin films with improved
film crystallinity, lengthier carrier lifetimes, and reduced bulk
and interfacial defects. The champion device (ITO/CdS/Sb,Se;/
Au) demonstrated a PCE of 7.6%, outperforming the device
fabricated via RTE (PCE of 5.6%). As envisaged in Fig. 9(c), the
power value (o) for both the devices was ~0.9, i.e., closer to
unity (first-order), suggesting that trap-assisted SRH recombi-
nation is the dominant loss mechanism. The diode ideality
factor (1) decreased from 1.51 (for RTE-fabricated device) to
1.23 (for VID-fabricated device), suggesting the mitigation of
SRH recombination on switching the film deposition route
(Fig. 9d). The CdS/Sb,Se; interfacial defect density was quanti-
tatively characterized via the capacitance-voltage (C-V) profil-
ing and deep-level capacitance profiling (DLCP) techniques.
The interfacial defect density of the RTE-fabricated and VID-
fabricated devices was calculated to be 2.1 x 10"'em™? and
2.8 x 10"°cm ™, respectively. Interestingly, during VID deposi-
tion, Cd diffusion into the Sb,Se; film transformed p-type
Sb,Se; into n-type, forming a buried homojunction at the
CdS/Sb,Se; interface. This led to suppressed interfacial defects,
benefitting the device performance. The DLTS study revealed
one electron trap (E1) and two hole traps (H1 and H2) in the
Sb,Se; films. The E1, H1 and H2 defects were attributed to the
Sbse, Vsp and Seg, defects, respectively. The VID deposition
process suppressed the density of the [Sbs. + Seg,] antisite
defect pair by more than an order of magnitude. As envisaged
in Fig. 9(h), the H1 state was under Er and submerged in
electrons, and thus the H1 defects always remained inert.
In contrast, the H2 and E1 traps were above the Er and active
in trapping holes and electrons, respectively. Moreover, owing
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to the higher defect density of H2 and E1 than the carrier concen-
tration (~10"cm™3) in the Sb,Se; layer, the (hole) quasi Eg-level
(Erp) would be more likely to be pinned near the E1 and H2 levels.

Ma et al.®” investigated the influence of (0-4%) Te and S
doping on Sb,Se; films and investigated their deep-defect
profiles using DLTS. It was revealed that the incorporation of
Te was decisive in regulating the atomic ratio of Se/Sb, given
that a sustained decline in Se content was observed with an
increase in Te doping. Different crystal structures of Sb,Se; and
Sb,Te; inhibited the formation of the alloy-Sb,(Se,Te); film,
and therefore instead of going into the lattice, Te settled at the
grain boundaries and surface. Se-rich Sb,Se; favored the
formation of Seg, and Vg, defects, while the Sb-rich films
benefited the formation of Sbs. and Vg, defects. The undoped
Sb,Se; demonstrated two-hole traps (H1 and H2) and one-
electron trap (E1), acting as acceptor and donor defects, respec-
tively. These defects were attributed to the antimony vacancy
(Vsp), selenium antisite (Segp) and antimony antisite (Sbse)
defects, respectively. Te-doping suppressed the hole-trap den-
sities by eliminating the Seg;, defects (H2) and mitigating the
Vsp defects (H1). However, for a high Te doping (~4%), Sbse
(E1) exhibited an order of increment in magnitude, and a new
electron trap (E2, Vg.) also started to appear in the DLTS signal.
Interestingly, S-doping was found to have detrimental effects
on the Sb,Se; film and solar cell performance, given that
S-incorporation could not emulate Te in suppressing the
defect-formation process.

6012 | Mater. Adv, 2023, 4, 5998-6030

Duan et al.’’ demonstrated a novel injection vapor deposi-
tion (IVD) technique for the deposition of high crystallinity,
[001]-oriented Sb,Se; films, with a minimal deep-level defect
density. The Sb,Ses;-based devices fabricated via IVD demon-
strated a lower trap density, suppressed recombination losses
and better performance (PCE of 10.12%) than the devices
fabricated via close-spaced sublimation (CSS) and co-evapo-
ration (CoE) method (PCE of 9.31% and 3.96%, respectively).
Capacitance-voltage (C-V) profiling, deep-level capacitance pro-
filing (DLCP) measurements, and minority carrier injection
DLTS measurements were carried out to probe the interface
and deep traps in the Sb,Se; solar cells. Subsequently, bulk trap
density (Ny) values of 2.3 x 10'°, 1.5 x 10'®, and 5 x 10'® cm 3
were obtained for the devices with IVD-Sb,Se;, CSS-Sb,Se; and
CoE-Sb,S; films, respectively. The corresponding devices exhib-
ited an interface defect density of 1.32 x 102, 9.30 x 10"* and
1.20 x 10" cm™?, respectively. Furthermore, the DLTS analysis
revealed one (type) electron trap (E1), two electron traps
(E1 and E2), and two electron traps and one hole trap (E1, E2,
and H1) in the CSS-Sb,Se;, IVD-Sb,Se;, and CoE-Sb,Se; films
(Fig. 10a-c), respectively. The IVD-E2, CSS-E1, and CoE-E2
defects were attributed to Seg,,, while CoE-H1 to the Segp;
antisite traps. The capture cross section for the IVD-E1 trap
was only ~107>' ¢cm? which was more than two orders of
magnitude smaller than that for the other traps. It also exhib-
ited a lower trap density of 2.74 x 10" cm™, thus having a
less detrimental effect on the charge transport and device

© 2023 The Author(s). Published by the Royal Society of Chemistry
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