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Light—matter interaction not only plays an instrumental role in characterizing materials’ properties via
various spectroscopic techniques but also provides a general strategy to manipulate material properties
via the design of novel nanostructures. This perspective summarizes recent theoretical advances in
modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry.
The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive
chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare
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electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called
polaritons. The perspective starts with the basic background of light-matter interactions, molecular
DOI: 10.1039/d3cp01415k quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry.

Then, the recent advances in modeling plasmon and polariton chemistry are described, and future
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1 Introduction

In 2007, a report compiled for the Office of Science of the
Department of Energy (DOE) identified five grand challenges in
basic energy science,' including (1) controlling material pro-
cesses at the level of electrons, (2) designing and perfecting
atom- and energy-efficient syntheses of new forms of matter
with tailored properties, (3) understanding and controlling the
remarkable properties of matter that emerge from complex
correlations of atomic and electronic constituents, (4) master-
ing energy and information on the nanoscale to create new
technologies with capabilities rivaling those of living things,
and (5) characterizing and controlling matter away—especially
far away—from equilibrium. One of the emerging techniques to
address (some of) these challenges is light-matter interactions,
which can be used to monitor, manipulate, and design materi-
als’ properties through the complex interplay between elec-
trons, photons, and phonons.>?

In conventional chemistry, chemists modify the functional-
ities of molecules based on different functional groups. For
centuries, such a vision has been widely used in chemical
synthesis to modify molecules or molecular materials’ chemical
and physical properties. However, in the current era of
technology,” previously “standard” chemistry, now in a
complex electromagnetic (EM) environment, has emergent
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directions toward multiscale simulations of light—matter interaction-mediated chemistry are discussed.

properties due to multiple new types of couplings between
the light and matter degrees of freedom that can be used to
control chemistry. Light-matter interactions have been instru-
mental in many branches of physics, chemistry, materials, and
energy science.>>® In most previous applications, the magni-
tude and scale of the light-matter interaction fall within the so-
called weak coupling regime and can usually be treated at the
lowest order in quantum electrodynamics via many-body per-
turbation theory.” Such treatments are widely used in different
types of spectroscopy techniques,®® optoelectronics,'®™** quan-
tum sensing,'> quantum information,'® light harvesting,'”"'®
and beyond.

Alternatively, light-matter interactions open multiple new
avenues for manipulating matter through novel emerging
elementary excitations,'® including plasmons and polaritons.
Plasmons (either surface plasmons or localized surface plas-
mons) are the collective oscillations of conduction electrons in
nanostructures, which can be excited when the frequency of
external light matches the plasmon resonant energies. Plasmon
excitation results in significantly amplified absorption and
scattering cross-sections. Moreover, plasmon excitations can
overcome the diffraction limit and concentrate the incident
light into a highly localized volume, enhancing the electromag-
netic (EM) field (or photons) by several orders of magnitude in
the near field. The subsequent plasmon decay process gener-
ates hot electrons or heat through electron-electron and elec-
tron-phonon scatterings at different length and time scales.*®
Nevertheless, the resulting locally enhanced EM field, hot
electrons, and heat can stimulate chemical reactions through
various mechanisms.*"** In fact, plasmon-mediated chemical
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reactions (namely plasmon chemistry) have become a promis-
ing strategy to drive chemical processes over the past decade.”

On the other hand, when molecules are collectively and
resonantly coupled with plasmon excitations, a new quasipar-
ticle (namely polaritons) can be formed in the strong coupling
regime. The term ‘“‘strong” coupling is relative, meaning that
the light-matter coupling is large enough to compete with or
overcome dissipation or dephasing (i.e., when the coherent
energy exchange between a confined light mode and the
quantum matter is faster than the decay and decoherence time
scales of each part). Such strong coupling can be achieved when
either a plasmonic mode is coupled with a few molecules® or
many molecules are collectively coupled to a single cavity
mode.** In the strong coupling regime, photons and electro-
nic/excitonic excitations in matter become equally important
and are strongly coupled on an equally quantized footing. As a
consequence, individual ‘“free” particles no longer exist.
Instead, the fundamental excitations of the light-matter inter-
acting system are polaritons, which are hybrid light-matter
excitations (superpositions of quantized light and matter)
(Fig. 1)* and possess both light and matter characteristics/
topologies. Experiments have shown that matter properties
can be modified with the formed polaritons, resulting in
different photophysics and photochemistry.>® Since photon
energies and light-matter coupling strengths are relatively
tunable through cavity control, light-matter interaction in the
strong coupling regime provides a fundamentally new way to
manipulate matter properties for various desired applications,

Photon &

L7

<

Polariton Polariton

Electron
(Exciton) Polaron | Phonon

Fig. 1 Light-matter interactions are a fundamentally multiscale/multi-
physics problem. It involves multiple interactions among electrons,
photons, and phonons at different time and length scales. As a result,
multiple quasiparticles may be excited due to the light-matter interactions,
including exciton (due to electron—hole interaction), (excitonic/vibrational)
polariton (due to coupling between photon and exciton/phonon), polaron
(due to electron—phonon coupling), and polaron-polaritons. In addition,
all quantum systems are fundamentally open systems, leading to dissipa-
tion/dephasing due to the bath degrees of freedom (DOFs).
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Bose-Einstein condensates,*>® chemical reactions,**™’ internal

58-60 61-63

conversion, singlet fission, manipulation of conical
intersection, etc. Nevertheless, in polariton chemistry, light
and matter cannot be treated as separate entities, as the strong
coupling between them dresses each of them. Consequently,
previously developed quantum chemistry methods for treating
the electronic structure of matter alone become invalid. Brand
new theoretical and modeling capabilities for describing polariton
chemistry are required.

Despite the attractive applications of strong light-matter
interaction, there are many open questions and fundamental
problems about the mechanisms of physics and chemistry
mediated by the strong light-matter interaction. The experi-
mental progress should be complemented by theoretical
advances that can offer atomistic insights into the problems
that are not accessible by experiments alone. Progress in
understanding the coupling between photons and elementary
quasiparticles (plasmons, phonons, and excitons) in materials
requires a generalized treatment of photons as one of the core
DOFs in light-matter interactions. Unfortunately, the strong
light-matter interaction is fundamentally a multiscale and
multiphysics problem that involves multiple interactions
between many DOFs and their complex interplay with environ-
ments across different spatial and time scales (Fig. 1). The
traditional perturbation methods in the weak coupling regime
are not applicable to the strong coupling regime, making it
urgent to develop new theoretical and modeling techniques,
especially multiscale methods, to understand and ultimately
predict strong light-matter interaction-mediated physics and
chemistry.

This perspective reviews recent theoretical efforts toward
understanding the underlying mechanisms of plasmon and
polariton chemistry due to the complex light-matter interac-
tions and discusses our thoughts on future work. The article is
structured as follows: Section 2 introduces the framework and
basic mathematical structure of molecular quantum electro-
dynamics theory (QED), Section 3 explores the theoretical
development in simulating plasmonic cavities and their strong
interactions with molecules, Section 4 surveys recent progress
in polariton chemistry in Fabry-Pérot-like cavities, and Section
5 concludes the discussion and provides a final perspective on
future work in all realms of strong light-matter interaction.

64-74

2 Brief introduction to light-matter
interactions and molecular QED theory

This section briefly introduces the quantum theories of light-
matter interactions across different coupling regimes in the
nonrelativistic limit.”” In principle, all light-matter interactions
arise from the interplay of matter DOFs (degrees of freedom)
(electrons or spins, nuclei) and an EM environment. Hence, a
full ab initio theory for light-matter interactions fundamentally
requires the electronic structure theory of matter and principles
of electrodynamics. Quantum electrodynamics (QED) is the
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indispensable and most precise theory for describing the
interactions of charged particles and the dynamics of the EM
field in mutual interaction. Hence, we start with a brief
introduction to the universal molecular QED theory, followed
by its derivation of ab initio methods for plasmon and polariton
chemistry (in different coupling regimes), respectively.

2.1 Molecular quantum electrodynamics theory
The minimally coupled Coulomb Hamiltonian governs the
nonrelativistic dynamics of matter in an EM environment,

Ne+Nn
iy

T [Pi—zAM) /] +V + Hen, (1)
mi
with the Coulomb gauge V-A = 0. P, = —ihV; and z; are the
momentum operator and charge of particle i, respectively. N,
and N, are the number of electrons and nuclei in the systems.
V="Vee + Vi + Ven + Vexe contains all of the Coulomb interac-

. 1 i .
tions | —— 9:4; between the electronic and nuclear DOFs
8mey [r; — 17

and another external potential. The Hamiltonian that describes
the EM fields is

Ay = %’Jdr [E2(r) + B2 (r)). 2)

It obeys Maxwell’s equations of motion and couples with the
Schrodinger equation self-consistent through the vector
potential A(r,).

The general quantization of electromagnetic field involves
three steps: (1) classical mode description of the electromag-
netic field, (2) discretization of classical modes via standard
mode decomposition techniques, and (3) quantization via the
correspondence principle.”® After the quantization of the elec-
tromagnetic field, each field (including the vector potential A)
can be expressed as a sum over all possible modes”®””

A(L [) — Z“a (Aaei(KArf(uql) + Alei(K-rerm[)) (3)

o

E(lﬂ 1) = [Zwaua (Aaei(l(-r—w,t) + Aiefa(-rmm) (4)

ﬁ(n [) _ lz (V % uo{) (AaeI(K.r—th) + /‘]Lei(KTJﬂU%[)) (5)
o

where V x u =K x u, « = /K denotes the photon mode with
momentum K and polarization A € {—1,1}, u is the unit vector
denoting the direction of the vector potential, and 4, (4}) is the
mode decomposition coefficients that create (annihilate) the

. 1, - L1 -
oth radiation mode. Note that E = —ZG,A(r) and B = EV x A(r)

in the Coulomb gauge (i.e., V-A = 0). The photon modes in a
given nanophotonic/nanoplasmonic structure can be readily
calculated via standard mode decomposition techniques.”®

In the second quantization, the photonic Hamiltonian can
then be written as,

iy =3 "l +he) = Y ho(aa, +1/2).

o
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Ax = —Aou A* it ) 6
2e0w Va * 2e0w Va°C ()

Thus, the fields are quantized by the isomorphic association of
a quantum mechanical harmonic oscillator to each radiation
mode o. Introducing the canonical position and momentum

operators as, g, = ,/%(&Z +ay), p, =1y hc;x(dl —dy). The

photonic Hamiltonian can now be rewritten as,

o 1 . .
H, = EZ (Paz + (uzqf). (7)

Then the full light-matter Hamiltonian in Coulomb gauge can
now be fully constructed and written as,

Ne+Nn
]—A[c = Z ﬁ(ﬁl — ZiA(ri)/C)z-i-I}‘i‘ I:Ip7 (8)

which is often referred to as the minimal coupling Hamiltonian.
We now aim to apply a unitary transformation on eqn (8) to
achieve an expression where the momenta of the molecular DOFs
(p;) are decoupled from the vector potential (A(r;)). In other words,
we will shift the light-matter coupling from momentum fluctua-
tions into displacement fluctuations. This transformation is written

N [~ o~ N NMno Ne
as U(D) = exp {—%D : A} where D = 5 z;R; — Y ef; is the mole-

cular dipole moment.”” This transformation O(D)H.U"(D) is noth-
ing but a reduction in matter momentum such that p; — zA — p;
and a boost in photonic momentum by p, — p, + /2w /hD - Ay.
Applying the transformation results in the QED Hamiltonian,
referred to as the dipole gauge Hamiltonian,

H=T+V+H, 9)

Ao = 0'H,0 = 337 [0, + 4 D +0,(0,)°]

(10)
o\
Iaaz + wdz <41 - ;a : D)

1
:52

The second line is reached via canonical transformation between
coordinate and momentum operators, p - —§,§ — 1/wp. Here,

1
Ay = “W““ and g, = 4,D defines the light-matter coupling

strength, which depends on the volume of quantized photon V in
radiation mode o. The total light-matter Hamiltonian can now be
re-partitioned after the unitary transformation as,

Hpp = Ay + Hy + Hep + Hpse (11)
— Hu
JOUR W, L R 1 .2
+ ; {wa (alaa +§> + \/7@ -D(al + a,) +§(la -D)7|.
(12)

Here, Hy; = T, + T + Vis the bare molecular Hamiltonian which
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includes all Coulomb interactions V between electrons and
nuclei as well as the kinetic energy operators of both, 7. and
T, respectively. This Hamiltonian is often referred to as the
Pauli-Fierz (PF) Hamiltonian.

Now it is clear that the light-matter coupling strength is
determined by the two quantities: the molecular dipole
strength and the quantized cavity volume. Hence, there are
two general strategies to enter the strong coupling regime: (I)
reduce the cavity volume and (II) increase the number of
molecules (increasing the total dipole moment). Therefore,
there are two major experimental nanocavity designs for strong
light-matter coupling. The first is the nanophotonic cavity that
leverages a large number of molecules to achieve strong cou-
pling. The other is the nanoplasmonic cavity that leverages a
locally enhanced electric field confined in a small volume to
enhance the coupling. This local field is effectively confined to
the nearby surrounding of a spherical nanoparticle residing on
a lattice of nanoparticles on the scale of nm? or even A® (namely
picocavities®*8%81),

The derivation of eqn (10) assumes dipole approximation.
However, the dipole approximation may fail in the ultra-
confined nanoplasmonic cavities where the EM fields are
confined within nanometric volumes.*>** Consequently, the
size of molecules becomes comparable to the cavity volumes,
and the widely used dipole approximation breaks down.
Position-dependent coupling strength that requires the spatial
distribution of excitonic and photonic quantum states is found
to be a key aspect in determining the dynamics in ultrasmall
cavities both in the weak and strong coupling regimes.®

2.2 Weak and strong coupling

The light-matter interactions in nanoplasmonic environments
can be split into weak and strong coupling regimes. The weak
coupling regime is associated with the Purcell enhancement of
spontaneous emission. This effect is particularly strong when
the molecule is placed next to a metallic surface or
nanostructure.®* The plasmon can tune photophysics and
photochemistry (i.e., plasmon chemistry) via various possible
pathways in such a regime, leading to a promising approach for
accelerating and manipulating chemical reactions, which will
be the topics of Section 3. In this regime, the light-matter
interaction can be treated semiclassically via the classical
treatment of the electromagnetic field,

Hpy = %OJdr [E*(r) + B (r)]. (13)

Hep = JdrE(r) - (er). (14)
where E(r) and B(r) are classical electromagnetic fields. After-
ward, the conventional quantum chemistry method can be
utilized and extended to describe the plasmon-induced
chemical processes. But it should be noted that, even in the
weak coupling regime, there is growing interest in exploring the
quantum properties of plasmon for applications.”>**"%” More
details will be discussed in Section 3.
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The other regime is the strong coupling regime, where the
light-matter interaction cannot be treated perturbatively. The
strong coupling is characterized by a reversible (coherent)
exchange of energy (known as Rabi oscillation) between the
matter and the cavity photon because the coupling is strong
enough to compete with the dissipation. In this regime, polar-
iton formation requires theoretical methods that treat the
matter and photonic DOFs on equal footing and describe the
multiple interactions between photons, electrons, and nuclei
on different length and time scales (polariton chemistry). The
theoretical advances towards understanding polariton chemis-
try and our perspective on future multiscale modeling of
polariton chemistry are discussed in Section 4.

3 Plasmon chemistry

Although confined plasmonic modes result in localized and
enhanced fields, plasmons usually suffer from strong dissipa-
tion, making it hard to enter the strong coupling regime in
plasmonic systems. Nevertheless, even without strong cou-
pling, plasmonics provides a unique setting for manipulating
light via the confinement of EM (below the diffraction limit).
Such extreme concentration of EM field®® has led to a
wide range of applications, such as plasmon-enhanced mole-

cular spectroscopy,®®*®* photovoltaics,”>** nanophotonic
lasers and amplifiers,”>°® quantum information,'® and many
OtherS 18,99,100

Following the ultrafast plasmon excitation, nonradiative
plasmon decay leads to the formation of energetic electron-
hole pairs (namely hot-carriers),’®* "% which are highly non-
thermal and can have considerably higher energies than those
rising from thermal equilibrium. The hot electrons (HEs) (and
their corresponding holes) redistribute their energies quickly as
a result of electron-electron scattering,'*"'°* reaching a quasi-
thermal equilibrium but with an effective high temperature.
Further cooling of the hot electrons takes place via energy
dissipation into the phonon modes of the nanoparticle, and
the energy is ultimately dissipated to the surroundings via
thermal conduction. Nevertheless, investigations in the last
two decades have found that chemical reactions can be stimu-
lated by localized EM fields (or photons), and electronic and/or
thermal energies (that result from plasmon decay) via various
pathways (more details in Section 3.4). This leads to an emer-
ging field of plasmon chemistry that designs nanostructure-
based surface plasmons as mediators to redistribute and con-
vert photon energy in various time, space, and energy scales to
drive chemical reactions.??2>9%106"116 Qpe extraordinary fea-
ture of Plasmon chemistry in the realm of chemical reaction
mechanisms is its blend of facets from thermochemistry,
photochemistry, and photocatalysis.”” Unlike traditional reac-
tions that typically focus on singular mechanisms, plasmon
chemistry showcases the interaction between different mechan-
isms in complex electronic and optical environments. At the
same time, the mixture of different mechanisms makes it very
challenging to comprehend the underlying principles of
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plasmon chemistry, making it considerably more complicated
than transition chemistry. This unique interplay often results
in a diverse distribution of reactive zones on substrates.”” To
fully understand plasmon chemistry’s nuances, an interdisci-
plinary approach is essential, which should consider multi-
scale processes, the current state of the field, and the need for
advanced experimental methods.

3.1 Experimental endeavours in plasmon-mediated chemical
reactions: the need for theoretical insights

Plasmon chemistry stands at the intersection of innovation and
discovery for boosting chemical transformation. However,
despite the spreading interest, inherent complexities make it
still very challenging for efficiency optimization. By leveraging
knowledge from established domains such as plasmon-
enhanced spectroscopy, many experimental strategies to bol-
ster plasmon chemistry efficiency can be extrapolated. In this
section, we discuss several typical experimental investigations
into plasmon chemistry across diverse applications and
illustrate the essential role of theoretical/numerical modeling
in understanding the underlying mechanisms for further
improvement. For a more expansive disquisition on the
plasmon-mediated chemical reactions for various applications,
enthusiasts are redirected to several recent reviews.''>'"7 11
Artificial photosynthesis. One of the most enticing applica-

tions of plasmon chemistry echoes the wonders of
photosynthesis.'®'*°"'*> The goal is to convert solar energy into
a)
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useful chemicals, a task intricate due to its kinetic and thermo-
dynamic demands. However, in advancements in the realm of
solar conversion, a groundbreaking study has showcased the
potential of autonomous plasmonic catalysts capable of water
splitting under visible light,"*® as shown in Fig. 2a, present
promising trajectories for renewable energy solutions. This
paradigm shift focuses on deriving charge carriers from these
plasmonic structures. The research highlights the introduction
of a solar water-splitting device engineered from a gold
nanorod array. Unlike conventional methods, this device
leverages the power of “hot electrons” initiated by stimulating
surface plasmons within the gold nanostructure. A standout
feature is each nanorod’s autonomous operation, eliminating
the need for external wiring and its impressive capability to
produce H, molecules under sunlight. The device’s resilience
and long-term stability further cement its potential. While the
initial solar-to-hydrogen efficiency aligns with that of early
semiconductor-based water splitters, it remains on the lower
side for real-world applications. Nevertheless, the research
suggests prospective structural enhancements, emphasizing
the modification of the nanorod configuration, that could
potentially escalate its efficiency. An important note for con-
sideration, despite the current efficiency metrics, is the device’s
remarkable longevity, which overtakes some of the top-
performing semiconductor-based alternatives. This study
marks a pivotal step towards the innovative utilization of
plasmonic devices in solar conversion.
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Fig. 2 Experimental examples: (a) structure and mechanism of operation of the autonomous plasmonic solar water splitter. Adapted with permission
from ref. 120. Copyright 2013 Springer Nature Limited. (b) Light-driven CO, reduction with single atomic site antenna-reactor plasmonic photocatalysts.
Adapted with permission from ref. 123. Copyright 2020 the author(s), under exclusive license to Springer Nature Limited. (c) Schematic diagram of the
proposed mechanism for the oxidation of PTAP to DMAB. Hot electrons generated from the plasmon transfer to the adsorbed O, molecules, generating
30, that participated in the PATP oxidation to DMAB. Adapted with permission from ref. 124. Copyright 2015 John Wiley and Sons. (d) Schematic of the
three-electrode electrochemical system for distinguishing thermal from hot electron effects by utilizing photoelectrochemical characterization under

the chopped light. Adapted from ref. 125 under Creative Commons CC BY.
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CO, reduction. Given the increasing global CO, levels,
plasmon chemistry offers a promising solution. Plasmonic
structures have shown potential in boosting the photo-
reduction of CO,,'*%'?3126:127 which is crucial for environmen-
tal cleanup and advancing green chemistry. In a new develop-
ment, researchers have presented a plasmonic photocatalyst
that blends a copper (Cu) nanoparticle “antenna” with indivi-
dual atomic ruthenium (Ru) sites (Fig. 2b). This design allows
methane dry reforming to happen at room temperature, using
the energy from light. Unlike traditional thermocatalytic meth-
ods, this photocatalyst works effectively with light at normal
conditions and has notable stability and selectivity in its
actions. This difference from standard thermally-driven reac-
tions is due to the creation of hot carriers, which improve the
rate of carbon-hydrogen activation on Ru sites and speed up
hydrogen release. It should also be noted that, different from
conventional plasmonic structure, the design of antenna-—r-
eactor systems utilize plasmonic metal (the antenna) to collect
and concentrate visible light energy and transfer that energy to
a catalytic metal (that is, the reactor) to drive a chemical
reaction.'?*'*° Because the reactors were not in direct contact
with the plasmonic nanoparticles, it was argued that the energy
transfer resulting in increased reaction rates could only take
place via a field effect where the field from the plasmonic metal
was felt by the catalytic reactors resulting in the excitation of
charge carriers in reactors.

Organic transformation. Beyond the catalysis of inorganic
reactions, as previously addressed, plasmonic NPs have show-
cased commendable performance in catalyzing organic trans-
formations. These hold potential applications, spanning from
the synthesis of basic commodity molecules to intricate phar-
maceutical compounds. This approach boasts benefits such as
superior selectivity, accelerated reaction rates, and compara-
tively lenient reaction conditions. An illustrative instance is the
oxidation of p-aminothiophenol (PATP) or p-nitrothio-
phenol (PNTP) to dimercaptoazobenzene (DMAB). This reac-
tion has been the focal point of myriad studies in recent
years,''®124 1317133 The hypothesized microscopic mechanism
posits that plasmon-excited electrons transfer from plasmonic
nanostructures to O, molecules, resulting in the emergence of
activated oxygen species, which, in turn, catalyze the formation
of DMAB, as shown in Fig. 2(c). Such a mechanism found
experimental validation through experiments toggling specific
conditions. The obvious evidence of PATP’s transformation
into DMAB, when air permeates the PATP and plasmonic
nanostructured system, is corroborated by the ascendant
Raman modes of DMAB over time. In contrast, in the absence
of O, or electron transfer (attained by coating the plasmonic
NPs with an insulator like SiO,), merely the Raman signals of
PATP are.”®® In addition, it was found that the plasmon-
induced hot holes can trigger the oxidation of PATP, even in
the absence of oxygen.'** Notably, despite the absence of a
tangible PATP transformation on gold nanoparticles due to
inefficient charge transfer from the plasmonic nanostructure
directly to the adsorbates, PATP oxidation has been witnessed
either in the presence or absence of O,, specifically with Au
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nanostructures fortified with a TiO, shell. These reactions
outperform their counterparts in sheer gold nanoparticle sys-
tems in terms of efficiency."'® Fascinatingly, it was unveiled
that achieving the selective oxidation of PATP to either DMAB
or PNTP is possible, depending on whether the plasmonic NPs
are reinforced by TiO, and the presence of UV-illumination."*
Under UV exposure on the bare plasmonic NPs, PATP’s oxida-
tion to DMAB is observed. In contrast, there is no catalytic
effect with the TiO, support. However, after applying UV light
exposure, a transition to PNTP is detected with the TiO,
support. For an expansive disquisition on the plasmon-
mediated organic transformation, enthusiasts are redirected
to a contemporary review in ref. 117.

Experimental limitations. Though there are many demon-
strated applications of plasmon chemistry as a promising
approach to accelerate or manipulate chemical processes, the
underlying mechanisms are still unclear. The advances in
experimental techniques have played a pivotal role in elucidat-
ing plasmon chemistry mechanisms. Techniques, such as
transient absorption spectroscopy, offer insights into the
domain of plasmonic hot-carriers."*> Nonetheless, the vast
expanse of these reactions remains to be traversed for a holistic
comprehension. Traversing the landscape of plasmon chemis-
try requires a comprehensive understanding of multiple coher-
ent and dissipative processes, including the enhancement of
electromagnetic near-fields, local heating effects, and charge-
carrier excitation/transfer. These processes occur across varied
scales, from femtoseconds to nanoseconds. Since all these
effects can drive chemical processes simultaneously, the indi-
vidual contributions of these elements to overarching reactions
are challenging to discern. On the other hand, decoupling
individual contributions is vital for designing better pl