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Even in modern organic chemistry, predicting or proposing a reaction mechanism and speculating on reac-

tion intermediates remains challenging. For example, it is challenging to predict the regioselectivity of

radical addition in radical cascade cyclization, which finds wide application in life sciences and pharma-

ceutical industries. In this work, radical cascade cyclization is considered to demonstrate that Transformer, a

sequence-to-sequence deep learning model, is capable of predicting the reaction intermediates. A major

challenge is that the number of intermediates involved in the different reactions is variable. By defining “key

intermediates”, this thorny problem was avoided. We curated a database of 874 chemical equations and

corresponding 1748 key intermediates and used the dataset to fine-tune a model pretrained based on the

USPTO dataset. The format of the dataset is very different between pretraining and fine-tuning.

Correspondingly, the resulting Transformer model achieves remarkable accuracy in predicting the structures

and stereochemistry of the key intermediates. The interpretability produced by attention weights of the

resulting Transformer model shows a mindset similar to that of an experienced chemist. Hence, our study

provides a novel approach to help chemists discover the mechanisms of organic reactions.

Introduction

Reaction mechanisms are crucial to the methodological study
of modern organic chemistry.1–4 A comprehensive understand-
ing of chemical reactions can facilitate discovering new
chemistry,5,6 predicting reaction products,7,8 designing cata-
lysts,9 and optimizing chemical reactions.2,10,11

It is often difficult for us to observe intermediates in chemi-
cal reactions. A majority of the mechanistic understanding of
organic reactions comes from computational studies6,12 or
studies involving both experimental and complementary com-
putational explorations.13–19 Meanwhile, computational

research is primarily based on physics-based or physics-
inspired models,20 where quantum mechanical (QM) calcu-
lations, particularly with density functional theory (DFT), can
be applied to real chemical systems studied by
experimentalists,3,21,22 or based on a high-accuracy potential
energy surface (PES).12,23 However, these methods are compu-
tationally intensive and require the involvement of expert che-
mists.24 Other approaches, such as accurate ab initio methods,
are computationally demanding and can only be used to study
small systems in the gas phase or regular periodic materials.12

The recent wave of artificial intelligence (AI) within compu-
tational explorations has had a major impact on the prediction
of small-molecule reaction pathways or understanding of
chemical reaction mechanisms.21,24–27 Meanwhile, challenges
remain because of computational complexity.12,23,24,28 As an
important branch of AI, natural language processing (NLP)
models29 have become powerful and effective tools in organic
chemistry research, showing promising results in reaction
prediction,30–37 reaction condition recommendations,38,39 and
retrosynthesis40–45 planning. However, in chemical reaction
mechanism speculation, there are negligible related research
studies. Here, this study explores the possibility of applying
NLP models to intermediate predictions, with the potential to
bridge the gap between NLP models and inferences about
chemical reaction mechanisms (Fig. 1).
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In this study, radical cascade cyclization was used as an
example to explore the reaction mechanism prediction using
an NLP model. Recently, radical chemistry has attracted con-
siderable attention.46 Radical cascade cyclization (Fig. 2) is
critical for the preparation of cyclic compounds, as the pro-
cesses involve only a single step in the generation of carbo-
cycles and heterocycles,46–48 often showing interesting biologi-
cal properties that are useful in medicinal chemistry.49–51

Radical cascade cyclization was chosen as the research
object of this study for two additional reasons. First, it is
difficult even for experienced chemists to predict the regio-
selectivity of radical attack in radical cascade cyclization.46,47,52

Therefore, a simple method for determining the reaction
process is urgently needed. Second, “trustworthy” intermedi-
ates can be identified because mechanistic studies, such as
radical clock experiments, radical inhibition experiments, and
radical capture operations, can give detailed insights into the
process of radical cascade cyclization.52

The quality and availability of data play a key role in the
training of deep learning models. Data on chemical molecules
or chemical reactions are available in databases such as
PubChem,53 ChEMBL,54 Reaxys,55 and SciFinder.56,57 However,

to the best of our knowledge, no data for the intermediates of
chemical reactions have been recorded. Therefore, in this
study, we curated a validated dataset of reaction mechanisms
by collecting the literature manually. Another major challenge
is the inconsistent amounts of intermediates in different reac-
tions. By defining the term “key intermediate” (see below for
details), one radical cascade cyclization can identify two key
intermediates to solve this thorny problem. Based on this defi-
nition, a dataset of radical cascade cyclizations containing key
intermediates was prepared.

To address the scarcity of training data, a transfer learning
strategy was adapted to pretrain the model using the USPTO
dataset as we did in previous studies.36,37,41,58 The pre-trained
model was then fine-tuned using our curated dataset of reac-
tion intermediates. The results showed that the Transformer
model performed satisfactorily in predicting intermediates
with an accuracy rate of 93.5%, indicating that it is a useful AI
tool for studying chemical reaction mechanisms.

Results and discussion
Construction of a mechanism prediction model

A typical radical cascade cyclization reaction proceeds in four
steps:47 (i) radical formation via single-electron transfer (SET);
(ii) radical addition via a radical attack on unsaturated bonds
to generate radical intermediates; (iii) radical cyclization,
resulting in carbon–carbon/heteroatom bonds; and (iv) radical
or radical intermediate quenching by another radical donor or
by hydrogen abstraction. In this work, the intermediate gener-
ated after the first radical addition is called“key intermediate
I”, which reflects the regioselectivity of the first radical
addition step. If the cascade reaction yields only one carbo-
cycle or heterocycle, the intermediate formed after the cycliza-
tion is referred to as“key intermediate II”. For polycyclic for-
mation, the intermediate before the final cyclization step is
defined as“key intermediate II”. Key intermediate II can
provide valuable information about rearrangements, hydrogen
or aryl migrations, and other transformations that occur
during the reaction (further details are provided in section 1 of
the ESI†).

The role of key intermediates in identifying the mechanism
of radical cascade cyclization is similar to that of signposts in
maze traversal: if there are proper signposts, one can traverse
the maze more quickly. Also, if there are multiple potential
routes, the signposts can indicate the most plausible route.
The “key intermediates” serve as the “signposts” in the mecha-
nism inference methodology.

Data preparation

The state-of-the-art in the development of radical cascade cycli-
zation methodologies, especially the synthesis of carbocycles
and heterocycles, was extensively studied by reviewing the
existing literature. From these, we analyzed the methods used
to infer reaction mechanisms, including experimental and
complementary computational exploration. The Simplified

Fig. 1 Proof-of-concept method for intermediate prediction. The NLP
model has made considerable progress in end-to-end predictions of
reaction and retrosynthesis. Determining what happens during a reac-
tion is as important as reaction prediction and retrosynthesis prediction.

Fig. 2 Radical cascade cyclization is promising for the preparation of
cyclic compounds because multiple bonds can be formed in a single
preparation step.
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Molecular-Input Line-Entry System (SMILES) was chosen to
represent the reaction equations and the intermediates (for a
comparison of the different representations, see the ESI†).
Finally, all the data were canonicalized using RDkit (version
2019.03). The stereo-configuration information on the reac-
tants, products, and intermediates was preserved. In this
manner, the dataset for radical cascade cyclization was created
manually (see section 4 of the ESI† for more information).

The self-built or customized dataset contains a wide range
of information, including chemical equations for a total of 874
radical cascade cyclizations and 1748 key intermediates corres-
ponding to the reactions. These reactions were further classi-
fied according to the number of rings formed by radical
cascade cyclization: 428 of the reactions resulted in a single
ring, 321 resulted in two rings, and 125 resulted in three or
more rings (Fig. 3a). Another classification was based on the
type of radical center: 356 of the reactions had carbon-centered
radicals, 266 had sulfur-centered radicals, 104 had phos-
phorus-centered radicals, 92 had nitrogen-centered radicals,
and 56 had tin-centered radicals (Fig. 3b). The molecular mass
of the target product follows a normal distribution (Fig. 3c).
The formation of radical centers varied because donors can

provide radicals with different SETs (Fig. 3d). In the case of
radical acceptors, 1,n-diynes, 1,n-enynes, and alkynyl (hetero)
arenes are the commonly used varieties (Fig. 3e).

The pretraining dataset, or the general chemical reaction
dataset, contains data regarding approximately 380 000 chemi-
cal reactions. These sample reactions were originally from
Lowe’s dataset,59 extracted from patents filed in the United
States Patent and Trademark Office (USPTO), after deleting the
reagents, solvent, temperature, and other reaction conditions.
Subsequently, the data were filtered to eliminate duplicate,
incorrect, and incomplete reactions. Note that each record in
the general chemical reaction dataset represents a reaction
with no intermediates, whereas the self-built dataset includes
radical cascade cyclization and the key intermediates involved.
However, if we consider the intermediates as specific types of
products that contain radicals, the two datasets are quite
similar in form.

Construction of a deep learning model

In this study, we consider the intermediate prediction task as
a machine translation problem between the reaction equation
and the key intermediates. The Transformer model is a recent

Fig. 3 Diverse reactions in the self-built dataset. Distribution of (a) the number of newly formed rings, (b) radical centers, and (c) molecular mass of
target products (carbocycle and heterocycle). (d) Typical ways of generating radicals and (e) radical acceptors with possible radical-attack sites.
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development in NLP and is a state-of-the-art model for reaction
prediction and retrosynthesis.30,31,34,44 The self-attention
mechanism, feed-forward network, and multi-head attention
make the Transformer model well-suited for NLP tasks. The
Transformer model based on the work from Duan et al.36,37

was applied in this study to predict the reaction intermediates
(see section 5 of the ESI †for more information).

Transfer learning is often used to adapt established source
knowledge to learning tasks in target domains that are weakly
labelled or unlabeled.31,34,36,37 In this study, the pretraining
using the general chemical reaction dataset corresponded to
the initialization or feature extraction tasks in deep learning.
The pretraining process uses basic chemical information and
features to accomplish the objective task of predicting the key
intermediates in a radical cascade cyclization (Fig. 4). Then,
the self-built dataset was randomly split into training, vali-
dation, and test datasets in the ratio 8 : 1 : 1. To verify the
improvement in fine-tuning, the performances of the
Transformer-baseline model without transfer learning and the
model with transfer learning were compared.

Performance comparison of the baseline and transfer learning
models

The accuracy of the prediction task, which was estimated with
10-fold cross-validation, was used to measure the performance.

Fig. 4 Schematic diagram of the method for the prediction of inter-
mediates in radical cascade cyclizations. The transfer learning model
refers to the pretrained version of the Transformer baseline model. The
data features in the pretrained dataset and self-built dataset are
different.

Fig. 5 Comparison of baseline and transfer learning models. The results from experiments indicated that the Transformer-transfer learning model
has considerable advantages in predicting key intermediate I (a) and key intermediate II (b). (c) Average accuracy of key-intermediate predictions,
noting that the Transformer-transfer learning model (upper) does well in avoiding invalid SMILES. (d) Accuracy of the Transformer-transfer learning
model for predicting reaction types based on the number of rings. As the number of rings increases, the accuracy decreases.
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Fig. 5a–c indicate different perspectives regarding the accuracy
of the baseline and transfer learning models for radical
cascade cyclization. The Transformer-transfer model has an
average accuracy of 94.5% for key intermediate I and 92.5% for
key intermediate II, which is much higher than 29.7% and
26.6% associated with the baseline model (Fig. 5c, refer to
Tables S15–18 of the ESI† for details). The predictions made
by the Transformer-transfer learning model, which were based
on the chemical reactivity rules and the knowledge that
evolved from pretraining, were sufficiently accurate. This result
validates our idealized hypothesis that the intermediates of
the radical cascade cyclization are the specific products of the
reaction, and this process is consistent with information
obtained from the general chemical reaction data.

Performance analysis of different intermediates

To identify the factors that affect the accuracy of intermediate
formation predictions, we further explored several types of
intermediates. For ease of analysis and understanding, the
reactions were classified according to the number of newly
formed rings. Experiment 1 (refer to entry 1 in Table S13 of
the ESI†) involving 99 reactions was chosen as a representative
example for the analysis. The prediction accuracy of different
ring numbers obtained with the transfer learning model is
shown in Fig. 5d. The number of rings and accuracy are
related inversely. For the key intermediate I, the prediction
accuracy was 94.2%, 92.5%, and 83.3%, respectively, with an
increasing number of rings. To a certain content, the accuracy
depends on the complexity of the regio- or stereoselectivity;
training data become scarcer for cases with larger numbers of
newly constructed rings. The result obtained for key intermedi-
ate II was similar, with the accuracy being 93.8%, 82.5%, and
66.7% for increasing ring numbers. The accuracy of key inter-
mediate I was slightly higher than that of II at 92.9% and
88.8%, respectively. The probable reason for this phenomenon
is that the key intermediate II is usually more complex
than the key intermediate I, which increases the difficulty in
identifying the reaction site. We trained the Transformer
model to predict the two key intermediates simultaneously.
Although the level of difficulty increased considerably, the
results showed that there was no significant decrease in the
performance, and the prediction accuracy was as high as
81.6%. As expected, the accuracy decreased with the number
of rings as 90.4%, 77.5%, and 66.7%, respectively. This result
showed the same trend as predicted for key intermediates I
and II.

Interpretability and analysis of attention weights

According to the Curtin–Hammett principle,60 in a reaction
involving a pair of rapidly interconverting reactive intermedi-
ates or reactants, the priority for attacking the unsaturated
bonds depends primarily on the structure of the radical accep-
tor. With the 1,n-enynes with non-terminal double bonds, the
radical regioselectively attacks the α position of the alkyne
initially, presumably because of the subsequent self-sorting
kinetic processes via favorable exo-trig radical cyclization

(Fig. 6a). In addition, if the radical accepter possesses terminal
alkenes, the radicals are selectively added to the activated
alkene moiety initially (δ position, Fig. 6b), although there are
exceptions.61 This phenomenon may be attributed to the regio-
selectivity, since alkyne π-bonds are stronger and less reactive
than alkene π-bonds, resulting in lower kinetic barriers being

Fig. 6 Interpretability and analysis of attention weights. The order of
priority for attacking unsaturated bonds depends primarily on the struc-
ture of the radical acceptor: for 1,n-enyne radical acceptors with non-
terminal double bonds, selective radicals attack the α position of the
alkyne (a). For terminal alkenes, radical species (b) are first added regio-
selectively at the δ position. A random example (c) from the self-built
dataset. Visualization of attention weights for key intermediate I (d) and
key intermediate II (e) shows that the radical locations are concentrated
on the unsaturated bonds of radical attack and the structure and
location of functional group structures (circled in red).
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associated with the radical addition of double bonds.62,63

Although the rules applicable to complex reactions cannot be
generalized easily, they can be indirectly elicited by a deep
learning NLP model applied to an appropriate dataset and
learned subsequently.28,33,40

Good interpretability is critical for users to understand,
trust, and manage powerful AI applications.64–67 Specific func-
tional groups can affect the outcome of a reaction even if they
are far from the reaction center in the molecular graph (3D) and
the SMILES string (1D). Here, the Transformer-transfer learning
model exhibited a mindset similar to that of an experienced
chemist. A representative example of correctly predicted inter-
mediates with attention weights is shown in Fig. 5c. Attention is
a key factor in considering the complex long-range dependen-
cies between multiple tokens.35 To predict key intermediate I
(Fig. 6d), the Transformer model initially focused on the struc-
tures of both the reactants and products. Subsequently, the
radical location considers the unsaturated bonds attacked by
radicals, and the structure and location of nearby functional
groups. Particular consideration was given to the position of
double bonds, as terminal alkenes and nonterminal alkenes
result in different intermediates. In this example, the token “!”,
which represents “start” or “end”, placed before “CvC” indi-
cates a terminal alkene, which will be subjected to the radical
attack. The noted visualization shows that the radical location
of intermediate I (where “[ ]” denotes the radical) is attached to
this token, suggesting a similarity to the thought process of an
experienced chemist. The observations made during the predic-

tion of key intermediate II are also similar: the structures of the
intermediates are based on both the reactants and products, as
well as on the functional group near the alkyl group (Fig. 6e).
Additional reaction predictions and attention weight details are
available in the ESI.†

Providing direction for mechanism inference

Successful prediction of the reaction intermediates can
provide direction for mechanism inference methodologies.
With the self-built dataset, enynes are the most common
radical acceptors. There are two unsaturated bonds in enynes
involved in radical cascade cyclization, and there are at least
four possible sites for radical attacks. The Bu3Sn-mediated
radical cascade cyclization of aromatic enynes was presented
as a representative example (Fig. 7a) in which the regio-
selectivity of radical addition is difficult to be determined in
the presence of electronically and sterically similar alkenes.
However, the Transformer-transfer learning model performed
well, even for such complex predictions. After the chemical
equation is input, the deep-learning model outputs two key
intermediates and indicates that path 2 is the most plausible
route for the reaction (Fig. 7b). Alabugin et al.68 reported a

Fig. 7 Efficient prediction of reaction pathways. (a) Regioselective
attack on a disubstituted alkyne in the presence of electronically and
sterically similar alkenes. (b) Path 2 is identified as the most reasonable
pathway by the Transformer model, which is consistent with the com-
putational analysis.68

Fig. 8 The Transformer model can revise some of the mechanism
inference studies in the literature. (a) Radical cascade cyclization of
alkynes with alkenes and ArSO2Cl. (b) Possible mechanism inferred by Li
et al.69 (c) Possible mechanism proposed by the Transformer model.
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plausible reaction pathway identified by computational ana-
lysis, and the result was in good agreement with the prediction
of the Transformer model. However, our data-driven strategy is
more convenient than the complex calculation requirements
applicable to other methods.

Li et al.69 reported the radical cascade cyclization of 1,6-
enynes with aryl sulfonyl chlorides by visible-light photoredox
catalysis (Fig. 8a). A possible mechanism proposed by the
authors is shown in Fig. 8b. However, the Transformer model
provides additional information by identifying key intermedi-
ates I and II, implying that the reaction may have proceeded
through a pathway (Fig. 8c) that differs from the mechanism
described above. Here, excited [Ru(bpy)3]

2+ and sulfonyl rad-
icals are formed by selective cleavage of the S–Cl bond.
Subsequent addition of the sulfonyl radicals to the terminal
alkene produces tertiary alkyl radicals. The 5-exo-cyclization
process leads to the formation of a vinyl radical that further
undergoes 1,5-aryl migration and causes subsequent release of
SO2 to generate the primary alkyl radical intermediate. The
subsequent processing is the same as that inferred by Li
et al.69 Further computational studies that we undertook
focused on the competition between the two pathways. The
DFT studies (Fig. 9, see the ESI† for details) and subsequent
literature studies70–74 showed that aryl radicals are not readily
generated in the visible-light-induced cyclization of 1,6-enynes
with aryl sulfonyl groups, which was reported previously.
Furthermore, owing to the difference in reactivity between the
alkynes and alkenes, the alkyne π-bonds are stronger and less

reactive than the alkene π-bonds.62,63 Thus, the addition of sul-
fonyl radicals to the terminal activated alkene to provide the
tertiary alkyl radical is a more reasonable option (ΔG‡(298 K) =
13.4 vs. 29.9 kcal mol−1, Fig. 9). Hence, in this example, the
mechanism indicated by our Transformer model is more
reasonable.

Conclusions

As a proof-of-concept, a Transformer model was applied to
predict intermediates, providing direction for the mechanistic
inference of organic reactions. By defining key intermediates I
and II, a dataset of radical cascade cyclization reactions was
curated to train the model. While the dataset format is quite
different between pretraining and fine-tuning, transfer learn-
ing was used to further overcome the scarcity of training data.
The observed improvements demonstrated the potential of
integrating transfer learning and Transformer models.
Attention weight analysis indicated that the Transformer
model exhibited a mindset similar to that of an experienced
chemist. The application of the Transformer model to the end-
to-end prediction of intermediates in radical cascade cycliza-
tion reactions is effective. As data continue to be curated and
deep learning algorithms continue to be upgraded, we expect
that this work will further encourage the broader chemical
community to engage in this emerging field and facilitate AI-
accelerated chemistry.

Fig. 9 Calculated free energy profiles for the two possible mechanisms (pathway proposed by Li et al. (red) and pathway proposed with the
Transformer model (blue)), ΔG values (in kcal mol−1) are calculated at 298 K.
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Methods
Transformer model

The Transformer model is entirely based on an attention
mechanism and avoids the recursion most commonly used in
encoder–decoder architectures.75 The Transformer model
based on the work from Duan et al.36,37,58 was applied to
predict the reaction intermediates. An atom-based tokeniza-
tion strategy is employed which reduces the vocabulary size of
most representations of organic molecules to a relatively small
and constant size. Hyperparameters were tuned based on our
previous experience.36,37,58 The following hyperparameters
were used for key intermediate prediction:

Adam optmizer: beta1 = 0.9, beta2 = 0.997.
epsilon = 1e − 9
n_heads = 8
emb_dim = 256
num_layers = 6
FFN_inner_units = 2048
dropout = 0.3

Validation

Canonicalized SMILES of predicted and actual intermediates
were compared to assess the accuracy of the model. During
testing/validation, there is no significant difference between
top-1 and top-k in our experiments due to sharp distribution
(high confidence) and small vocabulary size (small search
space). Therefore, we use the top-1 accuracy as the metric of
our work.

Density functional theory calculations

All density functional theory (DFT) calculations were per-
formed using the DMol3 module.76,77 The generalized gradient
approximation (GGA) method with the Perdew–Burke–
Ernzerhof (PBE) function was performed to simulate the mole-
cules. A global orbital cutoff of 4.5 Å was used. The force and
energy convergence criteria were set to 0.002 Ha Å−1 and 10−5

Ha, respectively.

Availability of data and materials

The dataset (pretraining and self-built) and the code are avail-
able from: https://github.com/hongliangduan/transRCC
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