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We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy
and quantum chemical calculations. The spectrum of Cs,He* shows three distinct absorption bands into
both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the
absorption bands are observed, exceeding 0.1 eV (850 cm™Y) already for Cs,He; ", along with significant

Received 29th August 2019, broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show

Accepted 30th September 2019 that helium atoms adsorb on the ends of Cs,*. The shifts are particularly pronounced if the excited state
orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a

deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the
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Introduction

Vibrationally resolved electronic spectroscopy in combination
with theoretical calculations is a powerful technique to determine
details of the geometrical arrangement and electronic structure
of molecules or clusters. The quality of vibrationally resolved
spectra depends critically on the temperature, as recently demon-
strated for the assighment of the structure of Au,".' This has
triggered the development of several cryogenic techniques, ie.,
molecular beams,”” matrix isolation,”* helium droplets,*” cryo-
genic traps®2° and cryogenic storage rings.”’* The low density
of ionic targets requires special techniques, such as cavity ring
down®® or action spectroscopy.’”*® Tagging of ions with a weakly
bound messenger turns out to be particularly suitable to measure
absorption lines of ions, albeit leading to a matrix shift.'>* The
binding energy of helium to ions is lower than for any other atom
or molecule, leading to a minimum matrix shift.*

Whereas only very few He atoms can be attached to singly-
charged ions in cold traps, ions can be solvated with almost any
number of He atoms when formed in doped helium nanodro-
plets. In the case of Cg,', a remarkable linear red-shift of the
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position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.

absorption lines for the first 32 He atoms attached could be
used to extrapolate to the absorption line of the bare ion.**** In
combination with theory, the experimental results of the matrix
shift as well as the width of the absorption lines provide
unprecedented insight into the details of the solvation of ions
with helium, including phase transitions and isomeric effects.
Alkali metal atoms reside on dimples at the surface of
helium droplets, as shown in numerous experimental*!*4~4°
and theoretical studies.**™*° Alkali metal clusters, however, are
submerged into the cluster above a critical cluster size.**™*® The
groups of Ernst and Stienkemeier investigated photoionization
of Cs atoms and the submersion of Cs* into He droplets.***°
Chen et al. managed to solvate Cs' ions with several million
helium atoms via pickup of Cs' formed upon thermionic
emission into large He droplets.*® Dopant ions ejected from
charged helium droplets are sometimes complexed with a few
helium atoms when recorded via mass spectrometry. The first
solvation layer is particularly strongly bound, and its closure
is typically reflected as a clear intensity drop of the ion series
MHe], (with M"* the alkali metal ion) in mass spectra.*®>°7?
Path integral or basin-hopping methods reproduce the experi-
ments very well.***® It was also shown previously that helium
adsorption might lead to appreciable spectral shifts.”?
Spectroscopic properties of the Cs," ion were investigated
previously in experimental®** and theoretical studies>®>® within
the series of alkali metal dimers, assigning the lowest electro-
nically excited states. In the present study, we explore photo-
dissociation of Cs,He;, via action spectroscopy to assess helium
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solvation effects in a seemingly simple diatomic system. Single-
reference and multi-reference ab initio calculations including
spin-orbit coupling reproduce the experimental results and
provide an assignment of the electronic transitions. A pronounced
blue-shift of more than 0.1 eV (850 cm™") for absorption into the
1%}, state for Cs,He;, with n = 10 provides clear evidence that the
He atoms preferentially occupy positions along the axis of the
cesium dimer cation.

Methods

Cs,,He, ions are formed upon electron irradiation (85 eV, 260 pA)
of Cs doped He nanodroplets (average size about 10° atoms,
2.7 MPa, 9.95 K expansion conditions). Penning ionization via
electronically excited He* will be the dominant ionization channel
for the heliophobic cesium atoms.”***"
clusters have a substantially stronger interaction with the He
matrix than their corresponding neutral precursors, thus leading
to their submersion into the droplet.*® Low-mass ions ejected from
the large multiply charged droplet are deflected by 90 degrees
relative to the neutral beam via electro-static lenses. The beam is

Ionized cesium atoms and

guided into the extraction region of a high-resolution time of flight
mass spectrometer, where it is merged with a laser beam from a
pulsed tuneable light source (EKSPLA NT 242, 210-2600 nm). Every
tenth extraction pulse of the mass spectrometer operated at 10 kHz
is irradiated with the laser (repetition rate 1 kHz), thereby enabling
simultaneous measurement of mass spectra with and without laser
light. Upon photon absorption, all adsorbed He atoms are typically
lost from Cs,He,, and an optical photodissociation spectrum is
derived from the depletion signal. A detailed description of the
experiment can be found in the ESIf (Fig. S9) and elsewhere.®

To obtain a quantum chemical description of the optical
spectra, ground state structures of Cs,He, ions were first
modelled at the coupled cluster singles doubles (CCSD) level
with the def2QZVP basis set on Cs and def2TZVP on He. The
position of the weakly bound He atoms, residing in shallow
potential wells, is very sensitive to the quality of the basis set
used on Cs. With the triple-zeta quality basis set def2TZVP used
on Cs, a bent structure is predicted for Cs,He"; a linear Cs,He"
structure is obtained with the def2QZVP basis set on Cs and
def2TZVP on He, and this does not change when the def2QZVPPD
basis set is used on both Cs and He. To validate the theory as much
as possible, excited states were modelled on various theory levels:
time-dependent density functional theory (TDDFT) with the
CAM-B3LYP functional; equation of motion - CCSD (EOM-
CCSD); multi-reference configuration interaction (MRCI) with
an active space of one electron in 5 or 17 orbitals, MRCI(1,5) and
MRCI(1,17), respectively; def2QZVPPD basis set was used on all
atoms for excited state calculations. Spin-orbit coupling was
calculated using the state-interacting method as implemented
in the Molpro program®** along with the ECP46MDF basis set.®”
The D, symmetry group was used for calculations; irreducible
representations (IRs) in the D, ;, symmetry group were recon-
structed from the respective IRs in DyDyp. “Very Tight” optimi-
zation criteria were used for optimization; for optimization in the
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floppy excited state in Cs,He", even stricter criteria for solving the
EOM-CCSD equations were used, with convergence criteria of 102,
10~ and 10 ™ for energy, wavefunction and CCSD and ground-
state Z-vector iterations, respectively. In all calculations, only 17
electrons in Cs," were treated explicitly, with the rest described
within an effective core pseudopotential (ECP).

Purely dissociative as well as bound excited states are
encountered in Cs,". The absorption spectra of the dissociative
states were modeled using the linear reflection principle (LRP) within
the harmonic approximation®®®® and by the standard reflection
principle projecting the vibrational wavefunction (calculated for the
Cs," potential on a grid) onto the excited state potential energy
surface. The spectra of the bound states were calculated using the
Franck-Condon approximation within the harmonic regime as
implemented in the Gaussian software® or directly by calculating
the overlap of the ground state vibrational wavefunction in the
electronic ground state with both ground and excited vibrational
wavefunctions in the electronically excited state.

Gaussian 16 was used for TDDFT and (EOM-)CCSD calculations,
Molpro for MRCI and spin-orbit calculations.

Results and discussion

Let us start with the photodissociation spectrum of Cs,He"
(Fig. 1a). Upon electronic excitation, the He atom is lost, and
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Fig. 1 (a) Photodissociation spectra of Cs,He} ions,n =1, 2, 3, 6, 8, 10, 12

obtained as a differential spectrum with and without laser irradiation of
clusters and scaled with laser power (see ESIt for details). A fit of the peak
at 2.8 eV by two Gaussian functions is shown for n = 1. Band centers for
CsyHe™ are marked by vertical lines to guide the eye. Electronic state
assignment is based on calculations (Table 1). (b) Multiple Gaussian fit to
the vibrational progression of the transition into the 1211, state in Cs,He*
and determination of the vibrational spacing.
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Table 1 Experimental and theoretical properties of excited states in Cs,™
and CsyHe™: energy position E (in eV), width w of the Gaussian peak fit
(= 20), experimental splitting A Eqpy, spin—orbit splitting AEse (all in meV).
Excitation energies were calculated at the EOM-CCSD/def2QZVPPD level
of theory, spectral width was modelled within reflection principle approxi-
mation, spin—orbit coupling at the MRCI(1,17)/ECP46MDF level

State 1’z 1°11, 2711,
Experiment, Cs,He" E 1.41 1.55; 1.59 2.82; 2.86
w 83 — 39; 30
AEqpic — 39 42
Theory, Cs," E 1.43 1.51 2.85
w 64 — 26
AEso — 28 13
Theory, Cs,He" E 1.44 1.51 2.84
AEso — 28 14

the spectrum is recorded following the depletion of the ion
signal. There are four clearly observed absorption bands at
about 1.4, 1.55, 1.60 and 2.8 eV (Table 1). The band at 2.8 eV is
further split, with spacing of about 40 meV (300 cm™'). The
band at 1.60 eV has pronounced vibrational structure, with a
spacing of 22 cm™" (Fig. 1b); the broad bands at 1.4 and 2.8 eV
are, on the other hand, structureless.

For a more quantitative interpretation and reliable assignment
of these features, we performed EOM-CCSD and MRCI calculations
and analyzed the contribution of spin-orbit coupling effects. Fig. 2
shows the potential energy curves of Cs,". The Cs," ion has D,
symmetry and, when disregarding spin-orbit coupling, its ground
electronic state is 1°Z;. From this state, the only symmetry allowed
transitions are perpendicular and parallel transitions into *IT,, and
3! states, respectively. Within 3 eV, two *Z; and two *I1,, states
can be found. Among these states, only the 1°T1, state is bound,
the others are dissociative. When accounting for spin-orbit effects
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Fig. 2 Potential energy curves in Cs,* calculated at the EOM-CCSD/
def2QZVPPD level. Excited states to which electronic transitions are
allowed from the ground state are shown with full lines, forbidden ones
with dashed lines. In the inset, the vicinity of the 1°IT,, minimum is shown,
along with states including spin—orbit coupling (dotted lines, calculated at
the MRCI(1,17)/ECP46MDF level of theory). Only selected states are shown.
See the ESI¥ for excluded electronic states and method benchmarking.
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(see Table S3 in the ESIt), the X states are only slightly affected,
with shifts of up to 5 meV. However, the doubly-degenerate IT states
split into two states, separated by ~10-35 meV (80-280 cm ).

Comparison of the calculations with experiment, summarized
in Table 1, allows us to assign the three main bands observed in
the experiment as 1°%Z}, 1°I1,, and 2°II,, reproducing the
excitation energy to within 0.1 eV. The fourth allowed transition
into 22X at ~3.1 eV (see Table S2, ESI{) is not observed in the
experiment due to insufficient laser power in this region. For
the dissociative states 1°Z and 2°I1,, calculations within the
reflection principle approximation also predict a realistic width
of the observed bands, see Table 1.

As mentioned above, the 1°T1,, state is bound and, therefore,
the measured photodissociation spectrum reflects its vibrational
structure. The 1°T1, state is calculated to have a very similar
equilibrium distance as the 1°Z; ground state (Fig. 2). The excited
state potential well is less steep, reflected in the calculated
harmonic vibrational frequencies of 30 and 20 cm™* for the
1°%, and 1711, state, respectively, for Cs," (at the (EOM-)CCSD/
def2QZVPPD level). The respective values for Cs, He are 31 and
19 cm ™!, with a stronger Cs,~He interaction in the excited states,
shortening the Cs-He distance from 4.4 A in the 1°%, state to
4.0 A in 1%T1,. The harmonic Cs,"---He vibration is located at
30 cm ™. The calculated frequency in the 1°TI, state of 19 cm ™"
fits well to the measured spacing of 22 cm ™. Note that only the
higher 3/2u(1°I1,,) state shows clear vibrational resolution shown
in Fig. 1b. The 1/2u(1’I1,) state interacts with the repulsive
1/2u(1°%;) state, and the potential energy surface will be deformed
due to the avoided crossing of the states. From a computational
perspective, the equilibrium distance in the 1°TI, state depends
heavily on the choice of the basis set (Fig. S4, ESIt). As a direct
consequence, our attempts to reproduce the experimental spectrum
shown in Fig. 1b using Franck-Condon simulations failed to grasp
correctly the relative intensity of the contributing peaks (see the ESIT
for details).

Finally, the calculated weak spin-orbit splitting of the I,
states results into two states 1/2u and 3/2u with a different Q
value following Hund’s rule 3. The splitting is well reproduced
for 1°I1,, (see also inset in Fig. 2). For 2°T1,, the calculated spin-
orbit splitting is significantly smaller than the experimentally
observed splitting. These observations can be rationalized if
one takes into account the additional splitting induced by the
asymmetric distribution of the He atom relative to the singly
occupied molecular orbital (SOMO) in the excited state. Fig. 3
illustrates how the energy of the several electronic states in
Cs,He" depends on the position of the He atom in Cs,He". For
this calculation, the Cs-Cs-He angle is fixed, and the Cs-Cs
and Cs-He distances are optimized in the electronic ground
state, 1°X,. From 180° to 150°, the ground state energy hardly
changes, i.e. the He atom moves more or less freely in this
range of Cs-Cs-He angles. The repulsive 12X, state reacts more
sensitively to the position of the He atom, and this effect
contributes to the broadening of the absorption band, which
is 19 meV larger than expected from the linear reflection
principle approximation, Table 1. For the 1°T1, and 2°T1, states,
the degeneracy of the two contributing © orbitals (see Fig. 4) is

This journal is © the Owner Societies 2019
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Fig. 3 Dependence of ground state and excited state energies in Cs,He*
on the Cs-Cs—He angle. Calculated at the EOM-CCSD/def2QZVPPD
level of theory with ground-state structures optimized at the CCSD/
def2QZVP(Cs),def2TZVP(He) level with a constrained Cs—Cs—He angle.
Spin—orbit effects were neglected.
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Fig. 4 Highest occupied molecular orbital (HOMO) and natural transition
orbitals for Cs,He} ions calculated at the CAM-B3LYP/def2QZVPPD level
of theory. A low iso value (0.005) was chosen so that orbital deformation
induced by helium is clearly visible.

lifted by the presence of the He atom, which leads to an
additional splitting. For 1°T1,, this effect is negligible down to
150° Cs-Cs-He angle, because the He atom does occupy the
same space as the singly occupied n orbitals. In contrast, the
SOMO of the 2°I1, state is much more diffuse, and in one of
the two orientations exhibits significant overlap with the position
of the He atom. The splitting of the two orientations of the SOMO
in the 2°T1, state amounts to 31 meV at 150°, which constitutes
the dominant contribution to the experimentally observed
splitting. For larger clusters, the same effect is responsible for
the significant broadening of the 2°T1, band.

This journal is © the Owner Societies 2019

View Article Online

PCCP

Let us now concentrate on the shift of the spectra induced by
solvation, ie. the He matrix shift. As shown in Fig. 1a and
Table 2, pronounced shifts to higher energies are recorded for
the 1%, and 2°T1, states, reaching values of more than 0.1 eV
already for Cs,He,,". Note also that the shift in the 1°Z;, state
exceeds the He binding energy. In the n = 1-10 range, the
energy of the 1°Z], state shifts linearly with solvation by 12 meV
(100 cm™") per helium atom. The 2°T1, band at ~2.8 eV seems
to shift slightly non-linearly, its structure is however not well
resolved in the experiment for larger ions. The 1°TI, state at
1.6 €V, on the other hand, is shifted only by ~20 meV (160 cm™ ) to
lower energies within 7 = 1-12 (Table 2).

The shifts can be directly connected to the interplay between
the position of He atoms around the Cs," ion and the character
of the respective excited state. Our calculations show that Cs,"
is preferentially solvated by He atoms on its ends, along the
Cs-Cs axis for the smallest ions (see Fig. 4). For Cs,He' and
Cs,He,", the most stable configuration is linear, but deformation
from linearity down to a Cs-Cs-He angle of 150° requires very little
energy, see Fig. 3; in Cs,He,,", conformations with six and five/seven
He atoms on each end are the most stable ones (Table S1, ESIT).
As expected, the binding energy of helium atoms is low, within
2.4-3.1 meV He " for up to 12 helium atoms. In addition to the
shifts, the presence of a large variety of almost isoenergetic
isomers leads to significant broadening of the spectra upon
solvation (see Fig. S1, ESIt).

Due to Pauli repulsion, the presence of He atoms deforms
the orbitals of both ground and excited electronic states that
extend along the Cs-Cs axis, shifting them to higher energy.
This is the case for the HOMO orbital as well as the orbitals
corresponding to excitations into the 1°Z{ and 2°TI, states
(Fig. 4). The diffuse orbitals in the excited state are deformed
more than the HOMO orbital, shifting the excitation energy
considerably to higher values (Fig. 1a). The n orbital corres-
ponding to the excitation into the 1°TI, state at 1.6 eV repre-
sents a different case. Here, the surrounding helium atoms do
not approach the orbital and the shift to lower energies reflects
the slight destabilization of the HOMO orbital. Our calculations
can reproduce the shifts for excitations into 1°Z;, and under-
estimate those observed for 1°T1, (Table 2); for n = 12, the

Table 2 Experimental and calculated energy shift of excited states upon
solvation (in meV) with respect to Cs,He™. See Fig. S12 for experimental
fits. Electronic states are correlated to 1223 and 121'1u states in Cs,*. Vertical
transitions were calculated at the EOM-CCSD/def2QZVPPD//CCSD/
def2QZVP(Cs), def2TZVP(He) level of theory. For the 1°II, state, the
average calculated value of the two SOMO orientations is given. Isomers
with equal distribution of He atoms to each Cs," end are chosen for the
calculation

Experiment Theory
e 12z 1°11, 1’z 1°11,
2 11 —3.4; —3.7 6 —0.8
3 23 —6.1; —6.6 15 —-2.1
6 59 —13.3; —15.2 41 —6.1
10 98 —9.2; —19.3 96 —-12.0
12 124 —18.5; —41.0 109 —14.2
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sudden increase observed in the 1°I1, experimental shift might
be induced by the fitting procedure (see Fig. S12, ESIt) or
appearance of new isomers. This is most likely caused by the
neglect of He delocalization around the Cs," core due to zero-
point motion and the presence of multiple isomers.

Conclusions

In contrast to photodissociation of bare Cs,", helium tagging
gives experimental access to the 3/2u component of the 1°T1,,
state, which features a pronounced vibrational progression with
a Cs-Cs frequency of 22 cm ™! in the excited state. According to
quantum chemical calculations, He considerably changes the
spectrum already for the Cs,He" ion, inducing splitting of bands
due to both solvation and dynamic effects. When more helium
atoms are added, shifts exceeding 0.1 eV, i.e. almost 1000 cm ™Y,
are induced, and the 2°T1,, significantly broadens. The magnitude
and even direction of the shift are extremely sensitive to both the
nature of the electronic transition as well as the position of
the solvating atoms. Our calculations show that the shifts are
particularly pronounced if He occupies a position in the electro-
nic ground state that carries large electron density in the excited
state. Despite its extremely weak interaction, He is capable of
inducing significant matrix shifts in electronic excitation spectra,
due to Pauli repulsion, as already pointed out before.”®’" This
effect is used to derive information both on the shape of excited
state molecular orbitals as well as solvation patterns.
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