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Enantioselective bifunctional iminophosphorane
catalyzed sulfa-Michael addition of alkyl thiols to
unactivated B-substituted-a,B-unsaturated estersf

Jinchao Yang, Alistair J. M. Farley and Darren J. Dixon*

The highly enantioselective sulfa-Michael addition of alkyl thiols to unactivated B-substituted-o,f-

unsaturated esters catalyzed by a bifunctional iminophosphorane (BIMP) organocatalyst is described. The

low acidity of the alkyl thiol pro-nucleophiles is overcome by the high Brgnsted basicity of the catalyst
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and the chiral scaffold/thiourea hydrogen-bond donor moiety provides the required enantiofacial

discrimination in the addition step. The reaction is broad in scope with respect to the alkyl thiol and

DOI: 10.1039/c6s5c02878k

www.rsc.org/chemicalscience

Unactivated B-substituted-o,B-unsaturated esters, such as
methyl crotonate, methyl cinnamate and their homologues,
are a class of low reactivity electrophiles that offer a wealth of
untapped potential in the field of enantioselective organo-
catalysis." To date, these esters have remained a persistent
challenge as Michael acceptors in asymmetric catalysis using
both metal-rich and metal-free catalyst systems, largely due to
their low inherent electrophilicity* and low propensity for
catalyst activation and enantioface discrimination.** They are
commercial and cheap, or are readily prepared by a variety of
standard methods and are stable. In contrast to commonly
used (reactive) Michael acceptors such as nitroolefins, they lie
at the bottom of the Mayr electrophile reactivity (E) scale,>®
and unlike enal and enone Michael acceptors they cannot be
activated through iminium ion formation with chiral amine
catalysts.” Related literature examples employ activated
carboxylic derivatives® such as N-enoyl imides, N-enoyl oxa-
zolidinones, perfluorinated alkyl esters, thioamides, N-enoyl
pyrroles and, most recently, aryl esters.” Alternatively, acti-
vating substituents at the o- or B-positions can also be used to
gain reactivity and/or stereoselectivity. To illustrate the case in
point, to date there has not been a single report of a highly
enantioselective addition of a pro-nucleophilic reagent
[a carbon-centered (C-H) or heteroatom-centered (X-H) acid]
to unactivated alkyl cinnamate or crotonate esters under
organocatalytic conditions.'® Effectively, these cheap chemical
feedstocks are out of reach of existing chiral organocatalysts
and accordingly are a very attractive ‘simple’ target class of

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12
Mansfield Road, Oxford, UK. E-mail: Darren.dixon@chem.ox.ac.uk

T Electronic supplementary information (ESI) available: Experimental procedures,
spectroscopic data, copies of 'H and '*C NMR spectra and HPLC and GC
chromatograms. See DOI: 10.1039/c65c02878k

606 | Chem. Sci., 2017, 8, 606-610

B-substituent of the a,B-unsaturated ester, affords sulfa-Michael adducts in excellent yields (up to >99%)
and enantioselectivity (up to 97 : 3 er) and can operate down to 1 mol% catalyst loading.

electrophiles for new enantioselective organocatalytic reaction
development (Fig. 1).

A proven strategy to overcome low substrate electrophilicity in
base-catalyzed polar addition reactions is to increase the
concentration of the nucleophilic conjugate base in the pot — and
therefore the rate of the nucleophilic addition reaction - by
enhancing the Bronsted basicity of the catalyst relative to tertiary
amine catalysts.” ™ To this end, we disclosed that bifunctional
iminophosphorane (BIMP) catalysts, containing a novel organo-
superbase were highly efficacious in the first general enantiose-
lective organocatalytic ketimine nitro-Mannich reaction.'?*?
Likewise, very recently, high catalyst performance (in terms of
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Fig.1 Bifunctional Brensted base/H-bond donor organocatalytic SMA
to a,B-unsaturated ester derivatives.
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reactivity and enantioselectivity) with a second generation BIMP
catalyst was also witnessed in the first organocatalytic conjugate
addition of alkyl thiols to unactivated a-substituted acrylate
esters (such as methyl methacrylate).** In both of these trans-
formations an organosuperbase was demonstrated to be essen-
tial for reactivity.

We speculated that the
B-substituted-a,B-unsaturated esters to undergo organocatalytic
Michael addition reactions could be overcome using our BIMP
catalyst family. To exemplify this we chose the sulfa-Michael
addition (SMA) of alkyl thiols as this is a reaction of central
importance for the asymmetric construction of chiral sulfides
possessing a stereogenic centre at the B-carbon and no orga-
nocatalytic enantioselective version has previously been re-
ported.**** We reasoned that the high Brensted basicity of our
BIMP catalysts could activate the high pK, alkyl thiol pro-
nucleophile (pKympmso) = 17 for n-BuSH)'*"” and the modular
design of the catalyst family, through its variable backbone
scaffold, hydrogen-bond donor group and iminophosphorane
superbase would expedite optimal catalyst identification.
Herein, and as part of our research program towards the
development of novel asymmetric reactions with challenging
electrophile/pro-nucleophile combinations, we wish to report
our investigations leading to the highly enantioselective SMA
reaction of alkyl thiols to unactivated B-substituted-a,B-unsat-
urated esters.

We chose commercially available methyl crotonate (2a) and
1-propanethiol (3a) as our model system and investigated
reactivity using first generation BIMP catalyst 1a (Table 1, entry
1). In toluene, at room temperature using 10 mol% catalyst we
were delighted to observe an exceptional reactivity profile; B-
mercaptoester product 4a was afforded in near quantitative
yield after only 2 hours with low but significant enantiocontrol
(55 : 45 er)."® With good reactivity established we next investi-
gated the performance of a small library of second generation
BIMP catalysts featuring variations around the amide-thiourea
motif that we recently reported* (Table 1, entries 2-6). The
modular design of our BIMP catalysts allowed rapid library
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Fig. 2 Bifunctional iminophosphorane (BIMP) organocatalysts used in
the optimization of the SMA reaction. PMP = p-methoxyphenyl.
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Table 1 Catalyst screening studies and reaction optimization®

o catalyst ~ N-Pr<

\ Rt n-Pr=SH (10 mol%) H Q "
MO 0.5 M, toluene, rt AN o R
2a-e 3a 4a-e

Entry Cat. R’ Product  Time (h)  Yield” (%) er°
1 la Me 4a 2 94 55:45
2 1b Me  4a 2 98 55 : 45
3 1c Me 4a 2 94 52:48
4 1d Me  4a 2 93 59 : 41
5 1e Me 4a 2 >99 75:25
6 1f Me 4a 2 97 62 : 38
74 1g Me 4a 3 >99 81:19
8 1g Et b 3 95 84:16
9 1g i-Pr  4c 3 >99 85:15
10 1g Bn ad 3 >99 81:19
114 1g tBu  4e 8 94 92:8
129 1g tBu  4e 8 95 94:6
13/ 1g tBu  4e 24 94 96 : 4
148 1g t-Bu  4e 72 94 97:3

¢ Reactions were carried out with 0.20 mmol of 2 and 0.60 mmol of 3a.
b Isolated yield. © Determined by HPLC analysis on a chiral stationary
phase. ¢ Reaction performed on 0.10 mmol scale of 2a. ° Reaction
performed at 0 °C. / Reaction performed at 0 °C in Et,O. ¢ Reaction
performed at —15 °C in Et,O.

generation and our attention focussed on the amide-thiourea
moiety as the H-bond donor group and the tris-(4-methox-
yphenylphosphine) derived iminophosphorane as the Brgnsted
basic group (Fig. 2).

Catalysts 1b-d possessing a thiourea constructed from two
(S)-configured tert-leucine derived residues, the tris-(4-methox-
yphenylphosphine)-derived iminophosphorane and a variable
terminal amide group gave poor enantioselectivity in all cases
(Table 1, entries 2, 3, and 4). When catalyst 1e - the diaste-
reomer of 1d - was trialled however, a significant boost to the
enantioselectivity was witnessed (Table 1, entry 5, 75 : 25 er)."

A comparison with an analogous catalyst possessing a phe-
nylglycine and a tert-leucine residue (1g) resulted in a slight
improvement to the enantioselectivity (Table 1, entry 7, 81 : 19
er). At this stage, the effect of varying the ester group of the
crotonate on the enantioselectivity in the SMA was investigated.
A range of simple, commercial or readily synthesized alkyl
crotonate esters were trialled and a correlation between the size
of the ester group and the enantioselectivity was observed —
pleasingly tert-butyl crotonate (2e) afforded the product 4e in
92 : 8 er albeit in a slightly increased reaction time of 8 h (Table
1, entry 11). A reoptimization of the reaction conditions to 0.5 M
in Et,O at 0 °C (Table 1, entries 12 & 13 and ESI{) resulted in
a significant boost to the enantioselectivity (96:4 er) and
cooling the reaction temperature further to —15 °C afforded
B-mercaptoester 4e in 94% yield and 97 : 3 er (Table 1, entry 14).

With optimized reaction conditions established, the scope of
the transformation with respect to the thiol pro-nucleophile
and the o,B-unsaturated ester was investigated (Fig. 3). Minimal
variation to the enantioselectivity was observed across a good
range of linear (propyl to decyl) or branched (cyclic and acyclic)
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Fig. 3 Scope of the SMA of alkyl thiols to B-substituted-a,B-unsaturated esters. Reactions were carried out with 0.20 mmol 2 and 0.60 mmol 3.
Yields are isolated yields and enantiomeric ratios were determined by HPLC analysis or GC analysis on a chiral stationary phase. “The reaction was
performed at —15 °C. ®The reaction was quenched after 96 h. “Absolute configuration of 4n determined by chemical correlation (see ESI¥).

alkyl mercaptans. The reaction with 4-methoxybenzyl
mercaptan was also well-tolerated and afforded the B-mercap-
toester 4m in 99% yield and 95 : 5 er at —15 °C.

Following investigation into the scope of the reaction with
respect to the alkyl thiol, variation to the B-substituent of the
a,B-unsaturated ester was subsequently examined using 1-pro-
panethiol or 4-methoxybenzyl mercaptan as the sulfur-centred
pro-nucleophile. We were pleased to observe that the excellent
reactivity and selectivities were maintained when tert-butyl
cinnamate, bearing a phenyl group at the B-position, was used
as the electrophile to afford the desired B-mercaptoester 4n in
98% yield and 88 : 12 er.

Similarly, excellent yields of the B-mercaptoesters 4o0-r were
obtained from the corresponding primary alkyl B-substituted-
a,B-unsaturated esters with very good levels of enantiocontrol.
B-Mercaptoesters 4s and 4t containing a terminal N-Boc pro-
tected amine and TBS protected hydroxyl group respectively

o 1 mol% cat 1g ~"s o
+ SH H t
N ‘Bu N 1By
MO 5M in Et,0, /\)J\o
2e 3a 0°C,24h 4e
109 1.48 g obtained
7 mmol 20eq 97% yield, 94:6 er

Scheme 1 Preparative scale synthesis of 4e.
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were also synthesized in good to excellent yields and excellent
enantiomeric ratios.

Although the scope of the reaction was performed with 10
mol% catalyst loading, we were keen to demonstrate lower
loadings were viable. Accordingly, and after reoptimization of
the reaction conditions, to 5 M in Et,O at 0 °C, we were pleased
to find B-mercaptoester 4e was afforded in near quantitative
yield and 95 : 6 er on 7 mmol scale of tert-butyl crotonate (2e)
using 1 mol% catalyst 1g (Scheme 1).

To demonstrate synthetic utility of the B-mercaptoester
products a selection of standard chemical transformations were
carried out (Scheme 2). Thus B-mercaptoester 4e (95 : 5 er) was
transesterified to the methyl ester 4a in a two step process;

~s o ~s o b. J\)CL
/\)J\OMe - /\AOtBu _b \/;’/S\\ O'Bu
. . N de sa
PMB\§ o . PMB\§
/\)J\O‘Bu T "0H
4m 5b

Scheme 2 Derivatization. (a) TFA, Et,O, 0 °C to rt, then SOCl,, MeOH,
0 °C to rt, 78% yield over two steps, 94 : 6 er. (b) m-CPBA, CH,Cl,,
0°C, 2h,96%yield, 94 : 6 er. (c) DIBAL-H, THF, —60 °C, 2 h, 93% yield,
93:7er.

This journal is © The Royal Society of Chemistry 2017
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initial acidic cleavage of the tert-butyl ester and subsequent
methyl ester formation under acidic conditions afforded 4a in
78% yield without compromising stereochemical integrity.
Oxidation of 4e afforded sulfone 5a without any observable
racemization in near quantitative yield. Finally, B-mercap-
toester 4m was reduced to the alcohol in excellent yield, without
appreciable loss of enantiopurity.*

In summary, we have developed the first organocatalytic
enantioselective SMA of alkyl thiols to unactivated
B-substituted-a,B-unsaturated esters. Impressive reactivity and
excellent levels of enantioselectivities were achieved across
a range of linear, branched, cyclic alkyl and benzylic thiols, in
SMA reactions to various B-substituted-o,B-unsaturated esters
using a novel bifunctional iminophosphorane catalyst. This
work demonstrates that the high reactivity of the BIMP catalysts
enables low reactivity electrophiles such as B-substituted-a,f3-
unsaturated esters to undergo highly enantioselective conjugate
addition reactions for the first time and thus represents
a significant advance in the field. Work to uncover further
capabilities of the BIMP catalyst family is ongoing in our labo-
ratories and the results will be disclosed in due course.
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