Issue 22, 2025

Promoting photogenerated charge separation and transfer in a CuBi2O4 photocathode for improved photoelectrochemical performance

Abstract

Copper bismuthate (CuBi2O4) is a fascinating photocathode material for photoelectrochemical (PEC) water-splitting due to its high theoretical photocurrent density and large internal photovoltage. However, its PEC performance is hindered by insufficient light absorption, fast charge carrier recombination, sluggish interfacial charge transfer kinetics, and challenges in achieving uniform photocathode fabrication. Herein, a simple and surfactant-assisted sol–gel method is adopted to fabricate a homogeneous CuBi2O4 photocathode for improved PEC performance. A small amount of Pluronic P123, a triblock copolymer surfactant, was incorporated into the CuBi2O4 precursor sol to enhance film homogeneity and modulate the particle size during the sol–gel synthesis process. The experimental results reveal that the addition of the surfactant facilitates uniform deposition of the CuBi2O4 photocathode and significantly reduces its average particle size from 252 nm to 98 nm. This reduction in particle size results in approximately 2 times higher photocurrent density (−3.8 mA cm−2 compared to −2.0 mA cm−2) at 0.2 V versus reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 electrolyte with an electron scavenger. The enhanced PEC performance originates from the improved charge separation (30.5% at 0.2 V vs. RHE) and transfer efficiencies (30.1 V vs. RHE) of the surfactant-modulated photocathode. This work provides a straightforward way of fabricating robust, efficient, and large-area CBO photocathodes for PEC application.

Graphical abstract: Promoting photogenerated charge separation and transfer in a CuBi2O4 photocathode for improved photoelectrochemical performance

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2025
Accepted
24 Aug 2025
First published
09 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Sustainable Energy Fuels, 2025,9, 6235-6246

Promoting photogenerated charge separation and transfer in a CuBi2O4 photocathode for improved photoelectrochemical performance

H. Khan, A. Razazzadeh, M. Jung, Q. Zhou, M. S. Lee and S. Kwon, Sustainable Energy Fuels, 2025, 9, 6235 DOI: 10.1039/D5SE01055A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements