Reticular synthesis of a pcu-b framework: digital reticular chemistry for anisotropic modulation and multicomponent integration
Abstract
The introduction of “heterogeneity within order” to metal–organic frameworks (MOFs) commonly leads to an increase in structural complexity, posing the question of whether it is possible to spatially arrange multiple components in a simple network. Here, we focus on the integration of quaternary components into a simple pcu-b (primitive cubic unit-biparticle) network using a [Zn4O]-core cluster and paddle-wheel secondary building units (SBUs) alongside organic linkers. We systematically explore a design space of over 180 candidate configurations, identifying an optimal structure that balances synthetic feasibility and functional potential. Experimental validation confirmed the successful synthesis of the predicted framework, named MAC-5, which exhibits unique anisotropic modulation enabled by the controlled spatial arrangement of distinct Zn4O(COO)4(NN)2 and paddle-wheel SBUs. Extending this approach, we synthesized a series of iso-reticular analogues, presenting the tailored multiple functions from different multicomponent frameworks. The hetero-SBU arrangement of MAC-5 enhanced the thermal and chemical stabilities and enabled programmable metal doping that defies expectations in pcu-based systems. This work establishes a reticular chemistry approach to engineering functional complexity within simple network topologies, providing a blueprint for the rational design of multicomponent MOFs with tailored properties.
- This article is part of the themed collections: 2025 Materials Chemistry Frontiers HOT articles and 2025 Materials Chemistry Frontiers Review-type Articles