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High-throughput digital pathology via a handheld, multiplexed, 
and AI-powered ptychographic whole slide scanner 
Shaowei Jiang,‡a Chengfei Guo,‡*a Pengming Song,‡a Tianbo Wang,a Ruihai Wang,a Terrance Zhang,a 
Qian Wu,b Rishikesh Pandey,a and Guoan Zheng*a

The recent advent of whole slide imaging (WSI) systems has moved digital pathology closer to diagnostic applications and 
clinical practices. Integrating WSI with machine learning promises the growth of this field in upcoming years. Here we report 
the design and implementation of a handheld, colour-multiplexed, and AI-powered ptychographic whole slide scanner for 
digital pathology applications. This handheld scanner is built using low-cost and off-the-shelf components, including red, 
green, and blue laser diodes for sample illumination, a modified stage for programmable sample positioning, and a 
synchronized image sensor pair for data acquisition. We smear a monolayer of goat blood cells on the main sensor for high-
resolution lensless coded ptychographic imaging. The synchronized secondary sensor acts as a non-contact encoder for 
precisely tracking the absolute object position for ptychographic reconstruction. For WSI, we introduce a new phase-
contrast-based focus metric for post-acquisition autofocusing of both stained and unstained specimens. We show that the 
scanner can resolve the 388-nm linewidth on the resolution target and acquire gigapixel images with a 14 mm × 11 mm area 
in ~70 seconds. The imaging performance is validated with regular stained pathology slides, unstained thyroid smears, and 
malaria-infected blood smears. The deep neural network developed in this study further enables high-throughput 
cytometric analysis using the recovered complex amplitude. The reported do-it-yourself scanner offers a portable solution 
to transform the high-end WSI system into one that can be made widely available at a low cost. The capability of high-
throughput quantitative phase imaging may also find applications in rapid on-site evaluations. 

Introduction
The process of analysing histology slides using a regular light 
microscope is the gold standard in diagnosing a large number of 
diseases, including almost all types of cancers. However, this 
process is highly subjective and suffers from inter- and intra- 
observer variations despite its success in diagnostic 
applications. The current workflow in a clinical setting is also 
labour-intensive and mostly qualitative. It can be easily 
disrupted when a pathologist bumps a slide to a high 
magnification objective lens or switches to a different objective 
lens.  

Quantitative characterization of histopathology imagery is 
vital for reducing observer errors in diagnoses. It can also 
streamline and standardize the clinical workflow. Thus, whole 
slide imaging (WSI) systems were developed to replace 
conventional light microscopes for quantitative and accelerated 
histopathological analyses1. The first WSI platform was 
developed based on a robotic microscope in 1990s2. With 
imaging hardware and software developments, the regulatory 

field for digital pathology using WSI systems has advanced 
significantly in the past decade. A key milestone was 
accomplished in 2017 when the Philips’ whole slide scanner was 
approved for primary diagnostic use in the U.S.3 Furthermore, 
the recent advancement of artificial intelligence (AI) in medical 
diagnostics promises further growth of this field in the coming 
decades. In particular, various deep learning approaches have 
been demonstrated for automatic analysis of whole slide 
images with performance comparable to human experts4, 5. 

A typical whole slide scanner consists of the following 
hardware components6: 1) a microscope with high numerical 
aperture (NA) objective lenses and a tube lens, 2) a motorized 
x-y stage for rapid lateral scanning of the slide, 3) a precise 
motorized z-stage for axial movement and rapid focusing of the 
objective lens, 4) one or more image sensors for image 
acquisition and autofocusing, and 5) a high-power light source 
for motion-frozen sample illumination. The resultant scanner 
enables comprehensive digital rending of entire histology slides. 
In addition, the colour information is often obtained from the 
Bayes colour filter of the image sensor. This whole-slide digital 
image can then be viewed, shared, navigated, and annotated 
with speed and ease on a computer monitor.

Several challenges are associated with using the 
conventional whole slide scanners for high-throughput imaging. 
First, the depth of field of high-NA objective lenses is on the 
micron scale. This limitation poses a challenge when tracking 
the axial topography variations of tissue sections, as specimens 
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not placed within the depth of field of the objective lens will 
result in degraded quality of the acquired images. Ultimately, 
this leads to rescanning and workflow delays. To address this 
challenge, many whole slide scanners create a focus map before 
the scanning process. For each focus point, a system needs to 
acquire a z-stack by axially moving the objective lens to different 
z positions. The best focus position can then be inferred based 
on the captured intensity image with the highest Brenner 
gradient or other focus metrics6. However, most focus metrics 
employed in these existing systems are only valid for adequately 
stained specimens. For weakly stained or unstained samples, 
intensity-based focus metrics would not be a good indicator for 
the best focus position. This same limitation also applies to 
whole slide scanners with a secondary camera for autofocusing, 
including the widely adopted systems from Leica and Philps6. In 
a later section, we will introduce a new focus metric based on 
the quantitative phase contrast that works for both stained and 
unstained samples. 

Second, a high-NA objective lens often implies a small field 
of view7. To accommodate this limitation, current scanners 
need to perform precise mechanical scanning of the sample at 
high speeds. The resultant motion blur presents an issue during 
the image acquisition process. Current solutions include 1) 
using an expensive time-delay-integration image sensor with 
precise synchronization with the sample motion, 2) using pulsed 
illumination or specially-designed high-power light sources to 
freeze the motion during the acquisition process, and 3) 
mechanically pausing the motion for image acquisition. The first 
two solutions require special hardware with high premiums and 
thus, are not available for cost-effective implementations. 
Alternatively, the motion acceleration and deceleration 
involved within the third solution would substantially decrease 
the scanning speed. 

Third, challenges exist when upscaling the imaging 
throughput for existing whole slide scanners. For example, one 
can upscale the number of lenses used when building a 
microscope array. In this respect, a lenslet array has been 
utilized to demonstrate rapid WSI8. However, the large 
footprint, high cost, precise optical alignment, and other 
hardware challenges have prevented the adoption of these 
lenses in clinical settings.  Another option is to scale up the size 
of the objective lens to achieve a higher space-bandwidth 
product9. Giant objective lenses have been used to 
demonstrate high-throughput, large-scale microscopic 
imaging10, 11. However, these bulky and highly specialized lenses 
are not readily available to researchers due to their high costs 
and the required specialized acquisition hardware.  

 Here we report the design and implementation of a 
handheld, lensless ptychographic whole slide scanner. This 
handheld scanner is built using low-cost and off-the-shelf 
components that operate without using any lenses. It offers a 
portable solution to transform the high-end WSI system into 
one that is utilizable without compromising the performance. 

The reported scanner integrates several innovations into a 
miniatured system. First, a synchronized image sensor pair is 
used for data acquisition. The first sensor is smeared with a 
monolayer of goat blood cells for high-resolution ptychographic 

imaging. The second sensor is utilized for precise lateral 
positional feedback during the scanning process. In contrast, 
conventional whole slide scanner employs a secondary camera 
for axial positional tracking6, 12. Second, the reported device 
implements a novel focus map generation scheme after the 
data has been acquired. In particular, we adopt a new focus 
metric based on the quantitative phase contrast of the 
specimen. This new focus metric can find the correct focus 
positions for both stained and unstained specimens post 
measurement. Third, colour-multiplexed scheme is adopted in 
the reported device for ptychographic reconstruction. A 
compact coherent illumination module is developed using low-
cost red, green, and blue laser diodes. The high illumination flux 
from this module allows image acquisition while the sample is 
in continuous motion. 

The integration of these innovations addresses the 
challenges of the conventional scanner discussed above. In 
contrast with the small depth of field of the conventional 
scanner, the lensless nature of the reported device does not 
impose any limit on the depth of field. After reconstruction, we 
can digitally propagate the recovered complex wavefront to any 
axial position post measurement. The scanning mechanism of 
the reported device is also different from the conventional 
scanner. The reported device has a large field of view and the 
scanning step size in-between adjacent acquisitions is on the 
micron scale. Therefore, the sample can be in continuous 
motion without extra hardware. Lastly, multiple image sensors 
can be employed in the reported device to scale up the imaging 
throughput. 

For application demonstration, we acquired whole slide 
images of different specimens in this study. We show that the 
scanner can resolve the 388-nm linewidth on the resolution 
target and acquire gigapixel images with a 14 mm × 11 mm area 
in ~70 seconds. We also show that the recovered phase 
information can be used to measure the precise height map of 
unstained fine needle aspiration (FNA) smears, thereby 
providing a powerful tool to visualize the cellular topographic 
structure in 3D. We also note that these thick FNA cytology 
smears contain many slow-varying 2π wraps that are 
challenging to obtain using other common imaging techniques. 
To demonstrate the diagnostic potential in resource-limited 
settings, we performed automatic tracking of malaria-infected 
blood cells over the entire microscope slide. The recovered 
phase and phase gradient were used to locate the malaria 
parasites in the blood cells. Finally, we developed a deep neural 
network that uses the recovered complex amplitude to perform 
high-throughput cytometric analysis. We envision that the 
reported DIY miniature can be used as a personal whole slide 
scanner for every pathologist in their offices. 

Materials and methods
Design of the ptychographic whole slide scanner

Figure 1a shows the schematic and the operation principle of 
the ptychographic whole slide scanner. We designed a three-
layer structure for this miniature. The bottom layer contains the 
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low-cost red, green, and blue laser diodes for multi-wavelength 
coherent illumination. The laser beam is coupled to a single-
mode fiber using an optomechanical coupler. Other 
components housed in this layer include the current drivers for 
the stepper motor, the current drivers and temperature 
management module for the laser diodes, and the micro-
controller for programable positioning and synchronization of 
the image sensor pair. The middle layer contains a homemade 
motorized stage for lateral sample positioning and a pair of 
image sensors for lensless data acquisition. The motorized stage 
is modified from a low-cost manual stage off-the-shelf 
(SEMY60-AS, Amazon). We used two stepper motors (NEMA 11) 
with integrated lead screws to translate the stage’s metal plates 
mounted on the linear guided sliding track. Lastly, the top layer 
of the device contains the illumination module for the image 
sensor pair. 

The ptychographic whole slide scanner prototype is shown 
in Fig. 1b. The compact size and the lensless operation allow us 

to hold the entire platform in one hand. Figure 1c depicts 
different parts on the bottom and middle layers. Figure 1d 
shows the laser module with the red (638 nm, 180 mW), green 
(520 nm, 120 mW), blue (445 nm, 500 mW) laser diodes, and 
the corresponding dichroic mirrors. The use of high-power laser 
diodes enables continuous sample motion during the image 
acquisition process. The motion blur issue in conventional 
whole slide scanners is not present in the reported platform.  

In Fig. S1a, we used the digital pin from the microcontroller 
to control the transistor-transistor logic of the laser driver and 
adjusted the output power of the laser diodes accordingly. 
Figure S1b shows the design of the optomechanical coupler for 
directing the laser light to the single-mode fiber. Figure S1c 
shows a magnified view of the synchronized image sensor pair, 
where a monolayer of goat blood cells is smeared on top of the 
main image sensor (discussed in the next section). In Fig. S2, we 
show the mechanical design of the scanning stage. Figure S2a 
shows the original low-cost stage with two manual actuators. 

Fig. 1 The design and implementation of a handheld, multiplexed, and AI-powered ptychographic whole slide scanner. (a) The 
three-layer design of the system. Layer 1 contains the red, green, and blue laser diodes and the related optomechanical coupler 
to a single-mode fiber. It also contains the micro-controller, and the current drivers for the laser and the stepper motors. Layer 2 
contains a modified x-y stage driven by two stepper motors for programmable positioning. A pair of synchronized image sensors 
are mounted on the stage: one for lensless ptychographic imaging and the other one as absolute position encoder. Layer 3 contains 
the illumination module, including a prism for colour multiplexed illumination and a beam splitter for directing the laser beam to 
the secondary image sensor. (b) The handheld ptychographic whole slide scanner. (c) A zoomed-in view of different parts of the 
scanner. (d) The laser module at the bottom layer. (e) The synchronized image sensor pair at the middle layer. (f) The illumination 
module at the top layer. Refer to Figs. S1-S2 for the system design and Movie S1 for the operation of the scanner.    
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We removed the actuators (Fig. S2b) in our design and replaced 
them with two stepper motors for programmable control (Fig. 
S2c-S2d). With the stepper motors, the maximum translation 
speed is ~3 mm /s. This simple modification enables the 
development of a handheld whole slide scanner for both 
lensless ptychographic imaging discussed here and regular lens-
based WSI platforms13. Figure 1e shows two 3D printed plastic 
cases that cover the lead screws of the two stepper motors.

Synchronized imager pair and image-based position encoder

A camera pair is often used for data acquisition in conventional 
whole slide scanners. This pair is composed of the main camera 
for high-resolution image acquisition and a secondary camera 
to track the defocus position of the specimen6, 12. In particular, 
the most successful whole slide scanners from Philips and Leica 
place a tilted sensor at the conjugated image plane to enable 
autofocusing during the scanning process. This sensor 
generates a contrast curve based on the intensity gradient of 
the captured image and determines the best focus position for 
the main camera6. 

The reported platform also adopts a synchronized image 
sensor pair (IMX226, 1.85 µm pixel size) for data acquisition. 
Our system utilizes the main sensor for lensless diffraction data 
acquisition and a secondary sensor to track the absolute 
position of the scanning stage. We synchronized the main and 
secondary image sensors by sending the triggering signal from 
the micro-controller. 

For the main image sensor shown in Fig. 1e, we smeared a 
monolayer of blood cells as a coded scattering lens14-21. We also 
fixed the blood cells using alcohol to prevent their degradation 
over time. As we will discuss in the next section, we tested blood 
cells from both goat and fish in the experiment. The goat blood 
was obtained from Lampire Biological Laboratories and the fish 
blood was obtained from a supermarket. The coated monolayer 
layer of blood cells can down-modulate the diffracted light 
waves for sensor detection. The concept is similar to the 
operation of structured illumination microscopy22, 23, where 
non-uniform structured light patterns are used to down-
modulate the object information for detection. In the reported 
device, the monolayer of blood cells redirects the light waves 
with large diffraction angles into smaller angles, thereby 
improving the achievable resolution of the recovered images. 

Robust and high-performance translational scanning often 
requires the use of encoders for measuring the absolute 
position of the scanning stage. Without the encoder, the open-
loop operation would lose track of the position after several 
runs. This is a drawback in some of the previous demonstrations 
on low-cost microscope motorized stages13, 24-27. In our 
implementation, a secondary image sensor is used as a non-
contact position encoder for tracking the absolute position of 
the stage. As shown in Fig. 1f, we place this sensor under an 
acrylic slide holder with a frosted surface. When illuminated 
with a laser beam, the frosted surface generates a speckle 
pattern on the sensor. By scanning the slide holder to different 
lateral positions, we can recover the absolute position of the 
stage via cross-correlation analysis19, 20, 28 with sub-pixel 
accuracy29. Figure S3 shows the tracking performance using the 

secondary sensor. In this experiment, we used two motorized 
stages (ASI LS-50) to move the slide holder to different x-y 
positions. The recovered positions using the secondary sensor 
are plotted with the positions returned by the motorized stages. 
The average difference is ~100 nm. We note that part of the 
difference comes from the mechanical repeatability and 
backlash of the motorized stages.     

We note that it would be challenging to retrieve this 
positional shift if a secondary sensor was not present. While one 
can produce a transparent region on the main sensor for 
positional tracking, the sample slide may not contain any 
detailed features on this region. The tracking would thus be 
subjected to the histology slide itself and would not be reliable 
when imaging the edge area. The empty region on the main 
sensor also reduces the effective field of view for lensless 
imaging. In contrast, the reported device performs positional 
tracking based on the frosted surface of the slide holder without 
relying on the object profile. One can precisely track the 
absolute position even if the object is an empty glass slide.

Multiplexed data acquisition and ptychographic reconstruction 

A user can turn on one or more laser diodes for sample 
illumination to initiate the operation of the reported scanner 
(Movie S1). The slide holder will be scanned at different lateral 
positions during the acquisition process. The imaging model can 
be explained as the following sequence: First, the histology slide 
is translated to the ith lateral position (xi, yi), and two images are 
acquired using both the main and the secondary sensors. 
Second, the image captured using the secondary sensor is used 
to recover (xi, yi) by performing a cross-correlation analysis with 
the reference image captured at (x1, y1). Third, the translated 
object profile O(x-xi, y-yi) propagates to the blood-cell 
monolayer on the main sensor, multiplies with this layer, and 
propagates to the surface of the pixel array, obtaining the 
complex lightwave ψi(x, y). Fourth, the pixel array samples the 
complex light wave with both spatial and angular filtering, 
resulting in the captured intensity image of Ii(x, y). The goal of 
the reconstruction process is to recover the complex object 
profile O based on all intensity measurements Ii (i=1,2,3…). 

In our implementation, we continuously translate the stage 
at a speed of ~60 µm/s and acquire the images at the full 
camera framerate at 30 frames per second. For one field of view 
of the image sensor, we typically acquire 450 images in 15 
seconds. The stage then positions to the next field of view and 
repeats the process. For an area of 14 mm × 11 mm on a regular 
slide, we typically acquire 4 fields of view of the sensor and the 
acquisition time is ~70 seconds, including 10 seconds for motion 
overhead. 

At the heart of our reconstruction process is an imaging 
technique termed ptychography30. The original concept was 
developed to address the missing phase problem in electron 
microscopy31. Its modern form was brought to fruition by 
adopting the iterative phase retrieval framework32. In a typical 
lensless implementation, the specimen is laterally translated 
through a spatially confined probe beam and the lensless 
diffraction patterns are recorded at the reciprocal space. It is 
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also possible to swap these two spaces using a lens-based 
setup33, 34. 

The reconstruction process of ptychography iteratively 
imposes two different sets of constraints. First, the diffraction 
measurements serve as the Fourier magnitude constraints in 
the reciprocal space. Second, the confined probe beam limits 
the physical extent of the object for each measurement and 
serves as the support constraint in the real space. For the 
reported platform, we replaced the confined probe beam in 
conventional ptychography with the unconfined transmission 
profile of the blood-cell layer. We further employed a full-field 
illumination scheme to cover the entire sample for high-
throughput optical imaging20, 28. 

A single wavelength is often adequate to obtain the whole 
slide image of unstained samples or samples stained with only 
two complementary colours. Using the recovered intensity and 
phase information, one can virtually stain the image according 
to different staining protocols post-measurement21, 24, 35-39. 
When working with samples with multiple stains, we can turn 
on the red, green, and blue laser sequentially. The recovered 
images can then be combined to form a colour whole slide 
image33. 

Another strategy for colour imaging is to perform 
multiplexed illumination by turning on the red, green, and blue 
laser diodes simultaneously (Fig. 1b). In turn, the captured data 
becomes an incoherent summation of the diffraction patterns 
at three wavelengths. We can then recover the complex object 
profiles at the three wavelengths using a multiplexed 
ptychographic reconstruction strategy40-43. Figure 1f shows the 
illumination module of the device, where the laser light from 
the single-mode fiber is split for both the main and the 
secondary image sensors. At the illumination path of the main 
sensor, we added a prism in-between the beam splitter and the 
specimen in Fig. 1f. Consequently, the incident angles of the 
laser beams are slightly different at different wavelengths. The 
resulting complex profiles of the blood-cell monolayer become 
uncorrelated at different wavelengths, thus breaking the 
ambiguities in mixed-state reconstruction44 and facilitating 
colour-multiplexed ptychographic reconstruction40-43. Figure S4 
shows the procedure of the reconstruction scheme. The 
number of the colour channels reduces to one in Fig. S4 when 
we illuminate the sample with one wavelength.  

A new focus metric for both stained and unstained specimens 

Many commercially-available whole slide scanners generate a 
focus map prior to the scanning process. For each focus point, 

Fig. 2 Imaging performance characterization. (a) The captured raw image using a monolayer of goat blood cells as the coded 
scattering lens. The goat blood cells were smeared on top of the main image sensor and fixed with alcohol. (b) The reconstruction 
of (a). (c) The recovered transmission profile of the monolayer goat blood cells on the main sensor. (d) The captured raw imaging 
using a monolayer of fish blood cells as the coded scattering lens. (e) The reconstruction of (d). (f) The recovered transmission 
profile of the monolayer fish blood cells on the main sensor.  
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the system acquires a z-stack image of the slide by translating 
the objective lens to different z-positions. A specific figure of 
merit for each image is extracted to measure the quality of the 
estimated focus position. Conventional scanners often employ 
the image contrast or gradient of the captured intensity data as 
the focus metric. The logic behind this choice is that the 
captured intensity information should demonstrate the largest 
image contrast when the specimen is placed at the in-focus 
position. This logic, however, is only correct for the stained 
tissue sections. For unstained or weakly-stained sections, we 
show that the intensity contrast is not a proper indicator for the 
in-focus position. As a result, challenges arise when utilizing the 
conventional whole slides scanners to image unstained or 
weakly-stained specimens. To address this issue, we introduced 
a new focus metric based on the quantitative phase-gradient 
contrast of the recovered images. As we will discuss in a later 
section, this new focus metric works for both stained and 
unstained specimens.    

Tracking malaria-infected red blood cells

We also demonstrate the use of the recovered phase to locate 
malaria-infected blood cells over the entire blood smear slide 
(Plasmodium falciparum smear from Carolina Biological Supply). In 
the segmentation process, we set a threshold of 1.2 radians for the 
recovered phase and a threshold of 0.42 radians per pixel for the 
phase gradient. The regions with the phase and phase gradient larger 
than these two thresholds were treated as candidates for malaria 
parasites. These two threshold values were chosen based on an 
analysis of more than 500 parasites from the recovered images. We 
then further examine the size of the candidate to rule out the large 
white blood cells.  

AI-powered cytometric analysis

As we will discuss in a later section, we adopt a deep neural 
network to segment different cells of a slide stained with 
immuno-histochemical biomarkers. The segmented results 
allow us to perform cytometric analysis with an effective image 
acquisition throughput of >13,000 cells per second. 

Results
Imaging performance characterization 

We first validated the imaging performance of the reported 
scanner using a resolution target. In Fig. 2a-2c, we show the 
results of using a monolayer of goat blood cells as the coded 
scattering lens. The cells were smeared directly on top of the 
coverglass of the main sensor. Once smeared, they are firmly 
attached to the surface and the transmission profile remains 
unchanged for a long period. In addition, this monolayer of 
blood cells allows the formation of a dense and thin layer with 
both intensity and phase modulation. Goat blood was chosen 
for our implementation because of its smallest cell size among 
all animals (2-3 µm). As a comparison, we also tested the fish 
blood cells as the coded scattering lens in Figs. 2d-2f. Figures 2a 
and 2d show the captured raw images of the resolution target 
using these two different types of blood samples. Figures 2b and 

2e show the recovered image of the resolution target. The 
recovered blood-cell monolayer profiles are shown in Figs. 2c 
and 2f. We can resolve the 388-nm linewidth using the goat 
blood cells and the 488-nm linewidth using the fish blood cells, 
corresponding to 776-nm and 976-nm full pitch resolution, 
respectively. While it is possible to use other microparticles or 
disorder-engineered surfaces to form the thin scattering lens14, 

15, 19-21, 45, smearing blood cells is easy to operate yet highly 
effective, enabling a DIY option for implementing lensless coded 
ptychographic microscopy. Disorder-engineered surfaces also 
requires sophisticated patterning and etching tools for 
fabrication. 

Post-acquisition autofocusing via a phase-contrast metric 

Once we recover the object exit wavefront from the diffraction 
measurements, we can digitally propagate it back to different axial 
positions for post-acquisition refocusing20. Unlike the conventional 
whole slide scanner, this process is performed computationally 
without involving any mechanical translation. In Fig. S5, we 
refocused the recovered object exit wavefront to 5 different axial 
positions, with the in-focus position set as z = 0. For the 
hematoxylin-eosin (H&E) stained slide in Fig. S5a, the refocused 
intensity and phase images show the highest contrast at the in-
focus position. However, the unstained thyroid smear in Fig. S5b 
exhibits the lowest contrast at the in-focus position. Therefore, 
the intensity contrast is not a good focus indicator for WSI, 
especially for weakly-stained or unstained slides. 

FIG. 3 The intensity and phase gradient of the stained slide (a) 
and unstained slide (b). (c) Adaptive focus map generation post-
measurement. 

In Fig. 3a, we calculated the Brenner gradient46 of the 
refocused intensity and phase images of the H&E stained slide. 
As a comparison, we show the same calculation of the 
unstained thyroid smear in Fig. 3b. We can see that the 
maximum points of the phase gradient correlate well with the 
in-focus positions of both slides. In contrast, the intensity 
gradient reaches a minimum point when the unstained slide is 
placed at the in-focus position. In the following, we adopt the 
Brenner gradient of the recovered phase image as the new 
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focus metric for post-acquisition autofocusing. In our test, the 
axial range of this focus metric is ~80 µm. Beyond this range, the 

focus metric becomes saturated and provides no information 
on the focus position.   

Fig. 5 The refocused whole slide phase image of an unstained thyroid smear. (b1) The zoomed-in view of (a) with many 2π phase 
wraps. (b2) The unwrapped phase of (b1). (c) The recovered height map of the smear. 

Fig. 4 (a) The refocused whole slide image using the Brenner gradient of the recovered phase as the focus metric. (b) The generated 
focus map. (c) The recovered intensity of the object exit waves. The refocus intensity (d) and phase (e) of the exit waves. 
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Figure 3c shows the adaptive focus map generation scheme 
post-measurement. In the first iteration, we identified 4 focus 
points at the edge of the field of view, labelled by the blue dots. 
For each focus point, we refocused a small region (256 × 256 
pixels) of the corresponding object exit waves to different axial 
positions. The searching process started with a coarse z-step 
size of 10 µm with z-range of 500 µm. The best focus position 
was determined by maximizing the phase-contrast metric. We 
then reduced the z-step size to 1 µm and performed a detailed 
search at a range of (-9 µm, +9 µm) with respect to the identified 
coarse focus position. 

At the second iteration, we identified 5 focus points labelled 
by the red dots in Fig. 3c. We then estimated the in-focus 
positions of these red dots via a bilinear interpolation of the 4 
focus points from the first iteration. The axial range was 
reduced to ~250 µm for searching the focus points of these red 
dots. For the entire field of view of the image sensor, we 
typically assign 13 focus points and perform 3 iterations of the 
searching process. The final focus map is generated based on a 
2D interpolation of the identified focus points. 

Figure 4a shows the refocused image of the H&E-stained 
slide based on the interpolated focus map generated in Fig. 4b.  
Figure 4c shows the recovered intensity images of the object 
exit waves at the plane of the blood monolayer. Figures 4d and 
4e show the corresponding refocused intensity and phase 
images of the two regions based on the focus map.   

Quantitative phase imaging of thick unstained slides  

For conventional in-line holography or multiple-height phase 
retrieval, it is challenging to restore the slow-varying phase 
profiles with many 2π wraps15. This drawback can be explained 
by the phase transfer function that characterizes the transfer 
property of the phase contents at different spatial 
frequencies47. For low spatial frequency contents, the phase 
transfer function is close to 0 for regular in-line lensless imaging 
setups47. Therefore, the corresponding phase information 
cannot be effectively converted into intensity variations for 
detection, and the recovered phase is not quantitative. 
Likewise, this same challenge also applies to blind ptychography 
where both the complex probe beam and the object profile 
need to be jointly recovered in the phase retrieval process48-51. 

The reported platform encodes the slow-varying phase 
information into the spatial distortions of the intensity 
diffraction patterns. The operation of the blood-cell monolayer 
can be viewed as a special case of the microlens array on top of 
the Shack-Hartmann sensor52, which converts the slightly tilted 
wavefront into spatial displacements of the focused spots.  To 
demonstrate its application in quantitative phase imaging, we 
acquired a whole slide phase image of the unstained thyroid 
smear in Fig. 5a. We can see that there are many regions 
containing slow-varying phase profiles in the right panel of Fig. 
5a. Figure 5b1 shows a zoomed-in view of the unstained smear, 
where we can recover the phase profile with many 2π wraps. 

Fig. 6 Tracking malaria-infected blood cells over the entire microscope slide. (a) The recovered phase image of the sample. (b) The 
zoomed-in view of the recovered phase. (c) Sample images of malaria-infected blood cells located by the reported device. 
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Figure 5b2 shows the unwrapped phase of Fig. 5b1. In Fig. S6, 
we also compare the recovered intensity and phase of a small 
region of the unstained thyroid smear, where we can clearly see 
the cell cluster from the unwrapped phase but not from the 
intensity image. The unique capability of high-throughput 
quantitative phase imaging using the reported device can find 
applications in label-free rapid on-site evaluations of biopsy 
samples. It can also be used in other label-free biomedical 
applications53. 

Assuming a refraction index of 1.43 for thyroid smear54, we 
can recover the height map of the slide in Fig. 5c. In Fig. S7, we 
further show the difference between the captured raw image 
(Fig. S7a), the recovered phase (Fig. S7b), the unwrapped phase 
(Fig. S7c), and the reference images captured using a regular 
light microscope (Fig. S7d).

Tracking of malaria-infected blood cells  

The reported device can benefit diagnosis in challenging 
environments, where access to physicians and good equipment 
can be limited. To demonstrate this point, we applied the 
prototype device to image a blood smear sample infected with 
Plasmodium falciparum, a particularly harmful type of malaria 
parasite and one of the major causes of death in the developing 
world. Figure 6a shows the recovered phase image of the entire 
blood smear. The inset of Fig. 6a shows the locations of the 
malaria parasites tracked using the reported device. Figure 6b 
shows the zoomed-in view of the recovered phase, with the 
malaria parasites highlighted by the blue arrows. Sample 
images of malaria-infected blood cells are shown in Fig. 6c. In 
Fig. S8, we also show the input phase image and the resultant 
mask for the parasite candidates.      

Multiplexed illumination for lensless colour imaging  

Figure 7 shows the results of multiplexed illumination for colour 
imaging, where we turn on all three laser diodes and acquire the 

coherent state mixture for data reconstruction40-43. This process 
requires the blood-cell monolayer to be calibrated at the three 
wavelengths upfront. In our implementation, we used a human 
blood smear as the object in the calibration process. For each 
wavelength, we acquired 1500 images and jointly recovered both the 
human blood smear and the coded layer of goat blood cells on the 
main sensor. The recovered coded layers at different wavelengths 
were then enforced in the multiplexed reconstruction detailed in Fig. 
S3. Figure 7a shows the recovered whole slide colour image based on 
600 raw measurements captured under the colour-multiplexed 
illumination. Figure 7b shows the recovered phase at the green 
wavelength. The zoomed-in views of the two regions are shown in 
Fig. 7c. The colour images captured using a regular light microscope 
are shown in Fig. 7d as a reference. In Fig. S9, we also show the 
recovered phase and intensity images at the three wavelengths.   

AI-powered cytometric analysis 

Ki-67 biomarker is a proliferation-associated nuclear protein that is 
only detected in dividing cells. The fraction of Ki-67 positive tumour 
cells is often correlated with the clinical course of cancer. In this 
study, we develop a deep neural network to perform cytometric 
analysis of Ki-67 cells using the recovered complex object amplitude. 
Figure 8 shows the training and inference workflow of the network. 
In the training stage, we first recovered the intensity and phase 
images of the immunohistochemical slides labelled with the Ki-67 
biomarkers (at the green wavelength). We then acquired the colour 
image of the same slides using a regular light microscope with a 40× 
/ 0.95 NA objective lens. A feature-based algorithm was 
implemented for image registration between these two sets of 
images55. 

For colour images acquired using the regular light microscope, 
we first performed colour deconvolution56 to separate the colour 
information into a brown channel and a blue channel, corresponding 
to the Ki-67 positive and negative cells, respectively. Based on the 

Fig. 7 Multiplexed illumination for colour imaging. (a) The recovered colour whole slide image. (b) The recovered phase at the 
green wavelength. (c) The zoomed-in views of the recovered colour images. (d) The images captured using a 20× objective. 
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deconvoluted colour channels, we then performed marker-
controlled watershed segmentation57 to extract the cells and obtain 
the segmentation masks as the ground truth labels. 

The employed deep neural network was built based on the 
DeepLabv3+ structure58 with a ResNet-18 backbone59. This neural 
network can encode multi-scale contextual information by probing 
the incoming features at multiple rates and multiple effective fields 
of view. The input for this network contains two channels: the 
recovered intensity and phase images from the ptychographic 
scanner. The network output is a pixel-level probability map of the 
Ki-67 positive cells, negative cells, and the background of the slide. 
We trained the network by minimizing the difference between the 
network output and the microscope-based segmentation labels 
shown in Fig. 8a. Our training dataset includes 1500 aligned image 
pairs with a lateral dimension of 512 × 512 pixels each. We used the 
stochastic gradient descent approach with momentum acceleration 
for minimizing the loss function. The mini-batch size was set to 8 and 
the learning rate was set to 0.01. The optimization process took 200 
epochs before the validation loss became saturated. 

Figure 8b shows the inference workflow, where the trained 
network generates a probability heatmap on the positive cells, 
negative cells, and the background. This heatmap is further 
processed by the watershed algorithm followed by image 
binarization. The final output is a mask with the segmented positive 
cells, negative cells, and the background of the slide. 

Figure 9a shows the recovered whole slide intensity and 
phase images of a slide labelled with the Ki-67 biomarkers. This 
slide has not been used in the training process. Figure 9b shows 
the segmentation results using the deep neural network. The 
zoomed-in views of Fig. 9a2 and 9b are shown in Fig. 9c. With 
more than 200,000 cells identified in Fig. 9b, the effective 
imaging throughput is >13,000 cells per second in this 
demonstration.

In Figs. S10a-S10d, we further show the zoomed-in images 
of the two regions and their corresponding segmentation 
results. In Fig. S10e, we compared the segmentation results 
with the manual counting results using the 40×, 0.95 NA 
objective lens. The average counting difference between the 
deep neural network and the objective lens is ~2.6% in this 
experiment. In Table S1, we analysed the precision, recall, 
accuracy, and F1 score of the cell classification results using the 
network. In Table S2, we quantified the morphological 
parameters with respect to the ground-truth results obtained 
using the 40×, 0.95 NA objective lens.   

In Fig. 9d, we plot the measurement of dry mass and cell 
area for the segmented Ki-67 positive and negative cells. The 
dry mass (nonaqueous content) of the cell is linearly 
proportional to the optical phase shift accumulated through the 
cell. The dry mass density at each pixel can be calculated as 𝜌

, where  is the center wavelength,  is (𝑥,𝑦) = (𝜆/2𝜋𝛾)𝜙(𝑥,𝑦) 𝜆 𝛾
the average refractive increment of protein (0.2 mL/g), and 𝜙(𝑥,

Fig. 8 Development of a deep neural network for automatic cell segmentation and counting based on the recovered intensity 
and phase images. (a) In the training stage, we minimized the difference between the network output and the ground-truth 
segmentation labels obtained from a regular light microscope. (b) The output of the network is a mask with the segmented 
positive cells, negative cells, and background of the slide. 

Page 10 of 13Lab on a Chip



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 2022 J. Name., 2022, 00, 1-3 | 11

Please do not adjust margins

Please do not adjust margins

 is the measured phase60. The total dry mass can then be 𝑦)
obtained by integrating the density over the segmented cell. 
Due to the proliferation of the positive cells, the dry mass and 
cell area are higher than those of negative cells. However, we 
also note that Ki-67 biomarker may introduce additional mass 
to the cells. Therefore, the measured dry mass might not reflect 
the intrinsic cell mass without the markers. The cell mass 
change before and after biomarker labelling is an important 
research topic in the future. 

In Fig. 9e, we plot the histogram analysis of the cell 
eccentricity, cell area, dry mass, and average phase for both the 
positive and negative cells. This demonstration shows the 
metrological versatility of AI-powered quantitative high-
throughput cytometric analysis. The full clinical implications of 
the cell morphology distribution require further investigations. 

Discussion and conclusion
In summary, we have demonstrated the design and 
implementation of a handheld lensless ptychographic whole 
slide scanner for digital pathology applications. In our design, 

we employed a synchronized image sensor pair for data 
acquisition. The main sensor was smeared with a layer of goat 
blood cells for coded ptychographic imaging. We found that the 
goat blood cells give us an excellent imaging performance as the 
cell size is the smallest among different animals. By using this 
goat-blood-cell encoder, we show that the reported scanner 
can resolve the 388-nm linewidth on the resolution target. The 
secondary sensor in our scanner acts as a non-contact image-
based position encoder for tracking the absolute position of the 
stage. Our scanning stage is modified from a low-cost manual 
stage off-the-shelf. We replaced the original manual actuators 
with two stepper motors with integrated lead screws. When 
operated with the image-based position encoder, this simple 
modification offers a portable solution for WSI. Compared with 
the previous ptychographic implementations, we can precisely 
track the absolute position even if the object is an empty glass 
slide. 

Conventional whole slide scanners often rely on maximizing 
the intensity-contrast for autofocusing. For unstained or 
weakly-stained slides, the intensity contrast, however, is not a 
proper indicator for the in-focus position. In this study, we 
introduce a new focus metric based on the quantitative phase 

Fig. 9 AI-powered cytometric analysis using the ptychographic whole slide scanner. (a) The recovered intensity and phase images 
of a slide labelled with the Ki-67 markers. (b) The segmentation results using the deep neural network. (c) Zoomed-in views of the 
highlighted regions in (a2) and (b). (d) The measurement of dry mass and cell area for the Ki-67 positive and negative cells. (e) The 
histogram analysis of the cell eccentricity, cell area, dry mass, and average phase.   
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contrast of the recovered images. We show that this new metric 
works for both stained and unstained specimens. To validate 
the performance of the reported scanner, we image various 
stained and unstained specimens. High-resolution gigapixel 
images with an area of 14 mm × 11 mm can be acquired in ~70 
seconds. The achieved resolution and the image acquisition 
time are similar to those of conventional lens-based whole slide 
scanners. 

One unique feature of the reported device is the recovery of 
quantitative phase information. We show that the recovered 
phase can be used to measure the height map of the unstained 
thyroid smear samples, providing a tool to visualize the cellular 
topographic structure in 3D. To demonstrate the application in 
resource-limited settings, we performed automatic tracking of 
malaria-infected blood cells using the recovered phase. Lastly, 
a deep neural network was developed for high-throughput 
cytometric analysis. This network takes the recovered complex 
amplitude as the input. The network output is a pixel-level 
probability map of different cells. With this network, we 
quantify millions of cells on immune-histochemical-stained 
slides labelled by a proliferation-associated biomarker and 
demonstrate an effective image acquisition speed of >13,000 
cells per second. We also demonstrate the metrological 
versatility of the reported platform for analysing the cell 
eccentricity, cell area, dry mass, and average phase. 

One future research direction is to improve and optimize the 
phase sensitivity of the reported approach. The detection limit 
of a small phase variation is related to the complex profile of the 
encoder on the sensor. How to design an engineered surface to 
maximize phase sensitivity is an important research topic. A 
shorter distance between the object and the encoder may also 
help to improve the phase sensitivity limit.  
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