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The Efficacy of Lewis Affinity Scale Metrics to Rep-
resent Solvent Interactions with Reagent Salts in All-
Inorganic Metal Halide Perovskite Solutions

Oluwaseun Romiluyia, Yannick Eatmonb, Ruihao Nic, Barry P. Randd , Paulette Clancya

Solvents employed in the solution processing of metal halide perovskites are known to play a key
role in defining the morphology and properties of the resulting thin film, and thus the performance
of perovskite solar cell devices. Accurate metrics are needed that are capable of differentiating
among candidates, finding solvents that adequately solubilize the various precursor species in
solution and facilitate the nucleation and growth of these materials. Existing metrics such as the
unsaturated Mayer bond order (UMBO) and the Gutmann donor number (DN) have been tested
for lead iodide perovskite systems; but there has yet to be a comprehensive study on their trans-
ferability to lead-free perovskite solutions. We use ab initio methods (density functional theory)
and regression analysis tools to study the usefulness of DN and BF3 affinity scales in this regard.
We compared the relative effectiveness of these scales to describe interactions between solvents
and BXn perovskite salts of lead (Pb2+), tin (Sn2+ and Sn4+), germanium (Ge2+), bismuth (Bi3+),
and antimony (Sb3+ and Sb5+). The DN proved to be a better representation than the BF3 of such
interactions, reflecting the closer similarity of these species to the “parent” SbCl5 Lewis acid than
to BF3. In addition, we have uncovered the usefulness of the lithium cation affinity metric (LCA) to
describe the strength of interactions between solvents and A-site cations (e.g. Na+, K+, Rb+ and
Cs+) in all-inorganic metal halide perovskite solutions. We find that the coordination strengths of
solvents towards species in all-inorganic metal halide perovskite solutions are best described by
two different metrics with distinct modes of action: DN differentiates among BXn salt complexes,
and LCA among A-site cation species. This revelation can help guide the choice of solvent to
optimize processing conditions. It also emphasizes the importance of selecting solvents whose
DN and LCA optimize coordination to key Lewis acid species in all-inorganic perovskite solutions.

1 Introduction
Metal halide perovskites (hereafter shortened to “perovskites”)
exhibit electronic and optical properties that have resulted in
their consideration for use in photovoltaic (PV) devices,1 2 light-
emitting diodes (LED),3 4 5 and X-ray detection.6 7 8 Beyond its
tunable band gap,9 perovskites also offer the ability to adjust
the perovskite composition and processing protocol.10,11 This has
led to a commercially competitive solar cell efficiency of over
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25%.12 In addition, these materials have the advantage of be-
ing able to be processed in solution at room temperature using
earth-abundant species.13–18

Perovskites consist of a large class of materials that possess
a general chemical formula of ABX3, where A and B represent
different site-specific cations, and X is an anion (most often, a
halide ion in the case of metal halide perovskites).9,19,20 This
presents hundreds of candidate material options by altering the
choice of the B-site cation (typically Pb and/or Sn), the A-site
cation (methyl ammonium (MA), cesium (Cs), formamidinium
(FA)), and three choices of anions/halides (chloride (Cl), bro-
mide (Br), and iodide (I)).9–11 But these materials are not lim-
ited to a single selection of A, B, or X species; mixed combina-
tions of A-site cations (A+), halides, and even B-cations have also
been studied.21–26 In addition, the oxidation state of some B-site
cations can be chosen to introduce different dimensional struc-
tures and classes, maintaining the charge neutrality of the final
material.20,27,28

Journal Name, [year], [vol.],
1–13 |1

Page 1 of 13 Journal of Materials Chemistry A



These hundreds of ABX3 combinations need to be coupled with
all the possible blends of bath solvents and antisolvents that facil-
itate the dissolution and nucleation of the perovskite constituents
in solution.29 As a result, there are simply far too many options
(at least 500,000) to investigate using current experimental meth-
ods. Clearly, an exploration of even a fraction of these options
would benefit from the use of machine learning techniques.30

One such study31 ranked better performing perovskite composi-
tions in pure solvents, which was an encouraging first step to-
wards a thorough exploration of a larger set of compositional and
processing options.

Processing conditions and the composition of the reagent
species exert a strong influence on the properties of the final
film.32 One well-known influence is the choice of solvent13–18

and its action in controlling the rate of homogeneous crystal nu-
cleation and subsequent growth of the thin film via its affinity for
Lewis acids in perovskite solution (A- and B- site cation species).
The interactions between solvents and these perovskite-specific
Lewis acids results in solvent-solute solvation structures and in-
termediate phases that precede the formation of the final per-
ovskite structure.13,17,29,33–37

In concert, there has been a long-standing quest for metrics that
can evaluate solvent efficacy without the need for experimental
(or indeed computational) investigations. The community’s ex-
periential knowledge has uncovered some “good” solvents (e.g.,
DMSO, DMF and GBL).38–40 But whether there are better sol-
vents, or solvent blends, remains unclear, let alone how to iden-
tify them without experimentation.41,42

An experimental Lewis affinity metric like the Gutmann donor
number (DN),43 44 and a computational metric like the Unsatu-
rated Mayer Bond Order (UMBO),40 based on the Mayer bond
order45 and the tendency for Pb2+ to form dative bonds with
the most polar atom in the solvent molecule, have proven use-
ful for uncovering the efficacy of new solvent additives like
dimethyl propylene urea (DMPU) and tetrahydrothiophene-1-
oxide (THTO), respectively.13,46 Both these uncommon solvents
could be introduced as additives to achieve higher quality films
by delaying the nucleation of the perovskite crystal from solu-
tion.13,42,46,47 Earlier posited metrics, such as the Hansen solu-
bility of the solvent, have fallen out of favor.48,49 Electronic prop-
erties of solvents, such as the dipole moment, have been used to
determine which solvents are better suited for coordinating with
perovskite species. But, like the UMBO, such electronic proper-
ties may not always capture the strength of the solvent-salt in-
teractions if the nature of the bonding comes from a different
source.44 For example, “covalent” bonding, as defined in the text-
book by Gal et al., includes bonding between Lewis acids and
bases that are governed by orbital overlaps between the bonding
atoms. This type of orbital-controlled bonding is particularly sig-
nificant between Lewis acids or bases that are considered “soft”.
On the other hand, interactions between a "harder" Lewis acid
and base are generally governed by electrostatic forces and are
considered to be charge-controlled interactions.44,50

The donor number, DN, was thought to be more effective in
capturing both these bonding types (“covalent” -more commonly
considered to be dative bonding- and electrostatic) but, by de-

sign, the DN specifically captures the interaction between solvents
(bases) and the reference Lewis acid, antimony pentachloride
(SbCl5).43,44 As a result, this has generated some skepticism to-
wards use of this metric for the rather different perovskite-specific
species.51 Nonetheless, several studies52–59 have embraced this
metric as a guide of solvent strength following the demonstra-
tion of its ability to trend reliably for a list of popular solvents.13

Probing the efficacy of the DN for perovskite species is worth ex-
ploring further in terms of its extensibility to a much larger ‘pool’
of solvents and also to determine its effectiveness in describing
enthalpic interactions between solvents and perovskite salts40,58

rather than using macroscopic observations like thin film mor-
phology and solar cell efficiency.13 In addition, there exist other
Lewis affinity scales that have not yet been explored for their ap-
propriateness to perovskite building blocks in solution. One of
these is the BF3 affinity scale,43,44 which captures the interac-
tion between a solvent (Lewis base) and boron trifluoride (as the
reference Lewis acid), that could potentially yield a stronger cor-
relation between the solvent and perovskite-specific species.

In this paper, we explore which of the two Lewis affinity met-
rics (the (SbCl5)-based DN or a BF3-based one) is better suited
to describe interactions between solvents and isolated units of
a perovskite’s B-site cation salt (BXn salt complexes), which in-
cludes BX2, BX3, BX4, and BX5 species in solution. Here B rep-
resents the B-site cations of atoms which can exhibit different
oxidation states (Pb(II), Sn(II/IV), Ge(II), Sb(III/V), Bi(III)), and
X represents the halide ions (I−, Br−, Cl−) comprising the salt
complexes. Further, it has been suggested that interactions be-
tween solvents and A-site cations (A+) like Na+, K+, Rb+ and
Cs+ 60–63 might also play a role in the evolution and growth of the
perovskite film.51,64,65 We have also studied the lithium cation
affinity (LCA),44,66–68 which captures the interaction strength be-
tween Li+ and a Lewis base, as a potential substitute for solvent-
A+ interactions in a perovskite solution.

These three affinity scales, the DN, BF3, and LCA, were studied
to determine their transferability across a variety of perovskite
species in solution, identifying which of the three are best suited
to represent Lewis acid-base interactions that impact the quality
of the final all-inorganic perovskite thin film.51,69

2 Computational Estimation of Affinity
Scale Metrics

Our objective was to study the suitability of the three affinity
scales, outlined in the Supplemental Information (SI), to describe
the interactions between solvents and Lewis acids in perovskite
solutions (BXn salt complexes and A-site cations). The first step
involved predicting values for the three affinity scales for solvents
that have been used in perovskite processing yet have no reported
values in the literature, e.g., S-donor solvents, phosphoamide,
methylamine and sulfoxide solvents.46,47,55,58,70

In this study, our first task was to use linear regression with
a least squares optimization approach71,72 to fit our computed
binding enthalpy data to experimental values from numerous
sources.44,66,68,73–75 The enthalpy data were determined from
density functional theory (DFT) calculations at 0 K using the
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ORCA-DFT package.76 But, since experimental measurements for
the DN and BF3 are determined at a different temperature, 298 K,
we assumed a linear fit to compensate for the temperature differ-
ences. Equations S1-6 in the SI outline the procedure to calculate
binding enthalpies for the three affinity scales and their subse-
quent fitting to linear models of the experimental results. Equa-
tion 1 below presents the general form for calculations of the
binding enthalpy (BE) between a Lewis base (LB) and a Lewis
acid (LA) in terms of the energies for the bound acid-base species
minus energies for the acid and the base:

−BELA:LB = E(LA : LB)−E(LB)−E(LA) (1)

For the BF3 and DN scales, each of the constituent molecules
was optimized in an implicit solvent medium using a conductor-
like polarizable continuum model (CPCM),77 which uses the di-
electric constant of a solvent to replicate the solvent environment
in which the DN and BF3 scales are experimentally conducted,
i.e., 1,2-dichloroethane (10.6) and dichloromethane (8.96), re-
spectively.44 The LCA calculations were determined in the gas
phase,44 so there was no need to include an implicit solvent
medium in these simulations.

For each affinity scale, eighteen solvents were used to train
our linear model, while five more were retained for indepen-
dent testing (validation) of the resultant model. The different lin-
ear models are based on results from four DFT functionals: Two
generalized gradient approximation (GGA) functionals, namely
B9778 and PBE,79 and two hybrid functionals (PW6B9580 and
B3LYP81). A triple zeta basis set (def2-TZVP82) was used for all
calculations. This basis set was chosen to minimize any super-
position errors and provide an accurate estimate of these affinity
values.83 The models can also be further divided into functionals
that either include or do not include a dispersion correction.84,85

This correction provides an estimate for the contribution from
longer-ranged van der Waals (vdW) interactions between atoms.
For each of the functionals, we computed binding enthalpy results
with, and without, dispersion correction terms added to the func-
tionals. This study ascertained the importance of including vdW
interactions in the estimation of Lewis affinity values.

The best models for each affinity scale were determined based
on two criteria: 1) the extent of errors associated with the raw-
DFT binding enthalpies and linear model estimations of the exper-
imental Lewis affinity values 2) the coefficient of determination
(R2) of the raw-DFT binding enthalpies and experimental train-
ing data and the R2 value based on a 4-fold cross-validation. The
raw-DFT binding enthalpies uncover the effectiveness of the DFT
functional (to include or omit dispersion) to capture the underly-
ing chemistry of the Lewis acid-base interactions without fitting
to experimental data. The errors reported for these metrics in-
clude consideration of all the data (both training and test sets).
On the other hand, the errors associated with the linear model as-
sess the effectiveness of the model trained on experimental values
at predicting affinity scale values in the test set alone. More infor-
mation on these metrics and their results can be found in Tables
S3-5 and Equations S8-11 in the SI. Once the best DFT-methods
for each affinity scale were determined using these criteria, they

Fig. 1 Work flow showing how linear models describing the affinity met-
rics are constructed to allow predictions of these metrics for nine sol-
vents: 1) DESO 2) NMPT 3) DMTF 4) THTO 5) PA 6) Urea 7) Thiourea
8) DMDT and 9) Methylamine. See Table 1 for the full names of the sol-
vents. The lefthand column provides the workflow of the procedure. The
righthand column provides more details on these steps. BE refers to the
binding enthalpy between the solvent and the relevant Lewis acid.

were used to predict affinity scale values for as yet unreported
solvent values (see Table 1 below for solvent sets). We predicted
affinity scale values for solvents in the thiourea, thioamide, phos-
phoamide, and sulfoxide solvent groups as well as methylamine.
Our procedure is depicted in Figure 1.

2.1 Results of Lewis Affinity Training and Validation against
Experimental Data

This section discusses our results from the aforementioned proce-
dure outlined in Figure 1. From this approach, we were able to
identify the best methods (functionals and dispersion corrections)
to estimate values for the DN, BF3, and LCA. Figures S7 and S8, in
the SI, show the errors associated with the raw DFT binding en-
thalpy (all data) and linear model (test set) used for the DN. Table
S3 shows that the DFT methods with the lowest error between
the raw DFT binding enthalpy data (i.e., no linear fitting was
performed) and experimental values were those that included a
dispersion correction. Figure 2 maps the raw DFT binding en-
thalpies of each DFT-method to their corresponding linear model
estimations of the DN. The “best” methods should arise from data
lying closest to the line (shown in green) at which the binding
enthalpy estimated using DFT is the same as the experimental
value. A comparison of Figure 2a to Figure 2b highlights the ef-
fect of including a dispersion term in the DFT method; methods
that include dispersion terms lie significantly closer to the line of
equality, by about 3 kcal/mol.

Considering the test error results based on linear model estima-
tion from Figure S8 and Table S3 in the SI , the lowest mean ab-

Journal Name, [year], [vol.],
1–13 |3

Page 3 of 13 Journal of Materials Chemistry A



solute error (MAE) and root mean squared error (RMSE) results
were observed from a model that used a B97 (GGA) functional
and one that used PW6B95 (hybrid) functional (both including a
dispersion correction). We elected to base the prediction of the
new solvents on the PW6B95 functional with a dispersion cor-
rection because it also produced the lowest raw DFT binding en-
thalpy error and the highest R2 value from the training data and
from 4-fold cross-validation (see Table S3).

In our estimation of BF3 affinity values, binding enthalpy calcu-
lations reveal that dispersion corrections do not significantly im-
prove the estimation of the BF3 value compared to the improve-
ments seen from the DN estimation (see Figures S7 and S9 in the
SI). Of the four DFT methods we tested, the methods based on
a PW6B95 (hybrid) functional with/without dispersion provided
more accurate estimations of this property. This result can also
be observed when comparing Figures S5a and S5b, where there
is no significant difference between data based on methods with
or without a dispersion correction. Considering the errors for the
test set (see Table S4), the best DFT method to represent the BF3

affinity scale was the hybrid functional PW6B95 with a dispersion
correction. Predictions for new solvents will be based on the lin-
ear model of this method as it also had comparably high R2 values
for the training data and cross-validation (see Table S4).

Similar to the BF3 scale, binding enthalpy (BE) calculations re-
veal that dispersion corrections do not improve the estimation of
the LCA, as seen in Figures S6a and S6b. This observation can
also be garnered from Figures S11-12 and Table S5 in the SI.
Considering the errors and R2 of each method, the linear model
based on the B97 functional with a dispersion correction was best
suited to predict the LCA values for the solvents listed in Table 1.

2.2 Affinity Scale Predictions

Now that we have selected the best DFT methods to use for each
of the three affinity scales, we used their corresponding linear
models to predict affinity metrics for the nine unexplored solvents
listed in Table 1 below (rounded up to the nearest unit). We
estimated the error of DN predictions to be 1.7 kcal/mol, while
the error associated with the BF3 and LCA predictions were 0.6
and 0.7 kcal/mol, respectively; these estimates are based on the
mean absolute error (MAE) of the selected linear model i.e. the
model based on the best DFT method for that affinity scale (see
Tables S3-5 in the SI).

We now turn our attention to comparing affinity scale val-
ues for oxygen-donor (O-donor) solvents (DMF, NMP, DMPU,
and Urea) to their (sulfur) S-donor counterparts (DMTF, NMPT,
DMDT, and Thiourea). The latter can be visualized by replac-
ing the electron-donating oxygen atom with sulfur, e.g., C=O
becomes C=S. Hamil et al. explored differences in interaction
strength between these groups in a solution containing hybrid
organic-inorganic perovskite precursors.58 Our results in Table 2
revealed that S-donor solvents have a stronger interaction with
SbCl5, indicative of the DN scale, than their O-donor counter-
parts. In contrast, for the BF3 and LCA affinity scales, this trend is
reversed. This observation is supported by trends in existing BF3

data44 and a LCA study.86 To date, no experiments have looked

into these trends for the DN scale. Our results reveal a key dif-
ference that would make certain affinity scales better suited than
others to represent particular perovskite species.

Table 1 Computational predictions of Lewis Affinity metrics (rounded to
the nearest kcal/mol) for nine solvents. The DN and BF3 predictions were
determined by linear models based on a PW6B95 functional with disper-
sion correction. The LCA predictions were determined by a linear model
based on a B97 functional with dispersion correction.

Solvents DN BF3 LCA
Diethyl sulfoxide (DESO) 34 27 55
N-Methyl-pyrrolidone-2-thione (NMPT) 32 16 48
Dimethylthioformamide (DMTF) 33 16 45
Tetrahydrothiophene-1-oxide (THTO) 32 26 55
Phosphoramide (PA) 34 29 58
Urea 28 27 55
Thiourea 32 16 45
1,3-Dimethyl-1,3-diazinane-2-thione (DMDT) 38 16 52
Methylamine 38 35 42

Table 2 Comparison of predictions of the DN, BF3, and LCA metrics for
S-donor and O-donor solvent counterparts. S-donor solvent values and
all LCA values were determined via linear model predictions. All values
are rounded to the nearest kcal/mol.

Solvents Donor Type DN BF3 LCA
NMP O-donor 27 26 56
NMPT S-donor 32 16 48
DMF O-donor 27 25 53
DMTF S-donor 33 16 45
UREA O-donor 28 27 55
THIOUREA S-donor 32 16 45
DMPU O-donor 33 26 60
DMDT S-donor 38 16 52

3 Application of Lewis Affinity Scales to
Perovskite Species in Solution

3.1 Estimating Binding Enthalpies of Solvents towards Per-
ovskite Lewis Acids

In section 2.2 we predicted values for the DN, BF3, and LCA for
different solvents; in this section, we extend this study to iden-
tify which Lewis acid-base affinity scales best describe species in
a metal halide perovskite solution. Specifically, we explored the
correlation of values obtained using the three affinity scales with
our computationally determined binding enthalpies of solvents
to a number of representative A-site cations and BXn salt com-
plexes in perovskite solutions.87 The species of interest differ in
size and oxidation state of the central ion, as well as the number
and type of halide atoms bound to this central ion. We use the
term “perovskite acid” to refer to the Lewis acids present in per-
ovskite solutions i.e. A-site cations and BXn salt complexes (see
Figure 3 below). We also use the term “solvent” to refer to all the
Lewis bases explored, which includes bath solvents, antisolvents
and solvent additives.

4 | 1–13
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Fig. 2 Comparison of binding enthalpies estimated using DFT to predicted values of the DN for four DFT models, listed in the inset, which either
included (a) or excluded (b) a dispersion correction. Color code as in the inset. Experimental values are shown as a green line which represents the
line of equality (y = x) i.e. an ideal DFT method that yields DN values identical to the experimental data.

Fig. 3 Schematic of the perovskite acids explored: a) BX2 salt complexes
e.g. PbX2, SnX2 and GeX2 b) BX3 salt complexes e.g. BiX3 and SbX3 c)
BX4 salt complexes e.g. SnX4 d) BX5 salt complexes e.g. SbX5 (where
X = Cl−, Br−, and I−) and e) A-site cations e.g. Na+, K+, Rb+ and Cs+.
Color code as in inset.

Our motivation here is that if a correlation can be found be-
tween the solvent-perovskite acid interactions in solution and the
existing affinity scales (DN, BF3, and LCA), it would allow users of
such models to leverage much larger databases as a route to select
more effective and greener solvent alternatives.88 In addition, we
have calculated binding enthalpies of halides (Cl−, Br−, and I−)
towards BXn salt complexes. These data will provide insight into
the coordination preferences of mixed halide systems, such as
APbI3˘xClx 23,24 and the competition between solvent molecules
and halides that leads to the formation of halo-cation complexes
like iodoplumbates in perovskite solutions.32,39,57,89–94

We were interested in solvents previously used in experimental
studies of perovskite systems to evaluate whether either the DN
or BF3 scale can be extended to represent the binding of solvents
to BXn salt complexes, and whether the LCA can be used to de-
scribe interactions of A-site cation species in solution. Solvents
from thirteen different functional groups were studied for their
interaction with seven BXn salt complexes incorporating three dif-
ferent halides and four choices of A-site cations. In all, our study
covered 600 different combinations of species.

We calculated solvent interactions with the aforementioned
perovskite acids as manifested through their binding enthalpy
at 0 K using Equation 1, where the Lewis base (LB) represents
the solvents explored and the Lewis acid (LA) represents the per-
ovskite acids (BXn salt complexes and A-site cations). Equation

S7 also describes how the binding enthalpy of these interactions
were quantified, with the term “adduct” indicating the complexes
formed between solvents and the perovskite acids explored in this
study. Each component of the binding enthalpy was determined
in DFT using a PW6B9580 hybrid functional with a dispersion cor-
rection84,85 and a B9795 GGA functional with a dispersion correc-
tion for the solvent-BXn and solvent-A+ interactions, respectively.
These DFT methods were chosen because the former resulted in
the best estimation for the DN/BF3, while latter provided the best
estimation for the LCA (see Tables S3, S4, and S5). As in sec-
tion 2, an accurate triple zeta basis set, def2-TZVP,82 was used to
avoid superposition issues.83

In addition, each component is optimized in an implicit sol-
vent medium of the coordinating solvent using the CPCM77 rep-
resented by its dielectric constant (see Table S18 in the SI), with
the exception of simulations involved in the A-site cation and sol-
vent interactions (which was optimized in the gas-phase). This
was done in order to mimic the solution environment in which
the solvent and salts interact, while keeping the cost of the sim-
ulation to a reasonable level.96 Regarding systems where the co-
ordinating Lewis base is a halide ion, dielectric constants of 10.0,
25.0, 40.0, and 70.0 were explored to study these interactions in
different solvent media. Calculated binding enthalpy values for
the perovskite acids can be found in the SI.

Our results for “BXn” salts (where n = 2, 3, 4, and 5) indi-
cated that the DN correlates better than the BF3 affinity scale in
relation to solvent interactions with “BXn” salt complexes. Specifi-
cally, the R2 values of these solvent-perovskite acid interaction for
the DN metric ranged from 0.91-0.99, while that for BF3 ranged
from 0.31 to 0.64, a weak correlation. The LCA metric correlated
strongly with interactions between solvents and A-site cations,
with R2 results ranging from 0.94-0.98. Our correlation results
can be found in Tables S31 and S32. Based on these findings, we
generated linear models that relate the DN to solvent-BXn inter-
actions, and that relate the LCA to solvent-A+ interactions; these
models were determined by fitting the enthalpies of eighteen sol-
vents (see Table S18) to the DN and LCA, respectively. Table 3
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describes these linear models.
The intrinsic value of these models is that they allow readers

to use known DN or LCA values as inputs to the linear equa-
tions in Table 3 (described by their slope and intercept values)
and hence predict the interaction strength of posited solvents to
the listed perovskite acids without having to perform any compu-
tational simulations. Figure 5 describes how enthalpies can be
determined from DN/LCA values. The accuracy of these models
is represented by the mean absolute error (MAE) of their estima-
tions for six solvents not included in the fitting process against
DFT-derived values. The MAE ranged from 0.5 to 1.3 kcal/mol
for the 25 perovskite acids studied (see Tables 3 and 4 below as
well as Tables S34-41 in the SI).

We have also provided halide (Cl−, Br−, I−) coordination
strengths towards each BXn salt complex to compare with the
derived solvent-perovskite acid affinity values. The halide-BXn

coordination results offer a guide for research groups studying
systems that involve the competition between halide ions and sol-
vents for coordination to perovskite acids. The values reported in
Table 3 are for single halide-BXn binding enthalpies in a dielectric
medium of 40.0; results for other media are provided in the SI. We
observed an inverse relationship between the dielectric constant
of the solvent medium and the coordination strength of halides
to BXn salt complexes, which decays at higher dielectric values.
The profiles shown in the SI mimic the electrostatic potential’s
dependence on a medium’s dielectric constant, i.e., a lower dielec-
tric constant increases the magnitude of the Coulombic attraction
between oppositely charged ions.97 This increase in affinity of
halide for BXn salt complexes in a lower dieletric medium is also
supported by a recent study by Sorenson et al. which showed
that reducing the dielectric of the solution medium via the in-
troduction of antisolvents increases the formation of halo-cation
complexes.98

In addition, explicit solvent interactions with the halides, which
can be measured by the acceptor number (AN),99,100 is likely
to impact the apparent solvent-BXn interaction strength in solu-
tion,101 an effect that cannot be ignored for high AN solvents like
water and alcohols.57,102 For this reason, we explored solvents
with AN values less than 20 (or solvents without strong hydrogen-
bond donor groups) with the exceptions of formamide and methy-
lamine, the former having an AN of 39.8 and the latter having two
hydrogen-bond donors (see Tables S18 and S33 in the SI). Also,
when exploring the formation of higher-order halo-cation species,
such as PbI2

4− and PbI3
5− iodoplumbates, we need to consider the

enthalpically preferred configurations of the additional halides
and solvents molecules bound to the Lewis acid.39 Nonetheless,
Figure 6 provides DN thresholds for solvents that would yield a
greater binding strength to the BXn salt complexes than halides
(Cl−, Br− and I−) in a dielectric medium of 10 (typical of an-
tisolvents) and 40 (typical of bath solvents and additives) at 0
K. The results from this figure show how halide binding strength
is impacted by the dielectric of the medium and the Lewis acid
to which it binds. For example, lower dielectric media resulted
in a greater halide binding strength and BX3 salt complexes had a
greater enthalpic preference for halides over the solvents reported
in Figure 6 relative to the other salt groups we explored (BX2, BX4

and BX5). Further, we observed a consistent electronegative trend
(Cl− > Br− > I−) in strength.101 Figure 4 ranks different solvent
functional groups by their DN and LCA values, the identified prox-
ies for the solvent-BXn and solvent-A+ interactions, respectively.
This figure indicates the functional groups that contribute to a
strong interaction between solvents and the perovskite acids ex-
plored. Details on the BXn salt complexes and A-site cations are
presented in Supplementary Information sections S6-10.

3.2 Experimental Cs- and Rb- NMR studies of S- and O-
donor solvents

The computational results above showed that there is a strong
correlation between the Gutmann DN and BXn salt complexes.
But the strongest correlation for A-site cations arose using the LCA
metric. This brought us back to our original observation when
comparing these two metrics in section 2 of this paper, namely
the apparent conflict of S-donor and O-donor solvent binding
strengths: S-donor solvents have a stronger interaction with the
BXn salt complexes and have a higher predicted DN than their
O-donor counterparts. But this trend is reversed when comparing
the strength of these solvent groups to A-site cations, showing the
best correlation to the LCA metric.

To test the coordination preference of O-donor and S-donor
solvents towards Cs+, we first tested the solubility of CsI and RbI
(cesium and rubidium iodide) in two pairs of processing solvent
blends (NMP/NMPT and DMF/DMTF) where the difference be-
tween each pair is the identity of the donor atom. Table 5 shows
that both CsI and RbI are highly soluble in O-donor solvents com-
pared to S-donor solvents where they both have negligible solu-
bility. This observation suggests that there is a difference in effec-
tiveness between S-donor and O-donor solvents towards Cs+ and
Rb+, though there are other factors influencing the solubility that
cannot be overlooked.64,103–106

More definitive evidence for this hypothesis was provided by
Cesium NMR. To test this hypothesis, we conducted 133Cs NMR
on solutions of CsI in mixtures of O-donor and S-donor solvents.
Figure 7a shows the change in 133Cs chemical shift as a function
of increasing O-donor volume fraction in the NMP and NMPT sol-
vent pair. We observe a small change in the chemical shift of Cs+

when transitioning from a pure NMP solution to ones with in-
creasing NMPT content. Conversely, we observe a larger change
in the chemical shift of Cs+ when transitioning from a solution of
high NMPT content to one with less NMPT and more NMP. This
observation suggests that Cs+ is more stable in an O-donor-rich
solvent environment. Thus, we observe that the effect of adding
an O-donor solvent into a S-donor-rich solution is much stronger
than adding a S-donor solvent into an O-donor-rich solution. This
effect is also observed in mixtures of DMF and DMTF (Figure 7b).
133Cs NMR spectra are shown in Figure S27 and Figure S28. Un-
surprisingly, we observed the same coordination preference of O-
donor S-donor solvents towards Rb+. Figure 7c shows the change
in the 87Rb chemical shift as a function of increasing O-donor vol-
ume fraction in DMF/DMTF NMP/NMPT solvent pairs. Similar
to the case with Cs+, the difference in chemical shift increases as
the solution changes from O-donor rich to S-donor rich, suggest-
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Fig. 4 Ranking of solvents by classes of functional groups as given by their DN and LCA scales. The DN is a proxy for the interactions of solvents
towards BXn salt complexes, and the LCA for A+ perovskite species, respectively. Classes of functional groups that are shown in green contribute
to a higher DN or LCA values than those shown in red. They can be used to select solvents that would maximize BXn salt complex or A-site cation
coordination strength. Of the solvents we tested, gaps exist between 21-24 kcal/mol for the DN kcal/mol which formed the basis of the classification
into red and green groups. For the LCA, formamide and propylene carbonate (PC) belonged to different functional groups (amide and carbonate,
respectively) yet yielded similar LCA values (≈ 49 kcal/mol). However, formamide yielded the lowest LCA value amongst the amides, while PC yielded
the highest amongst the carbonates, which resulted in amides being classified into green, while the carbonates were classified amongst the reds.

Fig. 5 Work flow showing how linear models (b0 + b1DN/LCA) describing the affinity metrics are used to estimate the binding enthalpies of S, N, and
O-donor solvents towards BXn and A+ ions using DN and LCA values as inputs. Color code as given below the schematic. See Table 3 for the accuracy
determined for each model.

ing that Rb+ is more stable in a O-donor rich solvent environment
compared to a S-donor rich environment. 87Rb NMR spectra are
shown in Figures S29 and S30. These observations supports the
LCA predictions of O-donor vs. S-donor and its correlation with
solvent-A+ interactions, i.e., O-donor solvents have a greater pref-
erence to stay bound to the A-site cations than S-donor solvents.
The opposite trend for the DN has been supported in a recent
publication by Hamil et al.58 that used extended X-ray absorp-
tion fine structure (EXAFS) measurements to determine that S-
donor solvents preferentially coordinate to Pb2+ based complexes
than their O-donor counterparts. In addition, earlier studies on

S-donor solvent preferences for PbX2 salts over O-donor solvents
also support this trend.107

4 Discussion

We have compared DFT-generated binding enthalpies of solvents
to perovskite reagent salts and cations to those defined by three
established affinity scales, the Gutmann DN, BF3 and LCA. We
observed that the DN (but not the BF3 scale) correlates strongly
with solvent-salt binding affinities for the perovskite reagents we
studied. Similarly, the LCA scale correlated well with solvent-A+

interactions (but the DN did not). Table 3 provides simple linear
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Fig. 6 Threshold DN values for halides bound to BXn salt complexes in a dielectric medium of 10 (upper curves) and 40 (lower curves). The DN values
for each halide are indicative of the minimum DN of a solvent required to yield a binding enthalpy higher than the pertinent halides (Cl−, Br− and I−)
at 0 K and in different dielectric media. These values were determined by inputting the halide enthalpies for each BXn salt complex reported in Table 3
to the inverse of the linear model for that system i.e. DN = (BEHalide - b0)/b1; the error bars are associated with the MAE of each model i.e. MAE/b1.
We also included horizontal lines to represent the DN values of five solvents HMPA (DN = 38.8), DMPU (DN = 33.0), DMSO (DN = 29.8), DMF (DN =
26.7) and GBL (DN = 18.0) to compare with the halide values for each BXn salt complex. Results show that the dielectric of the medium impacts the
DN threshold values for each halide, which increases in lower dielectric media. See Figure S24 in the SI for results in dielectric media of 25 and 70.

(a) 133Cs NMP:NMPT (b) 133Cs DMF:DMTF (c) 87Rb NMR

Fig. 7 133Cs NMR chemical shifts as a function of the ratio of O-donor solvent to S-donor solvent in solution showing (a) results for various mixtures of
NMP and NMPT and (b) results for mixtures of DMF and DMTF. c) 87Rb NMR chemical shifts as a function of the ratio of O-donor solvent to S-donor
solvent in solution for mixtures of NMP:NMPT and DMF:DMTF.
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Table 3 Perovskite Adduct Proxy Equations. Assuming a linear equation relating DN and LCA metrics to solvent-Lewis acid interactions in a perovskite
solution, we provide slope and intercept values that will allow the calculation of solvent-’perovskite acid’ affinities from DN and LCA values; the mean
absolute error (MAE) in kcal/mol for each linear model is also provided. Binding strength values of halides I−, Br− and Cl− (in kcal/mol) towards these
’perovskite acids’ are also provided and can be compared to the solvent coordination values for predicting the likelihood of halo-cation formation.

Perovskite Acid Proxy Slope Y-intercept MAE I− Br− Cl−

PbI2

DN

0.53 + 3.6 0.7 19.8 21.3 24.5
PbBr2 0.47 + 4.8 0.7 19.3 21.1 24.4
PbCl2 0.48 + 4.3 0.5 18.3 20.2 23.6
SnI2 0.56 + 3.8 0.9 19.5 21.5 25.5
SnBr2 0.56 + 3.7 0.9 18.7 21.0 25.2
SnCl2 0.54 + 3.6 0.7 17.5 20.0 24.2
GeI2 0.73 + 2.7 0.8 21.5 23.8 28.4
GeBr2 0.68 + 3.6 0.6 20.4 23.1 27.8
GeCl2 0.65 + 3.5 1.0 18.5 21.3 26.1
BiI3

DN

0.39 + 0.8 0.8 13.5 14.6 17.5
BiBr3 0.40 + 1.6 0.8 13.8 15.3 18.6
BiCl3 0.39 + 1.8 0.9 12.8 14.6 18.0
SbI3 0.39 - 1.2 0.7 10.2 11.4 14.7
SbBr3 0.41 - 0.8 0.9 10.2 11.8 15.6
SbCl3 0.38 - 0.1 1.1 9.1 10.9 14.7
SnI4

DN
0.55 - 5.6 0.8 6.7 8.1 12.6

SnBr4 0.64 - 3.8 1.1 11.7 14.3 18.9
SnCl4 0.66 - 2.0 1.0 14.2 17.1 22.2
SbI5

DN
0.86 - 4.9 1.3 20.0 21.1 25.7

SbBr5 0.94 - 1.7 1.3 25.7 27.1 31.9
SbCl5 0.95 + 1.9 0.5 29.0 30.7 35.8
Na+

LCA

0.74 - 0.2 0.6

NR
K+ 0.65 - 4.8 0.6
Rb+ 0.59 - 5.1 0.8
Cs+ 0.55 - 5.3 0.8
a NR - Not reported

Table 4 Test cases of our linear models against DFT calculated binding enthalpies of solvents with unique functional groups (thioamide, sulfoxide,
amide, nitrile, carbonate and ether) towards PbI2 and Cs+ at 0 K resulting in an MAE of 0.7 and 0.8 kcal/mol, respectively. A full collection of test cases
for the other BXn salt complexes and A-site cations can be found in Tables S34-41 in the SI.

Solvent DN/LCA (kcal/mol) DFT (kcal/mol) Model (kcal/mol) |DFT-Model| (kcal/mol)
PbI2: 0.53DN + 3.6
N-Methyl-pyrrolidone-2-thione (NMPT) 32.4 21.3 20.8 0.5
Diethyl sulfoxide (DESO) 33.5 20.1 21.4 1.3
Formamide 24.0 16.0 16.3 0.3
Propionitrile 16.1 11.0 12.1 1.1
Ethylene carbonate (EC) 15.0 11.3 11.6 0.3
Diethyl ether (DE) 19.0 14.4 13.6 0.8

MAE error = 0.7 kcal/mol
Cs+: 0.55LCA - 5.3
N-Methyl-pyrrolidone-2-thione (NMPT) 47.8 21.7 21.0 0.7
Diethyl sulfoxide (DESO) 55.3 25.7 25.1 0.6
Formamide 51.7 21.6 21.4 0.2
Propionitrile 45.4 20.2 19.7 0.5
Ethylene carbonate (EC) 47.9 22.1 21.0 1.1
Diethyl ether (DE) 43.2 16.8 18.5 1.7

MAE error = 0.8 kcal/mol

equations which use the DN and LCA as inputs to predict binding
enthalpies between solvents and halide perovskite species.

Results for the efficacy of the BF3 scale for perovskite reagents
were disappointing. We posit that the main reason behind the
disparity between the effectiveness of the DN and BF3 in describ-
ing solvent-BXn interactions pertains to their inconsistent predic-

tions for the binding affinity of S-donor solvents compared to
O-donor counterparts. For instance, excluding S-donor solvents
(DMTF and Thiourea) from our fitting resulted in a substantial
increase in the R2 value of the BF3 scale towards solvent-BXn en-
thalpies (see Table S32). These results can be attributed to the
“hardness” or “softness” of the species involved, as described by
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Table 5 Solubility limits of CsI and RbI in O-donor perovskite processing
solvents (NMP and DMF) and their S-donor counterparts (NMPT and
DMTF), reported in mM, showing a clear difference in the effectiveness
of both solvent groups in dissolving A-cation salts.

Solvents Solubility in CsI (mM) Solubility in RbI (mM)
DMF 510 1670

DMTF <20 <10
NMP 100 1430

NMPT <10 <10

hard and soft acid and base theory (HSAB).108–110 For example,
Lewis acids like SbCl5 and other group 14 and 15 based acids
are considered “softer” acids due to their lower charge-to-volume
ratios,50,111 whereas BF3 and group 1 metal ions are consid-
ered “harder” acids. Moreover, S-donor solvents are considered
“softer” bases, whereas O-donor solvents are considered “harder”
bases.50,108,110,111 The hardness and softness of the associated
perovskite acids and solvents were determined in DFT112–114 via
their HOMO and LUMO levels (see Tables S42 and S43). The
hardness of the BF3 molecule was determined to be 5.8 eV, while
that of SbCl5 was 2.4 eV (the hardness of BXn salt complexes
ranged from 1.8 to 3.4 eV), in agreement with our theorized rank-
ing. The underlying theory of HSAB suggests that harder acids
form stronger complexes with harder bases, while softer acids
prefer to bind to softer bases.50,108 This confirms that even if
both the DN and BF3 describe the affinity between Lewis acids
and bases accurately, the reference Lewis acid of the affinity scale
has an influence in the trends between the affinity of the acid to
solvent types (S-donor, O-donor, and N-donor solvents).44

As a result, we can attribute the strong correlation between
the DN and perovskite salts to the extent of molecular similar-
ity (hardness and softness) between SbCl5 (the foundation of the
DN) and salt complexes based on ions of Ge(II), Sn(II), Pb(II),
Bi(III), Sb(III), Sn(IV), and Sb(V) - see Table S43. In the same
vein, the LCA (Li+-based) metric shares the same group as other
“hard” alkali metals in this study115 and we calculated a hard-
ness range of 7.6 to 29.6 eV for these ions. We believe this to be
responsible for the strong correlation between the LCA scale and
the binding enthalpies of solvents to A-site cations.

To enhance the coordination strength between solvents and all
the perovskite acids (BXn salt complexes and A-site cations) in
an all-inorganic perovskite solution, we find that no single scale -
whether the DN or the LCA - will adequately predict the effective-
ness of a candidate solvent for this objective. Instead, a solvent
that maximizes both the DN and LCA is required.

We have shown that the LCA values of S-donor solvents are
lower than their O-donor counterparts, whereas the DN shows
the reverse trend. These results create implications for optimal
processing choices for all-inorganic perovskite thin films. For ex-
ample, if a perovskite processing protocol was to swap out an
O-donor solvent (DMF, say) for an analogous S-donor solvent
(DMTF, say), there would be an increased coordination strength
between the solvent and BXn salt complexes like PbX2;58,107 but
its coordination towards A-site cation species like Cs+ would be
likely to weaken. As a result, in an inorganic solution, one could

rely on the presence of a solvent blend of an S-donor and an O-
donor to leverage the preferences of both solvents towards certain
perovskite acids: The S-donor solvent for the BXn salt complexes,
and the O-donor solvent for the A-site cations.

Positing a different strategy, we have identified solvents like
DMPU, THTO, and HMPA (with urea, sulfoxide, and phospho-
amide functional groups, respectively) that have both a high DN
and LCA value, covering preferences for A-site cations and BXn

salt complexes. However, not all solvents with high DNs, like
pyridine and methylamine (33.5 and 37.5 kcal/mol), have com-
parably high LCA values (45.5 and 41.8 kcal/mol). The lack of a
clear correlation between the LCA and the DN warrants the need
to consider both scales when selecting solvents for all-inorganic
perovskite processing.

5 Conclusions
We predicted values of three affinity metrics (the DN, BF3 and
LCA) for nine bases using density functional theory and simple
linear regression tools. Our studies of the effect of changing the
DFT functional revealed that the inclusion of long-ranged vdW
interactions, captured via dispersion corrections, are more impor-
tant in describing interactions associated with the DN than for the
BF3 and LCA scales. S-donor solvents generally have a higher DN
than their O-donor counterparts, but this trend is reversed for the
BF3 and LCA affinity scales.

Extending these metrics to perovskite complexes, we find that
the DN is better suited than the BF3 scale at describing the in-
teractions between solvents and BXn salt complexes due to their
difference in affinities for S-donor solvents. Conversely, we found
that the LCA metric is the best metric to use to describe interac-
tions between solvents and group 1 A-site cations (Na+, K+, Rb+

and Cs+) in all-inorganic metal halide perovskite solutions. The
affinity of S-donor solvents towards the DN and BXn salt com-
plexes and their O-donor counterparts towards LCA and A-site
cations were supported by previously published EXAFS results58

and Cs-NMR/Rb-NMR results from this study, respectively.
We have provided linear models that relate the DN to solvent-

BXn interactions in an implicit solvent medium and the LCA to
solvent-A+ interactions in the gas phase with a reported error of
≈ 1 kcal/mol for the 25 perovskite acid models developed. This
bypasses the need for density functional theory calculations to
determine the direct affinity of processing solvents (bath solvent,
antisolvent, and additives) towards Lewis acids in all-inorganic
metal halide perovskite solutions (BXn salt complexes and A+

ions).
We determined the affinities of halide ions towards BXn salt

complexes in different dielectric media to compare with the bind-
ing enthalpies of solvents garnered from our linear models. Our
results showed that a decrease in dielectric constant increases the
binding strength between halides and the associated perovskite
acids in line with Coulomb’s law; we also observed an electroneg-
ative trend (Cl− > Br− > I−) of halide binding strength towards
these species. In addition, it may be necessary to consider the
strength of solvent-halide interactions, particularly for high AN
solvents, as it influences the effective coordination preferences
of halides to Lewis acids. The community may benefit from fu-
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ture studies of these interactions. Nonetheless, these results could
guide the selection of solvents that could bind more strongly to
BXn salt complexes than halides to potentially limit the forma-
tion of halo-cation complexes and delay the onset of nucleation
in solution via solvent-halide competition.

Overall, when choosing an effective solvent for binding in an
all-inorganic metal halide perovskite solution, our results suggest
that a single metric or scale cannot represent all the interactions
present in a perovskite solution. The preference of solvents to-
wards perovskite specific Lewis acids is influenced by the chemi-
cal nature of the acid with which it is interacting.
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C. Wang, W. Feng, A. B. Djurišić, H. Zhu, Y. Zhang, T. Russell
and F. Liu, Advanced Materials, 2020, 32, 2002784.

64 A. Kirakosyan, Y. Kim, M. R. Sihn, M.-G. Jeon, J.-R. Jeong
and J. Choi, ChemNanoMat, 2020, 6, 1863–1869.

65 B. Sun, W. Wang, H. Lu, L. Chao, H. Gu, L. Tao, J. Hu, B. Li,
X. Zong, W. Shi, X. Ran, H. Zhang, Y. Xia, P. Li and Y. Chen,
The Journal of Physical Chemistry C, 2021, 125, 6555–6563.

66 S. Bourcier, R. X. Chia, R. N. B. Bimbong and G. Bouchoux,
European Journal of Mass Spectrometry, 2015, 21, 149–159.

67 W. Y. Feng, S. Gronert and C. Lebrilla, The Journal of Physical
Chemistry A, 2003, 107, 405–410.

68 J.-F. Gal, C. Mayeux, L. Massi, M. Major, L. Charles and
T. Haljasorg, Journal of Chemical Education, 2012, 89, 1476–
1478.

69 J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C.
Chueh, H.-L. Yip, Z. Zhu and A. K. Y. Jen, Nature Commu-
nications, 2020, 11, 177.

70 J.-A. Yang, T. Qin, L. Xie, K. Liao, T. Li and F. Hao, J. Mater.
Chem. C, 2019, 7, 10724–10742.

71 C. Kramer, C. S. Tautermann, D. J. Livingstone, D. W. Salt,
D. C. Whitley, B. Beck and T. Clark, Journal of Chemical In-
formation and Modeling, 2009, 49, 28–34.

72 W. DeCoursey, Statistics and Probability for Engineering Ap-
plications, Elsevier, San Diego, CA, 2003.

73 Y. Valadbeigi, Computational and Theoretical Chemistry,
2016, 1091, 169 – 175.

74 M. Rodgers and P. Armentrout, International Journal of Mass
Spectrometry, 2007, 267, 167 – 182.

75 F. Cataldo, European Chemical Bulletin, 2015, 2015, 92–97.
76 F. Neese, WIREs Computational Molecular Science, 2018, 8,

12 | 1–13
Journal Name, [year], [vol.],

Page 12 of 13Journal of Materials Chemistry A



e1327.
77 Y. Takano and K. N. Houk, Journal of Chemical Theory and

Computation, 2005, 1, 70–77.
78 N. Mardirossian and M. Head-Gordon, Molecular Physics,

2017, 115, 2315–2372.
79 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,

1996, 77, 3865–3868.
80 Y. Zhao and D. G. Truhlar, The Journal of Physical Chemistry

A, 2005, 109, 5656–5667.
81 R. H. Hertwig and W. Koch, Chemical Physics Letters, 1997,

268, 345 – 351.
82 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
83 P. Salvador, B. Paizs, M. Duran and S. Suhai, Journal of Com-

putational Chemistry, 2001, 22, 765–786.
84 S. Grimme, Journal of Computational Chemistry, 2004, 25,

1463–1473.
85 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The Journal

of Chemical Physics, 2010, 132, 154104.
86 L. M. d. Costa, L. A.-l. W. C. Paes and J. A. W. d. M. Carneiro,

Journal of the Brazilian Chemical Society, 2012, 23, 648 –
655.

87 W. A. Dunlap-Shohl, Y. Zhou, N. P. Padture and D. B. Mitzi,
Chem. Rev., 2019, 119, 3193.

88 Y. Cui, S. Wang, L. Ding and F. Hao, Adv. Energy Sustainabil-
ity Res., 2, 2000047.

89 A. Sharenko, C. Mackeen, L. Jewell, F. Bridges and M. F.
Toney, Chemistry of Materials, 2017, 29, 1315–1320.

90 G. S. Shin, S.-G. Kim, Y. Zhang and N.-G. Park, Small Meth-
ods, 2020, 4, 1900398.

91 K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang and
J. Xu, Journal of the American Chemical Society, 2015, 137,
4460–4468.

92 L.-M. Wu, X.-T. Wu and L. Chen, Coord. Chem. Rev., 2009,
253, 2787.

93 J. Kim, B.-w. Park, J. Baek, J. S. Yun, H.-W. Kwon, J. Seidel,
H. Min, S. Coelho, S. Lim, S. Huang, K. Gaus, M. A. Green,
T. J. Shin, A. W. Y. Ho-baillie, M. G. Kim and S. I. Seok,
Journal of the American Chemical Society, 2020, 142, 6251–
6260.

94 Z. Li, A. Johnston, M. Wei, M. I. Saidaminov, J. Martins de
Pina, X. Zheng, J. Liu, Y. Liu, O. M. Bakr and E. H. Sargent,
Joule, 4, 631–643.

95 S. Grimme, Journal of Computational Chemistry, 2006, 27,
1787–1799.

96 B. A. Sorenson, S. S. Hong, H. C. Herbol and P. Clancy, Com-
putational Materials Science, 2019, 170, 109138.

97 J. Smiatek, Theoretical and Computational Insight into Sol-
vent and Specific Ion Effects for Polyelectrolytes: The Impor-
tance of Local Molecular Interactions, 2020.

98 B. A. Sorenson, L. U. Yoon, E. Holmgren, J. J. Choi and
P. Clancy, J. Mater. Chem. A, 2021, 9, 3668–3676.

99 U. Mayer, V. Gutmann and W. Gerger, Chemical Monthly,
106, 1235–1257.

100 M. Schmeisser, P. Illner, R. Puchta, A. Zahl and R. van Eldik,
Chem. Eur. J., 18, 10969–10982.

101 W. Linert, R. F. Jameson and A. Taha, J. Chem. Soc., Dalton
Trans., 1993, 3181–3186.

102 W. R. Fawcett, J. Phys. Chem., 1993, 97, 9540–9546.
103 B. G. Kim, W. Jang, J. S. Cho and D. H. Wang, Solar Energy

Materials and Solar Cells, 2019, 192, 24–35.
104 M. Jung, S.-G. Ji, G. Kim and S. I. Seok, Chem. Soc. Rev.,

2019, 48, 2011–2038.
105 X. Cao, G. Zhang, L. Jiang, Y. Cai, Y. Gao, W. Yang, X. He,

Q. Zeng, G. Xing, Y. Jia and J. Wei, ACS Appl. Mater. Inter-
faces, 2020, 12, 5925–5931.

106 B. Zhou, D. Ding, Y. Wang, S. Fang, Z. Liu, J. Tang, H. Li,
H. Zhong, B. Tian and Y. Shi, Adv. Optical Mater., 2021, 9,
2001435.

107 I. Wharf, T. Gramstad, R. Makhija and M. Onyszchuk, Can.
J. Chem., 1976, 54, 3430–3438.

108 T.-L. Ho, Chemical Reviews, 1975, 75, 1–20.
109 R. D. Hancock and A. E. Martell, Journal of Chemical Educa-

tion, 1996, 73, 654.
110 R. G. Parr and R. G. Pearson, Journal of the American Chemi-

cal Society, 1983, 105, 7512–7516.
111 R. G. Pearson, Inorganic Chemistry, 1988, 27, 734–740.
112 A. Avramopoulos, D. Catone and M. V. Putz, The Scientific

World Journal, 2013, 2013, 348415.
113 R. Shankar, K. Senthilkumar and P. Kolandaivel, Interna-

tional Journal of Quantum Chemistry, 2009, 109, 764–771.
114 R. G. Pearson, Journal of Chemical Sciences, 2005, 117, 369–

377.
115 H. Xu, D. C. Xu and Y. Wang, ACS Omega, 2017, 2, 7185–

7193.

Journal Name, [year], [vol.],
1–13 |13

Page 13 of 13 Journal of Materials Chemistry A


