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Active learning of polarizable nanoparticle phase diagrams for the
guided design of triggerable self-assembling superlattices†

Siva Dasetty,a Igor Coropceanu,b Joshua Portner,b Jiyuan Li,a Juan J. de Pablo,a Dmitri
Talapin,a,b,c and Andrew L. Ferguson∗,a

Polarizable nanoparticles are of interest in materials science because of their rich and complex phase
behavior that can be used to engineer nanostructured materials with long-range crystalline order. To
understand and rationally navigate the design space of polarizable nanoparticles for self-assembling
highly ordered superlattices, we developed a coarse-grained computational model to describe the
nanoparticle-nanoparticle interactions in implicit solvent and employ the computationally efficient
image method to model many-body polarization interactions. We conducted high-throughput virtual
screening over a five-dimensional particle design space spanned by temperature, particle size, par-
ticle charge, particle dielectric, and solvent dielectric using enhanced sampling molecular dynamics
calculations within an active learning framework to efficiently map out the regions of thermody-
namic stability of the self-assembled aggregates. We validate our predictions in comparisons against
small angle x-ray scattering measurements of gold nanoparticles surface functionalized with metal
chalcogenide ligands. Finally, we use our validated phase maps to computationally design switchable
nanostructured materials capable of triggered assembly and disassembly as a function of temperature
and solvent dielectric with potential applications as sensors, smart windows, optoelectronic devices,
and in medical diagnostics.

Design, System, Application
Switchable materials that can change their properties in response to external stimuli are a desirable part of a “smart” materials toolbox. In
this work, we combined coarse-grained models of polarizable nanoparticles explicitly accounting for many-body polarization interactions,
enhanced sampling molecular dynamics calculations, and active learning to efficiently predict the phase behavior of self-assembling polar-
izable nanoparticles. We screen a five-dimensional particle design space spanned by temperature, particle size, particle charge, particle
dielectric, and solvent dielectric to discern regions where assembly is thermodynamically favorable and unfavorable. We use this phase
map to identify regions of design space where temperature and/or solvent dielectric can be used to drive the system back and forth over
the phase boundary to achieve switchable assembly and disassembly of self-assembled nanostructured materials. Switchable materials that
can change their appearance and properties as a function of external stimuli have diverse potential applications such as sensors, smart
windows, optoelectronic devices, and in medical diagnostics. The design strategy is extensible to other self-assembling systems where
accurate but efficient treatment of the many-body polarization interactions is critical to accurate prediction of phase behaviors.

1 Introduction
Self-assembly refers to the process of spontaneous organization of
building blocks – typically molecules, nanoparticles, or colloids –
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for the bottom-up fabrication of materials with engineered prop-
erties that cannot easily be produced by top-down processing.1–10

The structural and functional properties of a self-assembled ma-
terial are directly linked to the individual building blocks, their
supramolecular spatial arrangement, and their coupled interac-
tions.2,11 Building blocks including polymers, biomolecules, and
nanoparticles (NPs) have been engineered to realize materials
and devices with applications including light-emitting devices,
self-healing materials, and sensors.3,12–14 In many cases, the
building block design process has been substantially accelerated
and guided by computational studies that exposed design prin-
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ciples by which to control the governing forces (e.g., hydrogen
bonding, van der Waals forces, electrostatic interactions) between
the building blocks and the environmental conditions (e.g., pH,
temperature, salt concentration) in order to achieve a target as-
sembled structure.1,4,15,16

Inorganic and polarizable NPs exhibit complex and rich phase
behavior and have been used as building blocks for the self-
assembly of materials with several promising applications such
as solar cells, components in electronic circuitry, and imaging
tools.17–22 The colloidal stability of these NPs can be extremely
high because of the strong electrostatic repulsions resulting from
the surface charges. That the sample of gold NPs studied by
Michael Faraday in 1850s remains stable to this day is a remark-
able exemplar of the high colloidal stability of metallic NPs.23

However, the situation can be changed dramatically by making
even subtle changes to the environment in which the NPs are dis-
tributed. For example, the addition of a salt can lead to effectively
instantaneous coalescence of the particles, typically into various
classes of amorphous aggregates. As such, polarizable NPs can
also serve as useful model systems in which to develop under-
standing and control of the many-body forces governing assembly
and phase behavior.

A fascinating feature of inorganic and polarizable NPs that has
important practical implications for assembly is the observation of
anomalously high surface charge density for high dielectric con-
stant particles stabilized by multivalent ionic ligands. This behav-
ior is consistent with theoretical predictions that placing a high
dielectric constant nanoparticle in a multivalent ionic medium re-
sults in significant polarization effects that shift the distribution of
the cations or anions towards the surface of the sphere, thereby
increasing the surface charge.24 As a result of this additional sur-
face charging, the interparticle potential remains repulsive up to
very small separations before van der Waals forces become domi-
nant and mediate short-ranged attraction. These large variations
in the potential energy landscape switching from repulsive to at-
tractive over nanometer length scales can have a dramatic im-
pact on the assembly of the particles when the solution is desta-
bilized. Unlike typical metal sols that generally form open disor-
dered aggregates upon aggregation, in the case of metal particles
coated with metal chalcogenide complex (MCC) ligands it is pos-
sible to form structures with long-range crystalline order.25 The
structural details of the self-assembled aggregates depend sen-
sitively on a delicate interplay between the dispersion and the
strength of the electrostatic interactions governed by the design
parameters such as temperature, size, charge, polarizability, and
the dielectric strength of the solvent. A mechanistic and predic-
tive understanding of the role of the physicochemical features and
properties of the NP building blocks and solvent upon the emer-
gent self-assembled aggregates is a pre-requisite to the rational
design and engineering of self-assembled NP aggregates with de-
sired structure and function.

The primary objective of this work is to establish quantitative
predictive models of the phase behavior of ligand functionalized
NPs in order to rationally navigate the design space and engineer
the triggerable assembly/disassembly of highly ordered superlat-
tices by engineering the properties and conditions of the NPs and

solvent. We employ high-throughput virtual screening (HTVS) us-
ing implicit-solvent coarse-grained computational models to pre-
dict the attractive and repulsive regimes within a five-dimensional
particle design space spanned by temperature, particle size, parti-
cle charge, particle dielectric, and solvent dielectric, and use these
data to construct self-assembly phase diagrams. Importantly, our
coarse-grained model explicitly treats the many-body polarization
interactions between NPs that is vital in accurate prediction of
the interparticle interactions, but does so using a computation-
ally efficient implementation of the image method26,27 that en-
ables our high-throughput screen. Additionally, we minimize the
number of required calculations using an active learning protocol
that builds an on-the-fly model of the phase diagram and simulta-
neously guides the next round of calculations towards those state
points predicted to be most informative in accurately resolving
the phase boundaries28. We validate our computational phase
diagrams and predicted self-assembled structures against exper-
imental observations and scattering measurements for gold NPs
surface functionalized with MCC K4Sn2S6 ligands. Finally, we
use our validated phase maps to design switchable materials com-
posed of polarizable NPs that are capable of triggered assembly
and disassembly by modulating temperature or solvent. Exam-
ple applications of such triggerable materials encompass diverse
fields such as sensors29,30, smart windows31, optoelectronic de-
vices3 and in drug delivery32. The design strategy presented in
this work is extensible to other self-assembling systems of inor-
ganic building blocks where accurate but efficient treatment of
the many-body polarization interactions are critical to accurate
prediction of particle interactions and phase behaviors.

2 Methods

2.1 Computational methods

2.1.1 Coarse-grained model of nanoparticles

Our building blocks comprise homogeneous metallic NPs func-
tionalized with K4Sn2S6 ligands within a particular solvent.18 To
model the system, we represent the nanoparticle functionalized
with the ligand as a spherical and polarizable particle with a total
diameter σNP = (∆ + σ) – where σ is the length of the ligand
and ∆ is the diameter of the nanoparticle – a mass mNP, a dis-
persion strength εNP, a charge q, and a dielectric constant εin.
Solvent is modeled implicitly via its dielectric constant εout . The
van der Waals interactions are described by the 12-6 Lennard-
Jones potential33. The electrostatic interactions between a pair of
identical spherical polarizable particles comprises a contribution
from the bare Coulomb potential and that from induced surface
charges. It can be shown that the total energy can be expressed
as an infinite series E = E2 +E3(g)ε +E4(g)ε2 + . . ., where En is
a n-body interaction term, g = (1+ εin

εout
)−1 and ε = εout−εin

εout+εin
26,27.

E2 is the familiar Coulomb interaction and is the only relevant
term in the absence of any polarization effects where εin=εout and
ε=0. The higher-order terms represent polarization contributions
that depend on successively higher numbers of interacting parti-
cles and which decay geometrically in ε. The geometric combina-
torics are such that the higher order terms become exponentially
more expensive to compute. In the present work, we consider
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only the leading order polarization contribution (i.e., the 3-body
term) in order to make our calculations efficient and amenable to
high-throughput virtual screening. This approximation becomes
increasingly good as |εin/εout | → 1: for |εin/εout | > 0.8 the 4-body
term is approximately an order of magnitude smaller than the 3-
body27. Furthermore, the polarization energy decreases by an or-
der of (σNP/2R)3ε with each additional polarization of a surface,
where R is the distance between the particles. This implies that
higher order terms decay rapidly at small R and with increasing
particle size.26 We implement calculation of the 3-body term, de-
scribed in more detail below, using the image method26 as a fix
command within LAMMPS named colloid/image34. This cus-
tom fix has been made freely available as part of the software
development efforts of the Midwest Integrated Center for Com-
putational Materials (MICCoM) center at https://github.com/
sivadasetty/image_method_MICCoM. Mathematically, the total
energy due to NP interactions is given by,26,27

UNP−NP =ULJ +Uelec, (1)

where,

ULJ =
1
2 ∑

i, j
4εNP

[(
σ

Ri j−∆

)12
−
(

σ

Ri j−∆

)6]
, (2)

Uelec =UCoul +Upol−3, (3)

UCoul =
1
2 ∑

i, j

1
4πεoutRi j

qiq j, (4)

Upol−3 = ∑
i,k, j

1
8πεout

qiq jEi,k, j, (5)

and,

Ei,k, j = ε
tk√

RikRk j

( 1
Ci,k, j

−gt−2g
k

∫ t2
k

0

f g−1

Di,k, j
d f
)
, (6)

ε =
εout − εin

εout + εin
, g =

εout

εout + εin
, tk =

σNP

2
√

RikRk j
, (7)

Ci,k, j =
√

1+ t4
k −2t2

k R̂ik.R̂k j, (8)

Di,k, j =
√

1+ f 2−2 f R̂ik.R̂k j. (9)

Ri j = |Ri j| is the scalar distance between i and j, Rik and Rk j are
the vectors pointing from scattering particle k to particle i and
particle j to particle k, respectively, and R̂ik and R̂k j are the cor-
responding unit vectors. ULJ refers to the portion of the total en-
ergy attributable to dispersion interactions. Uelec =UCoul +Upol−3

represents the total electrostatic energy decomposed into the
Coulombic and 3-body polarization contributions.26,27,35

For numerical convenience, we conduct our simulations in re-
duced units. The NP-NP interactions described in Eq. 1-9 recast
into reduced units are provided in Eq. 10-18. Since all parti-
cles are identical, we also make the additional specialization and
simplification that qi=q j=q. We distinguish variables in reduced
units from their real unit counterparts by an asterisk,

U∗NP−NP =U∗LJ +U∗elec, (10)

where,

U∗LJ =
1
2 ∑

i, j
4

[( 1
R∗i j−∆∗

)12
−
( 1

R∗i j−∆∗

)6
]
, (11)

U∗elec =U∗Coul +U∗pol−3, (12)

U∗Coul =
1
2 ∑

i, j

q∗q∗

εoutR∗i j
, (13)

U∗pol−3 = ∑
i,k, j

1
2εout

q∗q∗E ∗i,k, j, (14)

and,

E ∗i,k, j = ε
t∗k√

R∗ikR∗k j

( 1
C ∗i,k, j

−gt∗−2g
k

∫ t∗2k

0

f ∗g−1

D∗i,k, j
d f ∗
)
, (15)

ε =
εout − εin

εout + εin
, g =

εout

εout + εin
, t∗k =

σ∗NP

2
√

R∗ikR∗k j

, (16)

C ∗i,k, j =
√

1+ t∗4k −2t∗2k R̂∗ik.R̂
∗
k j, (17)

D∗i,k, j =
√

1+ f ∗2−2 f ∗R̂∗ik.R̂
∗
k j. (18)

The mapping between real and reduced units is made by adopting
a characteristic length scale of σ , a characteristic energy scale of
εNP, and a characteristic mass of mNP,

U∗LJ =
ULJ

εNP
, U∗elec =

Uelec

εNP
,

R∗ =
R
σ
, σ
∗
NP =

σNP

σ
, ∆
∗ =

∆

σ
, q∗ =

q√
4πε0σεNP

,

T ∗ =
kBT
εNP

, τ
∗ = τ

√
εNP

mNPσ2 , M∗ =
M

mNP
, (19)

where ε0 is the vacuum permittivity, kB is Boltzmann’s constant,
T is temperature, τ is time, and M is mass.

We define our five-dimensional nanoparticle design variables
within the reduced unit mapping as temperature T ∗, nanoparti-
cle diameter σ∗NP, nanoparticle charge q∗, and dielectric constant
of the nanoparticle εin and solvent εout . We note that in reduced
units, the relationship σNP = (∆ + σ) becomes σ∗NP = (∆∗ +

1), so the reduced core nanoparticle diameter ∆∗ is defined by
the total diameter of the particle and the length of the ligand.
Furthermore, we observe that εin and εout are already dimension-
less quantities so are identical quantities in both the real and re-
duced unit sets. This defines the five-dimensional design space
T ∗-σ∗NP-q∗-εin-εout within which we seek to quantify, predict, and
ultimately engineer NP phase behavior.

2.1.2 Langevin dynamics simulations

Numerical simulations of NP behavior under the reduced in-
teraction potential detailed in Eq. 10-18 were performed us-
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ing Langevin dynamics implemented in LAMMPS – 3 March
202034,36 patched with the colloid/image fix26. Equations of
motion were integrated using velocity Verlet integrator37 with a
time step of 0.005τ∗ and a Langevin thermostat with a damping
time constant of 0.5τ∗. Simulations were conducted in an infinite
simulation cell38 with real-space cutoffs for dispersion and elec-
trostatic interactions of (2.5+∆∗) and 4.25σ∗NP, respectively. To
control the concentration of nanoparticles and prevent the par-
ticles from drifting apart indefinitely, a spherical harmonic po-
tential with force constant of K∗ = 10 was used to restrain the
particles when they approached within a distance (2.5+σ∗NP/2)
of a fictitious spherical wall placed at a distance 2.125σ∗NP from
the origin of the simulation box. Dispersion and Coulombic in-
teractions were respectively computed using the lj/expand and
coul/cut LAMMPS pair types. The three-body polarization en-
ergy was computed using image method implemented as a cus-
tom LAMMPS colloid/image fix26. Execution times scale ap-
proximately cubically with system size27, such that simulations
of a particle pair execute at ∼1×108τ∗/day and those of 10 parti-
cles at ∼5×105τ∗/day on 20 × Intel R© Xeon R© Gold 6248 2.5GHz
CPU cores using 20 OpenMP threads and 1 MPI task. Simulation
snapshots were saved for analysis every 200 time steps, corre-
sponding to a period of 1.0τ∗. Visualization of particle trajectories
were conducted using OVITO39 and VMD40. Numerical analyses
of the trajectories were performed in Python using MDTraj41.

2.1.3 Enhanced sampling of particle dimerization free ener-
gies

To determine the favorable regimes of NP aggregation within
the five-dimensional T ∗-σ∗NP-q∗-εin-εout design space, we seek to
identify the four-dimensional boundaries that separate regions
where association of the particle pair is thermodynamically spon-
taneous from those where it is thermodynamically disfavored.
We colloquially refer to this map defining the regimes of favor-
able and unfavorable interaction of the dimer as the 2-particle
“phase diagram”. Although our image method implementation
of the 3-body polarization term is numerically efficient, the curse
of dimensionality is such that simulations of multi-particle sys-
tems are too slow to support the thousands of calculations neces-
sary to densely sample and accurately resolve the phase bound-
aries within the five-dimensional design space. For example, a
very coarse grid of seven points per dimension would require
75=16,807 simulations, which, for simulations of N=100 parti-
cles, would entail a computational burden of more than 10,000
CPU-years. Accordingly, we adopt a two-step protocol wherein we
first accurately determine the four-dimensional planes demarcat-
ing the boundaries for thermodynamically spontaneous formation
of a dimer, and then use these results to guide us in performing
a small number of expensive multi-particle simulations. Put sim-
ply, we take thermodynamically favorable pairwise interactions
to be a prerequisite and reasonable proxy for spontaneous multi-
particle self-assembly. As we will show, the 2-particle phase dia-
gram does prove to be a good approximation for the many-body
phase behavior as demonstrated through corroborating many-
particle simulations and experimental measurements. Further-
more, accurate and comprehensive resolution of the 2-particle

phase diagram is also very useful in exposing the interplay of
the five design variables and understanding how these dictate the
thermodynamically favorable and unfavorable regimes for spon-
taneous dimer formation.

We determine the spontaneity of dimer formation at a particu-
lar T ∗-σ∗NP-q∗-εin-εout point in the design space by estimating the
2-particle potential of mean force (PMF) along the distance R be-
tween the NPs and quantifying the change in Helmholtz free en-
ergy ∆A∗ upon bringing the particles into contact. We efficiently
estimate the PMF using the umbrella sampling42 approach im-
plemented in SSAGES43 44 using LAMMPS34 as the simulation
engine. A variety of enhanced sampling techniques could be
employed to estimate the PMF, including free energy perturba-
tion (FEP)45, metadynamics46, temperature accelerated molecu-
lar dynamics (TAMD)47, and adaptive biasing force (ABF)48. In
this work we choose to employ umbrella sampling for its simplic-
ity and embarrassing parallelism that is well-suited to our parallel
compute resources and our active learning framework to be de-
scribed below. We achieved converged PMF profiles by sampling
80 umbrella windows over the range R∗ = σ∗NP−(σ∗NP+100) ap-
plying harmonic spring constants in the range K∗ = 0.5–100 and
running up to 1×109 simulation time steps. In all cases we en-
sured that we reached the effectively non-interacting regime at
sufficiently large R∗ that defines the arbitrary zero of free en-
ergy, and deposited additional umbrella windows as necessary to
achieve good overlaps between neighboring umbrella histograms.
The unbiased PMF was estimated from the biased umbrella
sampling data using the weighted histogram analysis method
(WHAM)49 implemented by Grossfield50 and applying the en-
tropic correction51–53. Uncertainties in the PMF profiles were es-
timated using block averaging employing blocks of 1×108 simula-
tion time steps54. We extracted ∆A∗=(A∗∞−A∗contact) from the con-
verged PMF as the free energy difference between the A∗∞-large R∗

plateau corresponding to the non-interacting state and the free
energy A∗contact in the contact state defined as R∗≤(∆∗+2.5). The
free energy A∗contact =− ln

∫ (∆∗+2.5)
0 e−A∗dR∗ was determined by in-

tegrating the probability distribution over the contact region us-
ing Simpson’s rule implemented in scipy55. Similarly, the free
energy A∗∞ was determined by integrating the probability distri-
bution over the non-interacting plateau at a sufficiently large R∗∞
that the free energy profile is flat by considering the same volume
as that in contact region, A∗∞ = − ln

∫ (R∗∞+∆∗+2.5)
R∗∞

e−A∗dR∗.

2.1.4 Active learning of the 2-particle phase diagram

To minimize the number of calculations required to accurately
estimate the 2-particle phase diagram, we employed the active
learning framework proposed by Dai and Glotzer28 that we il-
lustrate schematically in Fig. 1. This approach employs an it-
erative framework comprising three components: (i) enhanced
sampling calculations to estimate ∆A∗ at a number of state points
x = {T ∗, σ∗NP, q∗, εin, εout}, (ii) construction of a Gaussian pro-
cess regression (GPR) surrogate model over all simulation data
collected to date to predict ∆A∗ over the full design space, and
(iii) interrogation of the GPR model using Bayesian optimization
(BO) to identify the most informative state points x to sample in
the next round of simulations to accurately define the ∆A∗ = 0
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phase boundary.
We train the GPR surrogate model ˆ∆A∗ = f (x) to predict ∆A∗

as a function of location x within the five-dimensional design
space56. The GPR is fully specified by the choice of covariance
function, for which we choose the twice differentiable Matérn-
5/2 kernel28. The Matérn-5/2 length scale parameter l is treated
as hyperparameter that is optimized during training by maximiz-
ing the log marginal likelihood.28,56. We train GPR models using
scikit-learn57 and GPytorch58. The trained model effectively ex-
trapolates and interpolates from the ∆A∗ values computed from
our enhanced sampling simulations to predict the locus of points
x s.t. ∆A∗ = 0 defining the phase boundary. Importantly, the surro-
gate model associates both a prediction of ˆ∆A∗ and an associated
uncertainty var( ˆ∆A∗) to each point x in the design space.

The GPR surrogate model is passed to a BO protocol employ-

ing the acquisition function α(x) =
√

var( ˆ∆A∗)
| ˆ∆A∗|+e

proposed by Dai and

Glotzer28, where e = 0.05 is a small positive constant added for
numerical stability. The BO calculates α(x) for each point in the
design space to provide a measure of the relative desirability of
sampling each point x in the next round of simulations. This ac-
quisition function is custom designed to highly rank points that
have small | ˆ∆A∗| and are therefore expected to lie close to the
phase boundary and large uncertainty var( ˆ∆A∗) and are therefore
benefit from sampling to reduce the uncertainty of the location
of the phase boundary. The most desirable next point to sample
x′ is defined as x′ = argmax

x
α(x), which we compute using opti-

mization routines in scipy55. We employ Kriging believers59 to
perform batched sampling of the N = 20 top ranked points for
the next batch of enhanced sampling calculations.

We initialize the iterative loop by performing simulations at
480 randomly selected state points x = {T ∗, σ∗NP, q∗, εin, εout}
within the design space and limit exploration over the range
{T ∗ = 0.05− 4, σ∗NP = 10− 80, q∗ = −150− 0, εin = 0.8− 800000,
εout = 80− 8000} that was designed to span the range of phys-
ically realizable systems. We then proceeded to perform 115
rounds of GPR model building, BO selection, and enhanced sam-
pling Langevin dynamics simulation each comprising 20 new
state points for a total of 2780 simulations requiring approxi-
mately 148,500 CPU-h and 18 GPU-h of compute time. We termi-
nated the process once the ∆A∗ = 0 isotherms had been resolved
to an accuracy of T ∗±0.09 for different values of σ∗NP, q∗, εin and
εout in the design space domain.

A Jupyter notebook containing the process used to perform ac-
tive learning sampling of the 2-particle phase diagram using um-
brella sampling and WHAM is available at https://github.com/
sivadasetty/activeLearningPB2NP.

2.1.5 Multi-particle simulated annealing simulations and
structural characterization

We conducted simulated annealing multi-particle simulations to
either draw comparisons with experimental measurements or,
guided by the 2-particle phase diagrams, conduct simulations in
regions of design space where we expected to be able to trigger
assembly and disassembly by manipulating temperature and/or
solvent dielectric constant. We performed Langevin dynamics

simulations of 10 NPs initially randomly distributed on the surface
of a sphere of diameter 4.25σ∗NP. We then applied a simulated an-
nealing protocol60 to predict the stable self-assembled structure
of the system at T ∗ = 0.05. We first applied 50,000 steps of con-
jugate gradient energy minimization to eliminate any large forces
in the system, followed by Langevin dynamics simulations within
the following annealing protocol: (i) a 4,000,000 linear cooling
ramp from T ∗ = 1.0 to 0.05, (ii) a 500,000 step hold at T ∗ = 0.05,
(iii) a 4,000,000 linear heating ramp from T ∗ = 0.05 to 1.0, (iv) a
second 4,000,000 linear cooling ramp from T ∗ = 1.0 to 0.05, (iv)
a 500,000 step hold at T ∗ = 0.05, and (v) a final 200,000 step
hold at T ∗ = 0.01. When comparing multi-particle assembly with
experimental observations at 300 K, the temperature in the last
step (v) was replaced with a temperature T ∗ = kB×300 K

εNP
using the

estimated εNP for each experimentally studied gold NP reported
in Table 1. We performed three independent annealing calcula-
tions commencing from different random initializations for each
state point x.

We performed structural characterizations for the terminal self-
assembled aggregates produced at the end of the annealing proto-
col using in-house Python scripts to estimate computational struc-
ture factor S(ρ) profiles for the purposes of comparison with ex-
perimental measurements. (To avoid confusion with our symbol
for charge, we denote the scattering vector by ρ.) These were
computed by taking a Fourier transform of the radial distribu-
tion function61,62 and applying volume corrections according to
Gereben and Petkov.63

2.2 Experimental methods

2.2.1 Synthesis

A series of 4-6 nm Au NPs were prepared according to a modi-
fied literature procedure.64 Briefly, HAuCl4 ·3H2O (500 mg, 1.25
mmol) was dissolved in a solution of 50 mL oleylamine and 20
mL hexane. The solids were dissolved by stirring under a flow of
N2 for one hour at room temperature. Varying concentrations of
a tert-butylamine-borane complex solution (0.10-0.35 M) in 5 mL
oleylamine and 2 mL hexane were injected after full dissolution
by sonication and filtration through a 0.22 µm PTFE filter. The
NPs were isolated by precipitation with ethanol and redispersing
in hexane. Larger Au NPs up to 12 nm in diameter were grown
from smaller 4-5 nm seeds using previously described methods.64

2.2.2 Ligand exchange

Native oleylamine capped Au NPs were transferred into N-
methylformamide (NMF) and hydrazine via a two-phase ligand
exchange. For NPs smaller than 7 nm, the native oleylamine lig-
ands were first replaced with dodecanethiol ligands by vortexing
NPs in a 10% dodecanethiol solution in hexane for one minute.
The NPs were washed three times with ethanol and redispersed
in hexane. NPs larger than 7 nm were directly phase transferred
into polar solvents with oleylamine ligands. In a nitrogen filled
glovebox, ∼100 mg of NPs in 6 mL of hexane were stirred with
4 mL of 25 mM K4Sn2S6 ligand solution until complete phase
transfer into either NMF or hydrazine. Nanocrystals were washed
three times by precipitation with acetonitrile and stored as ∼100
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Fig. 1 Illustration of the enhanced sampling active learning framework used to efficiently map the 2-particle phase diagram within the five-dimensional
design space. (a) Enhanced sampling Langevin dynamics simulations are used to estimate the Helmholtz free energy ∆A∗ for 2-particle dimerization
at a particular state point, here x = {T ∗ = 0.05, 0.25, 4, σ∗NP = 40, q∗ = -10, εin = 0.08, εout = 80} within the five-dimensional design space. (b)
A Gaussian process regression (GPR) model is used to construct a surrogate model for ∆A∗ (shaded areas) over the full design space by training over
calculated ∆A∗ values (filled circles). Here we show a two-dimensional εin-εout slice through the five-dimensional design space at T ∗ = 0.05, σ∗NP = 40,
q∗ = -75. (c) We interrogate the GPR model using Bayesian optimization (BO) to identify the most informative state points to sample next state
point in our numerical simulations to accurately resolve the phase boundary at ∆A∗ = 0. Here we show the same two-dimensional εin-εout projection
as in panel (b), but now colored according to the Bayesian optimization acquisition function α∗x . State points x with a high value of the acquisition
function are more likely to be selected for the next round of simulations.

mg/mL stock solutions in the glovebox.

2.2.3 Self-assembly and structural characterization

Au NPs in hydrazine were assembled by flocculation with excess
0.5 M K4Sn2S6 ligand solution in hydrazine. Above a critical lig-
and concentration (∼50-100 mM), the colloid fully precipitated
to form a solid powder. In NMF solutions, the ligand concentra-
tion was first increased to 100-250 mM with a 0.2 M K4Sn2S6
ligand solution in NMF, then a small amount of acetonitrile was
added to fully flocculate the solution. Solid powders were iso-
lated by centrifugation and washed with acetonitrile before being
deposited on Kapton tape for analysis by small-angle x-ray scat-

tering.

3 Results and Discussion

3.1 Analysis and design rules are exposed by the 2-particle
phase diagrams

We present in Fig. 2 the converged 2-particle phase diagrams cal-
culated using our active learning-guided enhanced sampling cal-
culations and which demarcate the thermodynamically favorable
and unfavorable regimes for NP dimerization. We present the
phase boundaries in the five-dimensional T ∗-σ∗NP-q∗-εin-εout de-
sign space as a series of panels containing two-dimensional T ∗-q∗
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slices at particular choices of σ∗NP. Within each panel, we show
different colored curves for each choice of εout and different line
styles for different choices of εin/εout . The lines correspond to
the locus of points for which ∆A∗ = (0±0.005) separating the at-
tractive regime where dimerization is thermodynamically spon-
taneous below the lines from the repulsive regime where it is
thermodynamically disfavored above. The phase diagrams cal-
culated using our active learning-guided enhanced sampling cal-
culations reveal a number of trends and design rules for the NPs
in order to engineer the pairwise interactions to favor attractive
self-assembly.

First, polarizability plays a small but important role on the
phase boundaries. For example, the attractive regime expands to-
wards lower q∗ and higher T ∗ with increasing dielectric contrast
(εin/εout) for fixed σ∗NP and εout . This can be seen as the trend
in the different line styles of a particular color in each of the fig-
ure panels. This effect arises from polarization interactions and
correlates with trends in electrostatic potential between particles
reported in Ref.27. The effect is more pronounced for large values
of εout and larger particles, where neglecting polarization effects
can result in large errors. For instance, for K4Sn2S6 functional-
ized gold nanopoarticles with diameter 6 nm in water (εout=80)
carrying a charge of ∼(-6) e, ligands of length 0.25 nm, and ap-
proximating the effectively infinite dielectric constant of gold65

as εin=100×εout , neglecting the polarization contributions to the
interaction potential could result in errors in the phase boundary
predictions in excess of 85 K.

Second, increase in the dielectric constant of solvent εout results
in a wider attractive regime in the T∗-q∗ space for a fixed σ∗NP and
εin/εout . This can be seen as the trend in lines of different col-
ors at a fixed line style in each of the figure panels. This trend
is expected because an increase in εout increases the strength of
screening, which results in a decrease in the net electrostatic re-
pulsions.

Third, the attractive regime widens with increase in particle
size. This can be seen as the expansion of the attractive area be-
low the curves in progressing from panel a-f. This effect can be
understood as primarily due to a decrease in the surface charge
density with increasing in particle size, which results in a net re-
duction in the unfavorable electrostatic interactions at non-zero
charge.

Fourth, when the particles are uncharged, the total electrostatic
energy including the polarization energy is zero and the particles
interact only by dispersion forces. Consequently, the temperature
at the phase boundary for any εout and εin/εout at q∗=0 should
be identical. We confirm that within error bars we do observe
convergence of T ∗ as q∗→ 0 for each value of σ∗NP.

Fifth, the dimerization of the particles can be tuned using mul-
tiple design parameters simultaneously. One example is that the
transition into the attractive regime can be triggered by simulta-
neously decreasing T and increasing εout for a given σ∗NP, q∗ and
εin/εout . As another example, both q∗ and εout can be simultane-
ously increased to move the particles from the repulsive into the
attractive regime for a given σ∗NP, T ∗, and εin/εout .

3.2 Validation of the coarse-grained NP model against ex-
perimental measurements

The main goal of this study is to develop a predictive model of the
phase behavior of gold NPs surface functionalized with K4Sn2S6
ligands to rationally engineer triggerable assembly/disassembly
of ordered superlattices. Before proceeding to this design step,
we first validate the predictive capacity of our coarse-grained
computational model and the calculated 2-particle phase dia-
grams to accurately predict experimental phase transitions and
the structure of the self-assembled aggregates. To do so, we
compare our predictions of the self-assembled structures at se-
lected locations within the five-dimensional design space against
experimental scattering measurements. Experiments are per-
formed on K4Sn2S6 functionalized gold NPs in hydrazine and n-
methylformamide (NMF) solvent. Three different diameters of
gold NPs are considered in each solvent: σNP = 4, 5 and 6 nm
in hydrazine and σNP = 5.5, 8 and 12 nm in n-methylformamide.
The dielectric constant of hydrazine and n-methylformamide are
εout = 53 and 171, respectively. We mimic experimental condi-
tions in our simulations by employing an estimated length of the
K4Sn2S6 ligands of σ = 0.25 nm, corresponding to approximately
half of their ∼0.58 nm fully extended length. We then define ∆

= (σNP−σ) accordingly. We approximate the effectively infinite
dielectric constant65 of gold as εin = 100×εout . Assuming that
the dispersion interactions of the K4Sn2S6 functionalized gold
NPs is dominated by the gold core, we define εNP by matching
the minimum of Lennard-Jones potential (Eq. 2) with the min-
imum of Hamaker potential66,67 and adopting a Hamaker con-
stant of 30×10−20 J consistent with experimental measurements
for gold NPs.68. Table 1 shows the estimated dispersion strengths
εNP for each σNP. It is challenging to estimate experimental sur-
face charge because it is difficult to determine surface potential
for opaque systems, but using the 2-particle phase boundaries as
a guide we select a fixed value of the reduced charge q∗=(-10)
that results in particle dimerization expected in the experimen-
tally studied systems at 300 K and translate this into real units for
each particle within Table 1.

Table 1 Estimated σNP, εNP, and q for each of the experimentally studied
gold NPs.

σNP [nm] εNP×10−19 [J] q [e]
4 1.54 ∼(-4)
5 2.09 ∼(-5)

5.5 2.37 ∼(-5)
6 2.66 ∼(-5)
8 3.84 ∼(-6)

12 6.26 ∼(-8)

3.2.1 Self-assembly of K4Sn2S6 functionalized gold
nanoparticles in hydrazine

We present in Fig. 3a the calculated phase boundaries of the gold
NPs with diameters 4, 5 and 6 nm in hydrazine solvent. With
increase in the NP diameter, the attractive regime in the 2-particle
phase boundaries in T -q space widens as observed in the previous
section. We note that the extremely high temperatures on the 2-
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Fig. 2 Phase boundaries of 2-particles system along T∗-q∗ for a σ∗NP = (a) 10, (b) 20, (c) 30, (d) 40, (e) 50, and (f) 60. Within each panel different
values of εout are represented by different line colors and different values of εin

εout
by different line styles. The lines correspond to the locus of points for

which ∆A∗ = 0 separating the attractive and repulsive regimes that lie below and above each curve, respectively. Error bars on each phase boundary
represent the standard deviation in ∆A∗ estimated by the terminal fitted GPR model.

particle phase boundaries are clearly unphysical and represent
only a hypothetical extrapolation under our model that does not
account for NP melting, ligand decomposition, or solvent boiling.

We predict the equilibrium self-assembled structures at 300 K
by conducting simulated annealing calculations60 in a 10-particle
system. As detailed in Section 2.1.5, we perform multiple heating
to cooling cycles across the predicted 2-particle phase boundaries
and then gradually anneal the system to the target experimental
temperature of T = 300 K. The temperature range of the anneal-
ing calculations are shown as vertical arrows in Fig. 3a at the
respective particle charges, and the target temperature 300 K de-
fined by a horizontal dotted line. The changes in the 10-particle
potential energy with temperature during the simulated anneal-
ing are illustrated in Fig. 3b. The transition in the 10-particle
potential energy from disassembled configuration at the highest
annealing temperature to attractive (i.e., negative potential en-
ergy) is correlated with the trends in the 2-particle phase bound-
aries. This can be observed from the temperature at which the
potential energy drops during the cooling cycle of annealing sim-
ulation. For example, the potential energy becomes negative at T
≈ 9000 K for the larger 6 nm particle that is consistent with its
wider attraction regime observed in the 2-particle phase diagram.
Similarly, the smaller 4 nm system containing 10-particles transi-
tions into assembled state at a lower temperature of T ≈ 5448 K,
again consistent with the predictions of the 2-particle phase dia-
gram. This indicates that our 2-particle phase boundaries serve
as good predictors for the multi-particle phase behavior.

We present in Fig. 3c the computational structure factors S(ρ)

calculated from the self-assembled aggregates produced at the
end of the simulated annealing calculations and compare these
against the experimental structure factors measured by small-
angle x-ray scattering (SAXS). A quantitative comparison is chal-
lenging due to the finite system size used in simulations com-
pared to the much larger system size studied in experiments and
the intrinsically coarse-grained nature of the model, but the qual-
itative trends are similar between computational predictions and
experimental observations for all three NP diameters. First, the
location of the primary (i.e., low-ρ) peak moves to lower ρ val-
ues with increasing particle diameter as expected by changing
the size of the NP building block. Second, the higher-ρ peaks
become less pronounced as NP diameter increases, which is con-
sistent with the poorer packing and reduced ordering of the self-
assembled aggregates observed in our simulations. Snapshots of
the aggregates produced by the simulated annealing protocol are
presented in Fig. 3d. All three particle diameters produce similar
self-assembled aggregates occupying a icosahedral crystal lattice
with bond orientational order parameter Q6=∼0.62-0.6469,70.
Consistent with the better packing of the smaller NPs observed
in the SAXS spectra, the calculated potential energy per unit area
reduces (i.e., becomes more favorable) as the NP diameter de-
creases (Fig. 3b).

3.2.2 Self-assembly of K4Sn2S6 functionalized gold
nanoparticles in n-methylformamide (NMF)

In Fig. 4a we present the calculated phase boundaries of the gold
NPs with diameters 5.5, 8 and 12 nm in NMF solvent. Again, we
observe that the attractive regime in the T -q plane widens with
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Fig. 3 Computational and experimental comparison of the self-assembly of K4Sn2S6 functionalized gold nanoparticles in hydrazine. (a) Calculated
phase diagram for 2-particle assembly projected into the T -q plane for NPs of diameter σNP 4 nm (blue), 5 nm (green), and 6 nm (red). The lines
correspond to the locus of points for which ∆A∗ = 0 separating the attractive and repulsive regimes are below and above each curve, respectively.
Error bars on each phase boundary represent the standard deviation in ∆A∗ estimated by the terminal fitted GPR model. The vertical arrows indicate
the simulated annealing temperature quenches used to determine the stable self-assembled structures of our 10-particle systems from an initial high
temperature down to the 300 K target temperature indicated by the horizontal dashed line. The location of each vertical arrow on the x-axis corresponds
to the q value assigned to each NP in our simulations. (b) Potential energies (P.E.) (UNP−NP in Eq. 1 normalized by particle surface area 4π(σNP/2)2

and number of particles) observed during the terminal temperature quench of the 10-particle simulated annealing calculations. (c) Comparison of
computational (dotted) and experimental (solid) structure factors S(ρ) for the terminal self-assembled aggregates. For clarity of viewing, the 4 nm
(blue) experimental data are vertically shifted in log-scale by +16.52 arb. unit and the 5 nm (green) data by +10.12 arb. unit. The computational data
are then aligned with the experimental results. To avoid confusion with our symbol for charge, we denote the scattering vector by ρ. (d) Snapshots
of the self-assembled structures produced at the end of the simulated annealing calculations.

increasing NP diameter and that the extremely high temperatures
for the phase boundaries represent an unphysical extrapolation
of our model. As in the case of hydrazine solvent, we conduct 10-
particle simulated annealing calculations through the predicted
phase boundaries and represent as vertical arrows the terminal
cooling stage to the 300 K experimental target temperature. As
was the case for hydrazine solvent, the temperatures at which we
observe a downturn in the 10-particle potential energy curves dis-
played in Fig. 4b occur at the approximate temperatures predicted
by the 2-particle phase diagrams (i.e., T ≈ 10,000 K, 14,000 K,
16,000 K for the 5.5 nm, 8 nm, and 12 nm NPs, respectively).

We present in Fig. 4c a comparison between the computational
and experimental structure factors S(ρ) for the calculated and ob-

served self-assembled aggregates. Again, a quantitative compari-
son is challenging due to the finite system size used in simulations
compared to the much larger system size studied in experiments
and the intrinsically coarse-grained nature of the model. Nev-
ertheless, a semi-quantitative comparison is possible, and, simi-
lar to the S(ρ) trends in hydrazine, we see good correspondence
between our computational predictions and experimental obser-
vations in terms of the shift in the location of the primary (i.e.,
low-ρ) peak and attenuation in the magnitude of the higher-ρ
peaks with increasing particle size. In NMF we see larger differ-
ences in trends in S(ρ) as a function of NP diameter compared
to hydrazine solvent seemingly due to the more pronounced re-
duction in packing quality with increased NP diameter (Fig. 4d).
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Fig. 4 Computational and experimental comparison of the self-assembly of K4Sn2S6 functionalized gold nanoparticles in NMF. (a) Calculated phase
diagram for 2-particle assembly projected into the T -q plane for NPs of diameter σNP 5.5 nm (blue), 8 nm (green), and 12 nm (red). The lines
correspond to the locus of points for which ∆A∗ = 0 separating the attractive and repulsive regimes are below and above each curve, respectively.
Error bars on each phase boundary represent the standard deviation in ∆A∗ estimated by the terminal fitted GPR model. The vertical arrows indicate
the simulated annealing temperature quenches used to determine the stable self-assembled structures of our 10-particle systems from an initial high
temperature down to the 300 K target temperature indicated by the horizontal dashed line. The location of each vertical arrow on the x-axis corresponds
to the q value assigned to each NP in our simulations. (b) Potential energies (P.E.) (UNP−NP in Eq. 1 normalized by particle surface area 4π(σNP/2)2

and number of particles) observed during the terminal temperature quench of the 10-particle simulated annealing calculations. (c) Comparison of
computational (dotted) and experimental (solid) structure factors S(ρ) for the terminal self-assembled aggregates. For clarity of viewing, the 5.5 nm
(blue) experimental data are vertically shifted in log-scale by (−18.42) arb. unit and the 8 nm (green) data by (−6.50) arb. unit. The computational
data are then aligned with the experimental results. To avoid confusion with our symbol for charge, we denote the scattering vector by ρ. (d)
Snapshots of the self-assembled structures produced at the end of the simulated annealing calculations.

The smallest 5.5 nm NP (blue) exhibits the most structural order-
ing, forming a compact, close packed icosahedral crystal lattice
with bond orientational order parameter Q6=∼0.63, and which
exhibits the lowest potential energy per unit area of the three
systems (Fig. 4b). The next largest 8 nm particle (green) forms
a more loosely associated aggregate with intermediate potential
energy per unit area, and the largest particle remains the most
loosely cluster with the highest potential energy per unit area.
The differences in the packing is also captured by the average
number of nearest neighbors per particle, which are ∼5, ∼4, and
∼2 for 5.5 nm NP, 8 nm NP, and 12 nm NP, respectively. We con-
firm that the trends in the potential energy, S(ρ), and structure
of the aggregate morphologies are maintained upon doubling the

size of the system to 20 NPs as illustrated in Fig. S1 in the ESI†.

3.3 Computational design of triggerable assem-
bly/disassembly of self-assembled ordered superlattices

Given that the 2-particle phase diagrams have been validated as
good predictors of multi-particle behaviors, we can use them to
design triggerable systems that can be pushed across the phase
boundaries by manipulating one or more of the five design pa-
rameters. In this manner we can engineer superlattices that can
be self-assembled and disassembled in response to an external
stimulus. Physically, by manipulating some combination of tem-
perature (T ), particle size (σNP), particle charge (q), particle di-
electric (εin), and solvent dielectric (εout), we change the thermo-
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dynamic state point of the system such that the equilibrium state
of the system changes from an assembled state to a disassembled
state, or vice versa. Example applications of such switchable self-
assembled material components include sensors, smart materials
and optoelectronic devices.3,29–31

3.3.1 Temperature triggerable superlattices

We first design ligand-functionalized NP systems that can be trig-
gered to assemble/disassemble by modulating temperature. We
present in Fig. 5a the T ∗-q∗ 2-particle phase diagram for σ∗NP=10
and εout=80 for εin

εout
= 0.5, 1.0, and 100. Adopting a particle

charge of q∗=(-10), our phase diagram predicts that we should
be able to toggle between the attractive and repulsive regimes by
modulating temperature to push the system back and forth across
the phase boundary. This locus of points is indicated by the verti-
cal dotted line. We consider three points on this line correspond-
ing to temperatures of T ∗=0.05 (blue star), 0.3 (green star), and
0.6 (red star). We performed simulated annealing simulations of
10 particle systems from T*=1 to each of these temperatures and
computed the structure factors S(ρ) of the self-assembled aggre-
gates formed in each of these runs. We present the calculated
S(ρ) profiles in Fig. 5b and representative snapshots of the ter-
minal aggregates in Fig. 5c for a dielectric contrast of εin

εout
=100.

As anticipated by the proximity of the calculated phase bound-
aries, similar results are observed for εin

εout
= 0.5 and 1.0, which

are presented in Fig. S2 and S3 in the ESI†. As is apparent from
the degree of structure in the S(ρ) curves and in the degree of
crystallinity visible in the representative snapshots, elevating tem-
perature from T ∗=0.05 (blue) to 0.3 (green) to 0.6 (red) cor-
responds to a marked loss in structure of the aggregate due to
temperature-induced mitigation of the attractive interactions and
entropic stabilization of the disaggregated state.

By inverting the reduced unit mapping defined by Eq. 19,
we can identify a physically realizable system exhibiting this
temperature-triggered assembly/disassembly behavior. Specif-
ically, if we consider iron NPs with a Hamaker constant of
5.38×10−20 J68 and functionalized with ligands with a length
of σ=0.25 nm, this defines a length scale of σ=0.25 nm, en-
ergy scale of εNP = 1.36×10−20 J, sets the size of the particles
to be σNP = 2.5 nm, and (neglecting the mass of the ligands rel-
ative to the metal NP core) defines a characteristic mass of mNP

= 6.44×10−23 kg. This implies a real units charge of q≈(-6) e.
We model the high dielectric constant of iron65 as εin = 100×εout

and assume a water solvent εout=80, although the insensitivity
of the phase boundary to the dielectric contrast εin

εout
means that

our predictions are not sensitive to the specific values of these
quantities. Finally, the temperatures T ∗=0.05, 0.3, and 0.6 cor-
respond to ∼49 K, ∼296 K, and ∼593 K, respectively. Our cal-
culations imply that we may trigger assembly and disassembly
of the ligand-functionalized iron NPs by modulating temperature
between approximately the freezing (273 K) and boiling (373 K)
points of water at atmospheric pressure.

3.3.2 Solvent triggerable superlattices

We now design ligand-functionalized NP systems that can be trig-
gered to assemble/disassemble by modulating solvent dielectric.

We present in Fig. 5d the εout -q∗ 2-particle phase diagram for
σ∗NP=10, εin=8000 and T ∗=0.05. Adopting a particle charge of
q∗=(-50), our phase diagram predicts that we should be able to
toggle between the attractive and repulsive regimes by modulat-
ing solvent dielectric to push the system back and forth across the
phase boundary. This locus of points is indicated by the vertical
dotted line. We consider three points on this line correspond-
ing to solvent dielectric of εout=80 (blue star), 1000 (green star),
and 2000 (red star). We performed simulated annealing simu-
lations of 10 particle systems at each of these solvent dielectric
constants using a high temperature of T ∗=1 to a target temper-
ature T ∗=0.05. We then computed the structure factors S(ρ) of
the self-assembled aggregates formed at T ∗=0.05 for each solvent
dielectric. We present the calculated S(ρ) profiles in Fig. 5e and
representative snapshots of the terminal aggregates in Fig. 5f. As
is apparent from the degree of structure in the S(ρ) curves and in
the degree of crystallinity visible in the representative snapshots,
elevating solvent dielectric from εout=80 (blue) to 1000 (green)
to 2000 (red) results in improved packing of the aggregate due
to solvent-induced mitigation of the repulsive electrostatic inter-
actions.

By inverting the reduced unit mapping defined by Eq. 19, we
can identify a physically realizable system exhibiting this sol-
vent dielectric-triggered assembly/disassembly behavior. Specif-
ically, if we consider silver NPs with a Hamaker constant of
28×10−20J68 and functionalized with ligands with a length of
σ=0.25 nm, this defines a length scale of σ=0.25 nm, energy
scale of εNP = 7.10×10−19 J, sets the size of the particles to be
σNP = 2.5 nm, and (neglecting the mass of the ligands relative
to the metal NP core) defines a characteristic mass of mNP =
8.58×10−23 kg. This implies a real units charge of q≈(-14) e.
We model the high dielectric constant of silver65 as εin = 8000,
and a temperature of T ∗=0.05 corresponds to ∼257.3 K. Our cal-
culations imply that we may trigger assembly and disassembly
of the ligand-functionalized silver NPs by modulating solvent di-
electric. We predict, for example, that in N,N-dimethylformamide
(εout∼4771) the system should be disassembled, and by chang-
ing to a high dielectric solvent such as N-methylformamide
(εout∼21771) or N-methylpropionamide (εout∼26771,72) we may
approach or cross the multi-particle phase boundary and trigger
assembly.

4 Conclusions
We have developed a coarse-grained computational model for po-
larizable NP-NP interactions to understand and rationally nav-
igate the particle design space. Many-body polarization in-
teractions between NPs are efficiently treated using the image
method26,27. To understand and explore N-particle systems, we
mapped the phase-diagram within the high-dimensional particle
design space of a 2-particle system efficiently using an active
learning framework. The trends in the phase boundaries quan-
titatively predict assembly behavior and reveal that the attrac-
tion regime widens with increase in particle size, dielectric con-
stant of solvent, and dielectric contrast between NP and solvent.
The structure and assembly behaviors predicted by our model
and 2-particle phase diagrams are in good agreement with multi-
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Fig. 5 Computational design of (a-c) temperature and (d-f) solvent-triggerable assembly/disassembly in self-assembled NP superlattices. (a) Calculated
phase diagram for 2-particle assembly projected into the T ∗-q∗ plane for NPs of diameter σ∗NP=10 in a solvent with a dielectric constant εout = 80
and dielectric contrasts εin

εout
= 0.5, 1, and 100. The lines correspond to the locus of points for which ∆A∗ = 0 separating the attractive and repulsive

regimes are below and above each curve, respectively. Different line styles correspond to different εin
εout

. Error bars on each phase boundary represent the
standard deviation in ∆A∗ estimated by the terminal fitted GPR model. The location of the vertical dotted line on the x-axis corresponds to the q value
assigned to the NP in our simulations. The stars on the vertical dotted line represent the temperature at which structure analysis was performed – 0.05
(blue), 0.3 (green), and 0.6 (red). (b) Computed structure factors S(ρ) for the terminal self-assembled aggregates at each temperature highlighted
in (a) spanning across the phase boundary for εin

εout
100. (c) Snapshots of the self-assembled structures corresponding to computed S(ρ) shown in (b)

at each temperature. (d) Calculated phase diagram for 2-particle assembly projected into the εout -q∗ plane for NPs of diameter σ∗NP 10 and dielectric
constant of NPs εin = 8000 at temperature T ∗ = 0.05 and solvents with dielectric constants εout = 8, 1000, and 2000. The location of the vertical
dotted line on the x-axis corresponds to the q value assigned to the NP in our simulations. The stars on the vertical dotted line represent the different
solvent dielectric at which structure analysis was performed – 8 (blue), 1000 (green), and 2000 (red). (e) Computed structure factors S(ρ) for the
terminal self-assembled aggregates at each solvent dielectric highlighted by stars in (d) spanning across the phase boundary. (f) Snapshots of the
self-assembled structures corresponding to computed structure factors shown in (e) at each solvent dielectric.

particle calculations and selected experimental observations. We
used the calculated phase diagrams to rationally design ligand-
functionalized NPs that can be triggered to assemble/disassemble
by modulating temperature or changing the solvent environ-
ment. These triggerable materials have potential applications in
sensing29,30, smart windows31, optoelectronics3 and drug deliv-
ery32. In future work, we aim to computationally design addi-
tional physically realizable triggerable systems, subject these de-
signs to experimental testing, and extend our design protocol to
other self-assembling systems of inorganic building blocks where
many-body polarization interactions are important in governing
particle interactions and phase behaviors.
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