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Abstract. 

The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the 

most energetically demanding reactions in nature by using light energy to drive a 

catalyst capable of oxidizing water. The water oxidation reaction is catalyzed at the 

Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC) which cycles through five 

light-driven S-state intermediates (S0 - S4). A detailed mechanism of the reaction remains 

elusive as it requires knowledge of the delivery and binding of substrate water in the 

higher S-state intermediates. In this study, we use two-dimensional (2D) hyperfine 

sublevel correlation spectroscopy in conjunction with quantum mechanics/molecular 

mechanics (QM/MM) and density functional theory (DFT) to probe the binding of the 

substrate analog, methanol, in the S2 state of the D1-N87A variant of PSII from 

Synechocystis sp. PCC 6803. The results indicate that the size and specificity of the 

“narrow” channel is altered in D1-N87A PSII, allowing for the binding of deprotonated 
13C-labeled methanol at the Mn4(IV) ion of the catalytic cluster in the S2 state. This has 

important implications on the mechanistic models for water oxidation in PSII. 

 

Introduction.  

The photosynthetic protein, photosystem II (PSII), catalyzes one of the most 

energetically demanding reactions in nature by using light energy to drive a catalyst 

capable of oxidizing water.1-3 The light-driven four-electron water oxidation reaction 

takes place at the catalytic Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC) of 

PSII (Figure 1).4-7 The core of the cluster is a distorted cubane comprised of three Mn 

(Mn1–Mn3), four O2- (O1–O3 and O5), and one Ca2+ ion. The fourth ‘dangler’ Mn ion, 

Mn4, is connected to the cubane by two µ-O bridges, O4 and O5. The shape of the 

cluster resembles a distorted chair, with the cubane serving as the base and the Mn4 ion 

serving as the back of the chair. The distorted shape is important as its flexible nature 

enables the cluster to undergo structural rearrangements during the catalytic cycle. 

Additionally, the cluster is coordinated by six carboxylates and one histidine residue, D1-

H332, which is coordinated to the Mn1 ion.4, 8-10  

 It is known that the OEC cycles through five light-driven charge-storage or S-state 

intermediates (S0 - S4) as it accumulates oxidizing equivalents to oxidize water, where S1 

is the dark state and S4 is the final transient state that leads to O–O bond formation and 

oxygen evolution.11 In recent years, conventional and time-resolved X-ray 

crystallography,4, 5, 12-16 X-ray absorption fine structure (EXAFS),7, 17-20 electron 
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paramagnetic resonance (EPR),10, 21-29 FTIR30-33 and quantum mechanics/molecular 

mechanics (QM/MM)34-38 investigations have provided information on the structure and 

oxidation states of the metal ions in the OEC during the S-state cycle. The recent X-ray 

crystal structures have enabled analyses of the location and possible function of water 

molecules in the OEC.4, 5, 13-16 There are four water-derived ligands coordinated to the 

Mn4Ca-oxo cluster in the dark-stable S1 state. The binding of these ligands has been 

studied by several methods, including magnetic resonance,21, 39 Fourier-transform 

infrared spectroscopy (FTIR) spectroscopy32, 40 and time-resolved membrane-inlet mass 

spectrometry (TR-MIMS).41, 42 Based on these studies, it has been concluded that the 

two substrate waters are delivered to the OEC in the S3 to S0 and S2 to S3 transitions. 

TR-MIMS has identified two types of exchangeable substrate waters, Wf and Ws, which 

are in fast and slow exchange with the bulk solvent, respectively; Ws has been proposed 

to be a µ-oxo bridge between the Ca and Mn ion and Wf as a terminal ligand coordinated 

to Mn,41, 43 although these assignments remain unclear.44 There are additional water 

molecules that form an extensive hydrogen (H)-bonded network around the Mn4Ca-oxo 

cluster that are positioned by amino acids that interact with the µ-oxo bridges or water 

ligands of the cluster, including the D1-N87, D1-S169, D1-D61, CP43-R357 and D1-

H337 residues in cyanobacterial PSII.2, 4, 5 

 Although high-resolution X-ray crystallography, EXAFS and theoretical studies have 

provided models for the catalytic Mn4Ca-oxo cluster, the mechanism of delivery and 

binding of substrate water, participation of the protein environment in substrate activation 

and the structure of the higher S3 and S4 intermediates remain heavily debated. This is 

important as the OEC is considered a promising blueprint for the development of artificial 

catalysts for water splitting that can generate clean and renewable energy from 

sunlight.45-48 Currently, there is intense interest in determining the mechanism for the 

delivery of substrate (H2O) and products (H+ and O2) to and from the Mn4Ca-oxo cluster 

in the OEC during water oxidation.49, 50 Based on computational analyses of the X-ray 

crystal structures, there are three putative channels that are suggested to be associated 

with the OEC; the “narrow”, “broad” and “large” channel.50 The narrow and broad 

channels are proximal to the Mn4 ion, while the large channel is close to the Ca2+ ion in 

the Mn4Ca-oxo cluster. The barrier for entry of water molecules in the narrow channel is 

suggested to be lower than that of the broad channel50 and molecular dynamics (MD) 

simulations have suggested that there may be strict control of accessibility and ordered 
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substrate binding at the active site that is critical in regulating the complex chemistry of 

water oxidation.51, 52 

 Current proposals suggest that the S2 to S3 state transition of the OEC involves the 

binding of a water ligand at the Mn4Ca-oxo cluster with the oxidation of a Mn ion.37 

However, there is considerable debate on the origin and binding mode of the water 

molecule. There are primarily two theoretical models proposed for the delivery of water 

in the S2 to S3 transition.37 In the first model, a water molecule, WX, is delivered through 

the narrow channel and binds to the dangler Mn4 ion through a carousel mechanism. In 

the second model, WX is delivered through the large channel that is proximal to the Ca2+ 

ion and binds to the Mn1 ion through a pivot mechanism. However, recent cryo-electron 

microscopy studies have shown that the “large” channel is not conserved in PSII from 

Synechocystis sp. PCC 6803.53 There is an urgent need for spectroscopic data on the 

function of the channels and the coordination environment of the Mn ions in order to 

determine the precise pathway for water delivery in the OEC. PSII is a unique case 

where the substrate and solvent molecules are identical and, therefore, it has been a 

substantial challenge to differentiate between them while probing the mechanism of 

substrate delivery and binding in the OEC.  

 There are two experimental approaches that have previously been employed to 

investigate the delivery of substrate: (i) to probe the water binding sites by studying 

indirect effects of site-directed mutagenesis of amino acid residues and (ii) to employ 

small molecule analogs, such as, ammonia, hydroxylamine and methanol, to probe 

access to the Mn4Ca-oxo cluster in the OEC.54-62 However, there have been few 

attempts to interrogate the high-resolution electronic and geometric structure of the 

binding of small molecule analogs associated with the various channels of site-directed 

variants of cyanobacterial PSII.57 This is important as elucidation of the mechanism of 

water oxidation requires precise knowledge of how, when and where substrate waters 

bind at the Mn4Ca-oxo cluster during the S-state cycle. 

 The X-ray crystal structures reveal that the asparagine-87 residue in the D1 

polypeptide, D1-N87, is located in the “narrow” channel and is proximal to serine, 

arginine and aspartic acid residues (D1-S169, CP43-R357 and D1-D61, respectively) in 

PSII from Thermosynechococcus vulcanus.4, 50 The D1-N87 residue has been suggested 

to be involved in the delivery of water molecules as well as proton transport in the 

OEC.50, 63 Moreover, D1-N87 indirectly interacts with the water molecule, WX, and is 

likely hydrogen (H)-bonded to the D1-S169 residue that was implicated in substrate 
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binding in the OEC.64, 65 It is interesting that despite the highly-conserved sequence of 

the OEC across species, D1-N87 in cyanobacteria is replaced by an alanine, D1-A87, in 

PSII from higher plants.50, 66 It has been suggested that an important consequence of the 

replacement of D1-N87 by alanine is that the shape and flexibility of the narrow channel 

is wider in higher plants while also removing a H-bonding residue in it.50 Some of us 

have previously observed that the D1-N87A variant of Synechocystis PCC 6803 shows 

comparable S-state cycling efficiency to wild-type (WT) cyanobacterial and spinach 

PSII.67 However, it displays altered chloride-binding properties and pH dependence that 

mimic those in spinach PSII. 

 Based on the location and H-bonding pattern of the D1-N87 residue, it is possible 

that it is also involved in the delivery of substrate water at the Mn4Ca-oxo cluster in the 

S2 to S3 transition. More specifically, D1-N87 could regulate the size and selectivity of 

the putative “narrow” channel. This is important as it is plausible that this is the only 

channel available for water delivery and its narrow path prevents access of larger 

molecules that could potentially react with the OEC. Additionally, D1-N87 could 

participate in maintaining the well-defined H-bonding network of water molecules in and 

around the OEC, which regulates the entry and binding of water ligands. Previous 

studies involving the binding of small molecule substrate analogs in the OEC have 

indicated that although methanol competes with the binding of water, its binding does 

not inhibit oxygen evolution. More recently, Britt and coworkers have demonstrated that 

isotope-labeled methanol can be used as a substrate analogue to probe the binding of 

substrate molecules in the OEC. Using electron-spin-echo envelope modulation 

(ESEEM), hyperfine sublevel correlation (HYSCORE) and electron nuclear double 

resonance (ENDOR) spectroscopy of CD3OH and 13CH3OH, these studies probed the 

binding of methanol through the measurement of electron-nuclear hyperfine couplings of 

the 2H and 13C atom(s) with the paramagnetic Mn4Ca-oxo cluster in the S2 state of 

spinach PSII.58, 59 In particular, the use of 13C-methanol offered a selective probe of the 

location of the methyl group that allowed for the evaluation of possible methanol binding 

sites in spinach PSII.  

 In the present study, using two-dimensional (2D) hyperfine sublevel correlation 

(HYSCORE) spectroscopy, we present direct evidence of the binding of 13C-methanol to 

the catalytic Mn4Ca-oxo cluster in the S2 state of the OEC of D1-N87A PSII from 

Synechocystis sp. PCC 6803. 2D HYSCORE spectroscopy68 is ideally suited to probe 

the binding of small molecule analogs as the hyperfine interactions of magnetic nuclei 
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with the unpaired electron spin in the S2 state are detected in 2D frequency space, which 

dramatically improves the spectral resolution. Moreover, the nuclear frequencies are 

correlated in the two dimensions, which crucially simplifies the analysis of experimental 

spectra. In conjunction with HYSCORE spectroscopy, we also employ QM/MM and 

density functional theory (DFT) methods to model possible binding sites of methanol and 

identify the most likely binding site by obtaining a best match of the experimental and 

calculated 13C hyperfine couplings in the S2 state of D1-N87A PSII. 

Results and Discussion. 

Pulsed EPR spectroscopy of 13C-methanol-treated D1-N87A PSII: The S2 state of the 

OEC of PSII from higher plants and cyanobacteria can be photo-accumulated by steady-

state illumination at cryogenic temperatures (180 – 200 K),69 which induces one-electron 

oxidation of the S1 to S2 state. We and others have demonstrated that the S2 state 

displays distinct low- and high-spin isomers with g ~ 2.0 ‘multiline’ and g > 4.0 EPR 

signals, respectively.22, 69-71 Shown in Figure 1SA-B are EPR spectra of the S2 state of 

wild-type (WT) and D1-N87A PSII from Synechocystis sp. PCC 6803 treated with 5% 

(v/v) 13C-methanol. The S2 state multiline EPR spectrum is centered at a g value of ~ 2.0 

with an overall spectral width of 200 mT and contains 12-14 hyperfine peaks that are 

characteristic of the low-spin isomer of the S2 state. The multiline signal has been shown 

to arise from the electron-nuclear hyperfine interactions of the effective electron spin (S 

= ½) with the four equivalents of 55Mn nuclear spins (I = 5/2) of the Mn4Ca-oxo cluster in 

the OEC. The spectra are in agreement with previously published multiline signals of the 

S2 state.  

In principle, the binding of 13C-methanol in the OEC should lead to additional 

splittings in the spectrum from hyperfine interactions of the 13C nuclear spin(s) (I = ½) 

with the paramagnetic Mn4Ca-oxo cluster in the S2 state. However, the 13C hyperfine 

interactions are much weaker than the 55Mn couplings in the OEC and are masked by 

the inhomogeneous line width of the multiline peaks. Therefore, in the present study, we 

probe the 13C hyperfine couplings of 13C-methanol-treated PSII by 2D HYSCORE 

spectroscopy, which has the ability to resolve the weak hyperfine interactions of the 13C 

nuclei that are coupled to the unpaired electron spin in the S2 state. 

 Shown in Figure 2A-B are the experimental and simulated 13C HYSCORE spectra of 

the S2 state of D1-N87A PSII from Synechocystis sp. PCC 6803 treated with 5% (v/v) 
13C-methanol. As can be seen in Figure 2A, we observe a pair of off-diagonal cross-

peaks, CI, at (5.4, 2.1) and (2.1, 5.4) MHz in the (+,+) quadrant of the HYSCORE 
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spectrum. The cross-peaks are centered at the 13C Zeeman frequency of 3.6 MHz (at a 

magnetic field of 335 mT) and arise from the hyperfine interactions of the 13C atom 

(nuclear spin, I = ½) of 13CH3OH that is bound to the OEC in the S2 state. The separation 

between the pair of cross-peaks CI is ~ 3.5 MHz, which is proportional to the isotropic 

hyperfine coupling, Aiso, of the 13C atom of bound methanol.  

 We performed numerical simulations of the experimental spectrum (Figure 2B) to 

obtain a quantitative measure of the isotropic, Aiso, and anisotropic, T, hyperfine 

interactions and rhombicity parameter,	 δ (Table 1). As can be seen in Figure 2A-B, 

there is excellent agreement between the experimental and simulated line shape of the 

cross-peaks, CI. The value of the Aiso coupling of 3.63 ± 0.15 MHz that was obtained 

from the numerical simulations (Table 1) is in agreement with the qualitative estimate 

predicted from the separation of the cross-peaks. The anisotropic hyperfine coupling, T, 

of 1.65 ± 0.11 MHz is similar in magnitude to that of the protons of a water-derived 

ligand coordinated to the Mn4 ion.39 Interestingly, the cross-peaks display deviations 

from the anti-diagonal of the spectrum shown as a dashed red line in Figure 2B. It was 

previously noted that such cross-peak distortions in HYSCORE spectroscopy could 

originate from a distribution of hyperfine parameters or strain in orientationally-

disordered protein samples or frozen solutions, where the hyperfine strain can be 

modeled using a distribution function. In order to account for the hyperfine strain 

observed in CI, we employed a weighted Gaussian-type function to model the distorted 

line shape by assigning the center of distribution and the full-width at half maximum 

(FWHM) in the simulations (standard deviation, σ, of 0.3 MHz).  

 Additionally, the experimental spectrum in Figure 2A also reveals a cross-peak, CII, 

on the diagonal which arises from very weak hyperfine couplings (Aiso < 0.1 MHz) of the 

effective electron spin (S = ½) with ambient non-bonded 13C nuclei that are not directly 

coordinated to the Mn ions of the Mn4Ca-oxo cluster in the S2 state.58, 59 Therefore, CII 

was not included in the numerical simulations in Figure 2B. It is important to note that 

both of the cross-peaks, CI and CII, were absent in the S2 state of untreated D1-N87A 

PSII (Figure 3SA-B) and 13C-methanol-treated WT PSII from Synechocystis sp. PCC 

6803 (Figure 4S), while CI was not observed in the S2 state of 13C-methanol-treated PSII 

from spinach (spectrum not shown). 

 In order to assess the effects of methanol binding on the primary and secondary 

sphere of ligands to the Mn4Ca-oxo cluster in the S2 state, we examined the 14N 

hyperfine interactions of 13C-methanol bound D1-N87A PSII. Shown in Figure 2SA-B 
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are the experimental and simulated 2D 14N HYSCORE spectra of the 13C-methanol 

bound S2 state of D1-N87A PSII. The 14N hyperfine and quadrupolar couplings in Table 

1S indicate that the hyperfine couplings of the nitrogen atoms are identical to those 

observed in the S2 state of untreated WT PSII,9, 10, 72 indicating that magnetic interactions 

with the D1-H332 and CP43-R357 residues remain unchanged in the S2 state of 13C-

methanol bound D1-N87A PSII.  

QM/MM and DFT studies of methanol binding in the oxygen-evolving complex: We 

obtained 13C Aiso couplings of 3.63 ± 0.15 MHz and < 0.1 MHz from the 2D HYSCORE 

spectra of the 13C-methanol bound S2 state of D1-N87A PSII. While an Aiso coupling of < 

0.1 MHz can be attributed to non-bonded 13C nuclei, the larger 13C Aiso of 3.63 ± 0.15 

MHz suggests that methanol is directly coordinated to a paramagnetic Mn ion in the S2 

state of the OEC of D1-N87A PSII.58 As evidenced in previous studies, direct structural 

assignment of the specific binding sites in the OEC based solely on the measured 

hyperfine parameters is limited in scope. However, it is possible to interpret the EPR 

parameters in conjunction with quantum mechanical models to gain insight on the 

binding of ligands in the OEC.73-75  

 Since the binding of methanol increases the energy separation between the S2 state 

spin isomers54, 76-78	 stabilizing the S = 1/2 ground spin state of the S2 state, we used 

QM/MM methods to optimize structural models of the low-spin g ~ 2.0 open cubane 

conformer of the Mn4Ca-oxo cluster to evaluate the possibility of a methoxy group or 

methanol interacting with the Mn4(IV) or Mn1(III) ion. The QM/MM studies yielded three 

plausible models in which methanol binds to the cluster in the protonated or 

deprotonated methoxy form (Figure 3A-C). In the first model, Mn4-W1, a methoxy group 

displaces the water-derived ligand W1 that is coordinated to the Mn4(IV) ion in the low-

spin g ~ 2.0 isomer of the S2 state, binding at a distance of 2.1 Å (Figure 3A). In this 

case, the methoxy group is accepting a hydrogen bond from the protonated D1-D61 

residue. The methyl group is between the backbone of the D1-S169 residue and the 

water molecule, W9, where one of the methyl hydrogen atoms donates a short (1.5 Å) 

hydrogen bond to W9. In the second model Mn4-W2, a methoxide group displaces the 

water-derived ligand W2, binding to Mn4(IV) at a distance of 1.8 Å, accepting a hydrogen 

bond from the water molecule, W5 (Figure 3B). The methyl group is located less than 4 

Å from the D1-V185 residue, where it is in contact with the rigid side chain of valine and 

one of the methyl hydrogen atoms donates a hydrogen bond (2.1 Å) to the water 

molecule, W8.  
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 In contrast to the two Mn4 models, methanol displaces D1-E189 ligand in the third 

model Mn1-MeOH binding to the Mn1(III) ion and donating a short (1.4 Å) hydrogen 

bond to the displaced D1-E189-Oε2 atom (Figure 3C). The Oε2 atom in turn displaces 

Oε1 to bind to the calcium ion of the OEC. In this case, Oε1 is no longer coordinated to a 

metal ion, and instead inserts itself between the waters, W3 and W7, disrupting the H-

bonded water tetramer in the OEC. The methyl group of the methanol points towards the 

large channel and does not appear to form any notable interactions. We observed that 

the geometric parameters of the Mn and Ca ions of the Mn4Ca-oxo cluster as well as the 

amino acid ligands of all three QM/MM models are consistent with the X-ray structures of 

PSII.4 It is important to note that while methanol can readily access the Mn4 ion in the 

Mn4-W1 and Mn4-W2 models, it has very limited access to the Mn1 ion due to steric 

limitations of the site. Previous studies by Britt and coworkers also considered the 

binding of methanol either in µ-oxido positions replacing either the O42- or O52- ion or the 

W3 water coordinated at the Ca2+ ion.58 We did not consider a bridging µ-oxido as we do 

not observe large alterations in the 14N hyperfine couplings and effective 55Mn couplings. 

Moreover, the large 13C Aiso value of 3.63 ± 0.15 MHz indicates that the methanol is 

directly coordinated to a paramagnetic Mn which limits the possibility of its binding at the 

Ca2+ ion. However, it is possible that the Aiso of < 0.1 MHz obtained from the 

experimental data represents the binding of a second methanol/methoxy group at the 

Ca2+ ion.58,	62 As we and others have previously demonstrated, the best way to validate 

the QM/MM structural models of the methanol-bound S2 state is by the prediction of the 
13C hyperfine interactions.63, 73 

 After validating our predictions of 13C hyperfine couplings using broken-symmetry 

density functional theory (BS-DFT) methods to reproduce the hyperfine interactions of 

select computational models described by Retegan and Pantazis,63 we calculated the 
13C hyperfine couplings for the three QM/MM models described above (Table 2) for 

comparison with the experimental hyperfine couplings shown in Table 1. We found that 

the calculated isotropic and anisotropic hyperfine couplings of Mn4-W2 are consistent 

with the results of the HYSCORE studies. As can be seen in Table 2, the BS-DFT 

calculations of the model with a methoxy group coordinated at the W2 position of the 

Mn4(IV) ion yielded 13C isotropic and anisotropic hyperfine couplings of 3.2 – 3.3 MHz 

and 1.89 – 1.90 MHz, respectively, which are close to the experimental 13C Aiso and T 

value of 3.63 ± 0.15 and 1.65 ± 0.11 MHz in Table 1. Moreover, the 13C hyperfine 

couplings of the Mn4-W2 model are also in the range of the previous model W2-1d63 in a 
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study where the authors had selected twenty representative structures that covered a 

range of possibilities with respect to the interaction of methanol with the OEC. These 

models included structures where methanol was either protonated or deprotonated when 

binding as a first-sphere ligand. In general, it was found that the 13C Aiso and T value of 

methoxy binding were dramatically larger (5.73 - 4.06 MHz and 1.53 - 2.96 MHz for Aiso 

and T, respectively) than the corresponding values for methanol binding, which is 

consistent with the larger couplings observed in the present study.  

 It is interesting that the results obtained with 13C-methanol binding in the S2 state of 

D1-N87A PSII in this study are different from those of spinach PSII. While the 

HYSCORE spectra of the 13C-methanol bound S2 state of D1-N87A PSII yield off-

diagonal cross-peaks with a 13C Aiso coupling of 3.63 ± 0.15 MHz, previous 13C-methanol 

binding studies in spinach PSII displayed weak 13C couplings that were not resolved by 

X-band HYSCORE spectroscopy.58 Further Q-band electron nuclear double resonance 

(ENDOR) measurements of the samples yielded Aiso and T values of 0.05 ± 0.02 MHz 

and 0.27 ± 0.05 MHz, respectively. Based on the nearly negligible 13C Aiso coupling, it 

was inferred that methanol was not binding along the Jahn−Teller axis of the Mn1(III) ion 

and the small anisotropic coupling T suggested that the methyl group was not part of a 

ligand coordinated at a Mn ion in the S2 state.58,	 62 Isosurface plots using projection 

factors relevant for the low-spin S2 state indicated that methanol could replace the W3 

water ligand coordinated at the Ca2+ ion of the cluster in spinach PSII. Further detailed 

analyses of the 13C hyperfine interaction data from a series of quantum chemical models 

that included explicit binding of methanol at different sites indicated that it was not a 

direct ligand, but was likely situated at the end-point of a water channel associated with 

the O42- bridge in the OEC of spinach PSII.63 This observation was supported by FTIR 

difference and time-resolved IR79 and proton matrix ENDOR62 spectroscopies. 

 The 13C Aiso value of 3.63 ± 0.15 MHz in the 13C-methanol bound S2 state of D1-

N87A PSII is roughly comparable to the signals that were obtained from the binding of 
13C methanol to Mn(III)Mn(IV)salpn (where, salpn=N,N′-bis(3,5-dichlorosalicylidene)-1,3-

diamino-2-hydroxypropane).58 The cross-peaks from methanol-bound Mn(III)Mn(IV)salpn 

were numerically simulated by moderate Aiso and T couplings of 0.65 ±  0.05 MHz and 

1.25 ±  0.05 MHz, respectively. In the case of Mn(III)Mn(IV)salpn, the degree of 

curvature of the correlation ridge was taken to be diagnostic of a large anisotropic 

hyperfine interaction,80  where T  > Aiso. However, we observed an opposite trend with 
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13C-methanol binding where the Aiso coupling of 3.63 ± 0.15 MHz is larger than the 

anisotropic component of 1.65 ± 0.11 MHz.  

 Previous 13C ENDOR measurements of the S2 state in which either the alanine 

carboxylate carbons or all the carbon atoms were 13C-labeled showed an Aiso coupling of 

1.2 MHz and 1.2 - 2.0 MHz for the D1 C-terminus alanine ligand and uniformly 13C-

labeled ligands, respectively.81 Subsequent studies using BS-DFT calculations 

suggested that symmetrically bridging carboxylate groups generally provided larger 

anisotropic hyperfine couplings and rhombicities than terminal or Mn–Ca bridging 

ligands.82 The interpretation of the ENDOR results and computational models for the BS-

DFT calculations originated prior to the high-resolution X-ray crystal structure of PSII.4 

Most recently, calculations based on models derived from the 1.9 Å resolution X-ray 

structure4 indicated multiple Aiso couplings in the range of 1.3 – 4.3 MHz for the 

carboxylate ligands in the S2 state of the OEC.83 

 By combining previous pulsed EPR and computational analyses of methanol58, 63 and 

ammonia binding,57, 61, 84-86 it was suggested that there is a unique channel active in 

delivery of substrate analogues to the OEC. In the literature, this channel is referred to 

as the “narrow” channel,87 “E, F” channel,88 “channel 2”89, “O4” or “Path 3” channel.90 Ho 

and Styring had initially suggested that this channel would be the most permeable to 

methanol.87 Molecular dynamics simulations by Bruce and coworkers demonstrated that 

this channel connects the OEC directly with the lumenal surface of PSII at the cavity 

formed by the extrinsic PsbO and PsbU proteins, and it has the lowest free energy 

barrier for water permeation (peak activation energy ca. 9 kcal/mol) than all other 

channels.89 Moreover, recent experiments demonstrated that NH3 binds to the Mn4 ion 

in the S2 state of the OEC.57, 84-86 Although the conformation of the cluster is 

fundamentally different when NH3 and MeOH bind to the OEC, it is appears that both 

analogs act as a direct ligand to the Mn4 ion. The narrow channel that is suggested as 

the methanol access pathway could be the same one that delivers ammonia to the Mn4 

ion, supporting the notion that this is the only directly solvent-accessible manganese site 

of the OEC.63 Additionally, studies of the S2 à S3 transition and proposals for water 

binding in the OEC (in both the carousel and pivot mechanism),37 have suggested that 

Mn4 is the only directly accessible Mn ion of the cluster and that substrate inclusion to 

the OEC occurs through initial binding at this site. This is in agreement with the present 

study where computational analysis of the 13C HYSCORE experimental data indicate 

that a deprotonated methoxy group binds at the W2 position at the Mn4(IV) ion in the S2 
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state of D1-N87A PSII. Further studies are in progress to understand the mechanistic 

implications for the water oxidation reaction in the OEC.  

 Previous comparisons of the primary sequence of the D1 polypeptide of 

cyanobacteria and spinach revealed that the substitution of the D1-N87 residue by an 

alanine in spinach allows for the binding of methanol in the OEC. This offered a 

structure-based proposal for the species-dependent response to methanol. Moreover, it 

was found that the D1-N87A mutation made chloride binding weaker and the 

dissociation of chloride more facile, suggesting that replacement of D1-N87 by alanine 

alters the access of small molecules and ions from the lumen to the OEC.67	

Subsequently, detailed computational analyses by Pantazis and coworkers converged 

upon an atomistic model that was consistent with experimental observations of methanol 

binding in spinach PSII.63 However, it did not directly explain why methanol binding was 

less pronounced in cyanobacteria. There were no species-dependent substitutions for 

any of the amino acid residues in the previous computational models, and hence it is 

improbable that fundamentally different access modes existed between species. Hence, 

the model must have been equally valid for both cyanobacteria and higher plants, if 

methanol can reach this site and adopt these positions in all organisms. The narrow 

channel was suggested to be the structural origin of the species-dependent response to 

methanol and it is proposed to act as the substrate delivery channel. Within the context 

of the present work, the above 13C HYSCORE, QM/MM and DFT analysis establish that 

the substitution of the D1-N87 residue by alanine leads to the delivery and binding of 

methanol in the S2 state of cyanobacterial PSII. 

 

Conclusions. 

In summary, the use of 13C HYSCORE spectroscopy in conjunction with QM/MM and 

DFT provides evidence that 13C-methanol is coordinated to the OEC in the S2 state of 

D1-N87A PSII from Synechocystis sp. PCC 6803. Previous studies have shown that the 

D1-N87 residue in cyanobacterial PSII is required for efficient S-state cycling of the OEC 

and replacement of D1-N87 by an alanine residue alters the Cl--binding properties such 

that D1-N87A PSII mimics spinach PSII. The results of the present study confirm that the 

size and specificity of the “narrow” channel is altered in D1-N87A PSII, allowing for the 

binding of deprotonated 13C-labeled methanol to the Mn4 ion of the catalytic cluster, 

which has important implications on the mechanistic models for water oxidation in PSII. 
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Figures. 

Figure 1. The Mn4Ca-oxo cluster of PSII as observed in the X-ray crystal structure of 

PSII.4 The core of the cluster consists of a distorted cubane comprised of three Mn, one 

Ca2+ and four µ-O2- ions. A fourth dangler Mn is linked to the cubane through a µ-O2- ion. 

There are four water-derived ligands (W1 – W4) to the cluster, where W1 and W2 are 

coordinated to the Mn4 ion while W3 and W4 are bound to the Ca2+ ion. Also shown are 

amino acid ligands to the cluster.  

Figure 2. Contour-plot representation of the (+,+) quadrant of the (A) experimental and 

(B) overlay of the numerically simulated (pink) and experimental (purple) 2D 13C 

HYSCORE spectrum of the 13C-methanol bound S2 state of the OEC of the D1-N87A 

variant of PSII from Synechocystis sp. PCC 6803. The spectrum was acquired at a 

magnetic field of 335.0 mT and temperature of 5 K. The dashed black and red lines 

represent the diagonal (defined by	ν1	=	ν2) and anti-diagonal (defined by |ν1 ± ν2|	= 2*
13Cν, 

where 13Cν is the carbon nuclear Larmor frequency), respectively. 

Figure 3. QM/MM models of methanol binding at a Mn ion of the Mn4Ca-oxo cluster in 

the S2 state. The (A) Mn4-W1 model where a methoxy group replaces the water ligand 

W1 at Mn4(IV) ion, (B) Mn4-W2 model where a methoxy group replaces the water ligand 

W2 at Mn4(IV) ion and (C) Mn1-methanol model with methanol binding at the Mn1(III) ion. 

The manganese, calcium, carbon, nitrogen, oxygen and hydrogen atoms are shown in 

purple, yellow, grey, blue, red and white color, respectively. 
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Figure 1. 
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Figure	2.		
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Figure	3.	
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Tables.	

Table 1. Isotropic and anisotropic hyperfine parameters obtained from numerical 

simulations of the 2D 13C HYSCORE spectrum of the S2 state of the OEC of the 13C-

methanol bound D1-N87A variant of PSII from Synechocystis sp. PCC 6803. The 

hyperfine coupling constants are in units of MHz. 

 

	

QM/MM Model 

EPR-II ZORA/TZVP 

Aiso 

 

T Aiso T 

Mn4-W2 3.23 1.89 3.37 1.90 

Mn4-W1 0.86 2.09 0.33 2.98 

Mn1-MeOH 1.53 1.78 1.89 1.75 

	

	 	

Nucleus Aiso  T  Ax Ay  Az 
13C 3.63 ± 0.15 1.65 ± 0.11 2.4 ± 0.14 1.5 ± 0.12 7.0 ± 0.16  

 

 

Table 2. Normalized 13C-hyperfine constants for methanol/methoxy binding in the OEC 
that were calculated using a TPSSh functional with the EPR-II or ZORA/TZVP basis set. 
The hyperfine coupling constants are in units of MHz. 
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