

Oriented porous LLZO 3D structures obtained by freeze casting for battery applications

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-ART-06-2019-006520.R1
Article Type:	Paper
Date Submitted by the Author:	16-Aug-2019
Complete List of Authors:	Shen, Hao; Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division; Xi'an Jiaotong University, Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials Yi, Eongyu; Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division Amores, Marco; The University of Tokyo Cheng, Lei; Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division; Robert Bosch LLC Research and Technology Center North America Tamura, Nobumichi; Lawrence Berkeley National Laboratory, Advanced Light Source Parkinson, Dilworth; Lawrence Berkeley National Laboratory, Advanced Light Source Chen, Guoying; Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Chen, Kai; Xi'an Jiaotong University, Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials Doeff, Marca; Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division

1	Oriented porous LLZO 3D structures obtained by freeze
2	casting for battery applications
3	
4	Hao Shen, ^{a,b} Eongyu Yi, ^b Marco Amores, ^{b,c} Lei Cheng, ^{b,d} Nobumichi Tamura, ^e Dilworth Y.
5	Parkinson, ^e Guoying Chen, ^b Kai Chen, ^a and Marca Doeff ^b
6	a) Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key
7	Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi
8	710049, China
9	E-mail: <u>kchenlbl@gmail.com</u>
10	b) Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory,
11	Berkeley, CA 94720, USA
12	E-mail: mmdoeff@lbl.gov
13	c) Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1,
14	Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
15	d) Robert Bosch LLC, Research and Technology Center, Sunnyvale, CA 94085, USA
16	e) Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
17	
18	Abstract
19	All solid-state lithium batteries are, potentially, higher energy density and safer alternatives
20	to conventional lithium-ion batteries (LIBs). These are particularly attractive characteristics for
21	large-scale applications such as electric vehicles and grid energy storage systems. However, the
22	thin film deposition techniques used to make current devices are not readily scalable, and result in

23 low areal capacities, which translate to low practical energy densities. To overcome these 24 deficiencies, it is necessary to design thicker electrodes similar to what are used in LIBs (30-100 25 µm), in which active material is composited with the ionic conductor and an electronically 26 conducting additive, to overcome transport limitations. In this paper, we propose a method for 27 making such an electrode, starting with a porous scaffold of Li₇La₃Zr₂O₁₂ (LLZO), made by freeze casting, which is then infiltrated with active material LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂ (NMC-622) and other 28 29 components. The freeze casting technique results in the formation of oriented channels with low 30 tortuosity, which run roughly parallel to the direction of current. The scaffolds were characterized 31 with synchrotron X-ray micro-tomography for structural analysis, as well as synchrotron X-ray 32 fluorescence to map the elemental distribution in the infiltrated composite. A hybrid half-cell was 33 constructed and cycled as proof of principle, and showed good stability. In addition, a bilayer structure consisting of a porous layer combined with a dense LLZO film was successfully made 34 35 as a prototype of an all solid-state battery. A mathematical model was established to propose 36 optimized scaffold structures for battery performance.

37 Introduction

38 The widespread use of Li-ion batteries (LIBs) in electronic devices and electric vehicles 39 has highlighted the need for both improved safety and energy density. The use of lithium metal as 40 an anode can potentially increase both specific energy and energy density due to the high 41 gravimetric capacity (3869 mAh/g) and low density (0.534 g/cm³).¹⁻³ Unfortunately, safety issues preclude its use in conventional battery configurations because of mossy lithium deposition or Li-42 43 dendrite induced cell shorting when Li metal is cycled in cells with flammable liquid electrolytic 44 solutions.⁴ To overcome this, solid state electrolytes have been proposed as safer alternatives to 45 the liquids. In particular, solid-state garnet type ceramic electrolytes, such as cubic Al-substituted Li₇La₃Zr₂O₁₂ (LLZO), are promising, due to their kinetic stability against Li,⁵⁻⁸ large potential 46 window ($0 \sim 6V$), and ionic conductivities up to 1 mS/cm.⁹⁻¹⁵ Although Li deposition or dendrite 47 48 growth along the LLZO grain boundaries in polycrystalline dense films has recently been 49 recognized as a source of shorting in cells, modifications of the LLZO/Li interface and cell 50 architecture have successfully improved the stability and cycling behavior of symmetrical cells.^{11,} 16-19 51

52 Another challenge, particularly if solid-state batteries are to be used for large-scale applications such as vehicles, has to do with the design of the electrodes and cells.²⁰ Most solid-53 54 state batteries are fabricated in thin film configurations to overcome the transport limitations of cathode materials.²¹⁻²⁴ Not only does this usually requires the use of vacuum deposition techniques, 55 56 which are costly and difficult to scale, but it also results in low cathode areal capacity. For this 57 reason, practical energy densities are low, in spite of the use of metallic lithium anodes. Several 58 attempts have been made to build composite electrodes for solid-state batteries, in which the active 59 material and ionic conductor are combined to improve ionic transport. In some cases, composites

60 may be fabricated by cold-pressing the active material and electrolyte together²⁵⁻²⁷. This is most 61 easily accomplished with soft electrolytes such as sulfides. The low compressibility of garnets, in 62 contrast, makes this an impractical approach. Instead, Fu *et al.* constructed a porous garnet layer 63 by including a sacrificial polymer, which was burned away to create pores and then infiltrated 64 these with other components to make a composite.²⁸

65 Sander *et al* recently demonstrated the advantages of low tortuosity pores in battery electrodes using a magnetic alignment technique on thick LiCoO₂ electrodes.²⁹ There was a 66 noticeable increase of usable capacity of the aligned LiCoO₂ electrodes with low tortuosity pores 67 68 oriented in the direction of transport, compared to those with isotropic porosity, when cycled in 69 half cells with liquid electrolytic solutions. To this end, McOwen et al. 3D printed LLZO scaffolds by using LLZO inks, which allows good control of the electrode structure.³⁰ The effect of tortuosity 70 71 on the electrochemical behavior of LLZO electrolytes has recently been described, with lower 72 tortuosity potentially providing a means for achieving higher critical current densities and power 73 densities in solid-state batteries³¹. Another attractive method for producing low-tortuosity pores in ceramics is that of freeze casting.³² There has already been a report on freeze-casting LLZO to 74 75 make ceramic/polymer composite electrolytes³³. Here we report our preliminary results using 76 freeze casting to produce LLZO scaffolds with low tortuosity pores, which were subsequently 77 infiltrated with active material and used as electrodes in hybrid half-cells. A prototype all solid-78 state cell was also assembled. We used synchrotron radiation micro-computed tomography to 79 visualize the three-dimensional (3D) models of the porous LLZO scaffolds and X-ray fluorescence 80 to map distributions of the components. A simple mathematical model is also presented to provide 81 guidance on the design of the porous scaffolds.

82

83 **Experimental**

84 **1. Preparation of porous LLZO scaffolds**

85 Sub-micron-sized commercial Al-doped LLZO powders were obtained from MSE 86 Supplies, Inc. for the freeze casting experiments. A slurry containing 20 wt.% LLZO powder and 78 wt.% tert-butyl alcohol (TBA) was mixed with 1 wt.% polyvinyl butyral (PVB) and 1 wt.% 87 88 deionized water (to adjust the freezing point). Afterwards, another 5 wt.% Li₂CO₃ was added into 89 the slurry to compensate for Li loss during sintering. The mixture was ball-milled with ZrO₂ 90 grinding media for 8 h to form a stable LLZO slurry at room temperature. Although water is known 91 to cause slow decomposition of LLZO, the amount of decomposed LLZO is negligible after several 92 hours ball milling. Moreover, during the sintering process, the decomposed LLZO is recovered 93 through addition of extra Li₂CO₃ and heating. A house-made freeze casting system was used to 94 prepare samples at various temperatures as illustrated in Figure 1a. A PVC mold of 2 cm in 95 diameter and 1.5 cm in height was attached to a liquid nitrogen cooling bed with a polished copper 96 plate in between to ensure excellent thermal conductivity. The top surface of the slurry is still 97 exposed to ambient temperature resulting in a temperature gradient from the bottom (cold) to the 98 top (warm). To control the freezing rate, the temperature of the slurry was adjusted and monitored 99 by an embedded heating element and thermocouple in the cooling bed. For this work, the cooling 100 plate temperature was set at -20 °C and -50 °C. After the temperature stabilized, the LLZO slurry 101 was poured into the mold and maintained at the desired temperature until fully frozen. Then the 102 solidified TBA and LLZO was unmolded and transferred to a freeze drier at -40 °C and kept under 103 vacuum overnight to sublime the TBA crystals (Figure 1b). The removal of TBA through this 104 process results in a porous green body structure (inset of Figure 1b). Some samples were also 105 prepared using water as the solvent as follows: 15-30 wt. % LLZO, was mixed with 1 wt.% Darvan,

1 wt.% Poly(vinyl alcohol) (PVA) and the remainder deionized water, then ball milled overnight
and frozen at a cooling rate about of ~20 °C/min. One sample was also prepared substituting gelatin
for PVA.

109 The scaffolds were then sintered at 1050 °C for 2 h in Ar atmosphere. Ambient air was 110 avoided because a large amount of lithium was lost, resulting in decomposition of the LLZO and 111 crumbling of the structure (SI, Figure S1). The sintered scaffolds decreased in volume substantially 112 (inset of Figure 1b). The scaffolds were then encapsulated with epoxy (Allied High Tech Products, 113 Inc.) to avoid destroying the scaffold during the following operations, which had an insignificant 114 volume change after curing, and sliced into thin sections using a diamond saw. The LLZO section 115 with thickness of 200 µm showed high optical transparency (Figure 1c). Freestanding porous 116 LLZO scaffold films were obtained after burning away the epoxy in dry air at 800 °C for 30 min.

117 2. Preparation of dense/porous LLZO bilayer structures

118 The oriented scaffold becomes fragile and hard to handle after sintering, especially when 119 sliced thin. Adding PVDF binder into the NMC slurry helps to keep the integrity of the composite 120 electrode. Another solution to avoid damage and fracture during assembly is to support the porous 121 layers with a dense layer to form a bilayer structure. In this study, two types of dense LLZO 122 structures with thicknesses of approximately 100 µm and 20 µm were used for the proof of 123 principle study and the prototype half-cells, respectively. The thick dense films were fabricated 124 using a tape casting method. The LLZO slurry for the dense layer preparation was a mixture of 30 125 wt.% LLZO powders, 3 wt.% Li₂CO₃ (32 wt.% extra elemental Li in LLZO), 3 wt.% PVA and 64 126 wt.% analytically pure isopropyl alcohol. The slurry was introduced into a ZrO₂ container and ball 127 milled with ZrO₂ milling media using a SPEX 8000M mixer for 30 minutes to guarantee a stable 128 suspension of LLZO. Then the slurry was tape cast onto conventional household polyethylene

Journal of Materials Chemistry A

membranes using a doctor blade, and dried at room temperature. The dried LLZO film was peeledoff the polyethylene membrane, cut into pieces and cold pressed using a stainless-steel die.

131 The ultrathin LLZO dense films (~20 µm thick) were fabricated adopting a previously 132 reported approach.³⁴ LLZO, Li₂CO₃, polyvinyl butyral (binder), and benzyl butyl phthalate 133 (plasticizer) were dissolved/dispersed in an alcohol/acetone mixed solvent system by ball-milling for 48 h using 3 mm ZrO₂ beads. The suspension was formulated to result in ~55 vol.% 134 135 LLZO/Li₂CO₃ excluding the solvent. The amount of Li₂CO₃ was selected to equal 50 wt.% excess 136 elemental Li in LLZO. The suspension was tape cast onto a Mylar substrate and left to dry for 137 several hours. The dried green tapes were peeled off and punched to desired sizes for subsequent 138 sintering.

The bilayer structure was prepared by co-sintering a LLZO porous scaffold (after epoxy burnout) and a dense film (green) at 1070 °C for 3 h in Ar atmosphere between two pieces of alumina disks, each of which was 2 mm thick. No extra pressure was imposed onto the LLZO scaffold and film besides the weight of the alumina disks. In order to prevent unwanted diffusion and reaction with the alumina, graphite foils or Ni meshes were placed between the LLZO and the disks.

145 **3.** Active material infiltration and electrochemical testing

In this study, the NMC-622 particles (3-12 μm) provided by Umicore, Inc. were introduced
into the LLZO scaffolds as the active material. A slurry was prepared by mixing 84 wt.% NMC622, 8 wt.% carbon black, and 8 wt.% PVDF into N-methyl-2-pyrrolidone (NMP). During the
stirring, several more drops of NMP were added to adjust the viscosity of the slurry. The slurry
was then drop-cast onto the LLZO scaffolds. The success of the infiltration process of NMC
particles could be readily indicated by a color change from natural ivory to black. It usually took

several rounds of infiltration to fully fill the pores, as confirmed by scanning electron microscope (SEM) observation of the bottom surface of the infiltrated sample. The addition of polyaniline was also demonstrated in freeze cast structures (see SI, Figure S2e). A partially infiltrated sample was also prepared using smaller (submicron in diameter) NMC particles (SI, Figure S3). Smaller NMC particles were obtained by ball-milling the as-received NMC for 48 h in EtOH using 2 mm ZrO₂ beads which resulted in fracturing of secondary particles to primary particles. After infiltration, samples were kept in a vacuum oven at 80 °C overnight.

159 The composite structures were then transferred to an Argon-filled glove box for assembly 160 into coin cells. For the hybrid cells, Celgard 2400 polypropylene membranes wet with 1 M LiPF₆ 161 in ethylene carbonate : diethyl carbonate (1 : 1 vol%) were employed as separators, and Li foils 162 (Alfa-Aesar) were used as the anodes. The coin cells were then galvanostatically cycled using a 163 VMP3 multichannel potentiostat/galvanostat equipped with a frequency response analyzer 164 between 2.5 and 4.7 V at a current density of 0.3 mA/cm² (approximately a ten hour rate) after 12 165 hours rest. The impedance was measured from 1 mHz to 100 kHz every 10 cycles. The bilayer 166 structures were also assembled into coin cells with lithium anodes, without polymeric separators 167 or liquid electrolyte. The open circuit voltage was monitored for 12 h.

168 **4. Structure characterization**

169 The morphologies of the selected samples were examined using a Hitachi TM-1000 170 tabletop scanning electron microscope (SEM). Filters were applied to binarize the SEM images 171 (SI, Figure S4) to enable measurement of pore size and estimate porosity by calculating the dark 172 area. X-ray powder diffraction (XRD) patterns were acquired on a Bruker D2 PHASER 173 diffractometer with monochromatic Cu K_{α} radiation to check the phase purity of the samples.

174 Because of the fragility of the LLZO samples after sintering, the freeze cast pellet was first 175 mounted in epoxy prior to sample characterization. Both the LLZO films and longitudinal sections 176 were cut from the same sample. Films were cut perpendicular to the TBA channel growing 177 direction, while the longitudinal sections were cut parallel to the channel direction. The thicknesses 178 of the films and the diameters of the longitudinal sections were controlled to be 200-300 µm. Then 179 synchrotron micro computed tomography (SR-µCT) experiments were performed at Hard X-ray 180 Micro-Tomography Beamline 8.3.2 of the Advanced Light Source (ALS) on the samples. Images 181 were collected over 180 degrees in 0.072 degree steps, with 24 keV X-rays. Detection was 182 accomplished with a 50 micrometer thick LuAG:Ce scintillator, a 10x Olympus optical lens in an 183 optical system from Optique Peter, and a PCO.edge sCMOS detector, with 500 ms exposure time. 184 Dark field images (with the X-ray shutter closed) were collected to subtract detector dark counts, 185 and bright field images were collected before and after the sample scan to normalize for variations 186 in the incident illumination. The voxel dimension with this setup was approximately 0.64 microns. Tomographic reconstruction was done with TomoPy³⁵ and Xi-CAM³⁶. Visualization and analysis 187 188 was done with Avizo, from FEI.

The elemental distribution of the NMC particle-infiltrated LLZO scaffolds was mapped using the synchrotron radiation based X-ray micro-fluorescence (SR- μ XRF) technique, which was conducted at Beamline 12.3.2 of the ALS. The specimen cross-section along the thickness direction was raster scanned using a micro-focused polychromatic X-ray beam (5 – 24 keV). At each scanning position the fluorescence signal was collected with a silicon drift detector. In this study, the Zr K-edge and Mn K-edge intensities were recorded, and thus the concentration distribution of these two elements were obtained.

196

197 **Results and discussion**

The fracture surface of a green body made using TBA frozen at -20 °C is shown in Figures 2a and b. The long channels exhibit clean and sharp edges, with minimal bridging. After sintering, the structure shrank by about 35% in diameter and became fragile. The fracture surface of the sintered scaffold in Figure 2c and d displays walls with high density and low thickness, composed of grains about 2 μ m in diameter. The walls in the scaffold are only a few grains thick, and the pores are prismatic in shape and well faceted due to the directional growth behavior of the TBA.

204 The 3D image of the sintered scaffold was collected using SR-µCT. A sub-volume with 205 the size of 700 μ m \times 700 μ m \times 200 μ m of the LLZO film is shown in Figure 3a. A video of the 206 reconstructed model is included in the supporting information, and one slice of the top view and 207 left view from this video are shown in Figures 3b and c, respectively, indicating that the pore size 208 is around 50 µm and that the pores are uniformly distributed throughout the whole structure. Better 209 contrast is obtained from the 3D model of a LLZO longitudinal section shown in Figure 3d. By 210 rotating the image, it is found that the smooth and empty channels with the same orientation are present and there is no bridging over the length range of several hundred microns (Figures 3e and 211 212 f), which by far exceeds the thickness of the scaffolds ($\sim 100 \,\mu$ m). Moreover, the shape and size of 213 the channels remain comparatively unvaried throughout the thickness of the sample. The long-214 range bridge-free structure provides distinct advantages for the infiltration process compared to 215 the slit-like or layer-stacked structures fabricated using water as the solvent for freeze casting (SI, 216 Figure S2, S5).

The temperature of the cooling bed in the freeze cast apparatus is one of the key processing parameters for optimizing the pore size and porosity of the LLZO scaffold. A lower cooling temperature leads to more nucleation sites and higher solidification velocity, and thus finer TBA

220 dendrites are formed, resulting in more, smaller pores than when the temperature is higher. 221 However, if the temperature is too low, the sample may crack; if it is too high, the slurry will not 222 freeze completely in a reasonable period of time. The SEM images of the top cross sections of 223 samples which are frozen at -20 and -50 °C are compared in Figure 4. Both samples were sintered 224 before taking the SEM photos. The average pore size of the sample processed at -20 °C is about 225 52 μ m, twice as large as the one fabricated at -50 °C (~23 μ m). A statistical analysis of the white (LLZO scaffold) and black areas (pores) indicates that the porosity of the -20 °C sample is 73 226 227 vol.% and the -50 °C sample has a lower porosity of about 60 vol.%. The same trend was also reported by Xu et al. in the freeze cast lead zirconate titanate (PZT) system.³⁷ As the cooling bed 228 229 temperature decreases, a higher volume fraction of pore walls form, and pore size decreases.

230 After the initial sintering but prior to epoxy burned out, the excess Li₂CO₃ used to 231 compensate for Li loss results in the formation of some tetragonal LLZO, evidenced by the weak 232 peak splitting observed in the XRD pattern (Figure 5a). After the epoxy removal heat treatment, 233 the tetragonal LLZO signals disappear and the structure fully converts to cubic LLZO, with traces 234 of LiAlO₂ and La₂Zr₂O₇ impurities associated with Li loss due to the high temperature exposure. 235 Although increasing the amount of excess of Li₂CO₃ helps to compensate for the Li loss, it also 236 accelerates the sintering process and generates cracks in the bulk of LLZO scaffold, which is 237 undesirable.

As the NMC particles are comparable in size to the pore size obtained at -50 °C, the infiltration would be challenging. Only a few point contacts would be formed between LLZO and NMC, which is harmful to the cell performance. Thus, the scaffold made at -20 °C is preferable for cell testing. The bottom view of the LLZO scaffold freeze cast at -20 °C infiltrated with NMC particles, PVDF, and carbon suggests that a fraction of the pores are not completely filled (Figure

243 5b). A scaffold about 8 mm in diameter and 1 mm in thickness was infiltrated using the same 244 process and contains 7.9 mg NMC-622, corresponding to active material loading of 15.7 mg/cm² 245 or about 3.14 mAh/cm² (based on the practical specific capacity of 200 mAh/g), similar to loadings 246 used in commercial lithium-ion batteries. It was then incorporated into a hybrid cell with Celgard 247 separator, electrolytic solution, and Li anode, and was cycled at a current density of 0.3 mA/cm² between 4.7 and 2.5V (approximately C/10). The charge and discharge profiles of every tenth 248 249 cycle as a function of cycle number are shown in Figure 6a, together with Coulombic efficiency 250 and capacity for each cycle (Figure 6b). The initial capacity of NMC-622 is similar to that of previously reported values, which is around 200 mAh/g when charged to over 4.5 V.^{38,39} The areal 251 252 capacity is also comparable to the reported high areal loading liquid Li/NMC-622 cell of about 3 mAh/cm² with current density of 0.5 mA/cm². ^{40,41} There is some capacity fading observed, but it 253 254 is similar to what is seen in conventional NMC half-cells cycled under similar conditions.⁴² The 255 fading can be attributed to the increased interfacial impedance (Figure 6c) caused by the formation 256 of a resistive cathode/electrolyte film and surface reconstruction to rock salt, similar to what is 257 seen in the conventional cells. This has been documented in many reports using surface sensitive characteristic techniques^{39,42-46}. These results can be taken as proof of principle that infiltrated 258 259 scaffolds of LLZO can be used as cathodes in cells, although further optimization is required.

Although the specific area loading of the active material NMC demonstrated in this example, 15.7 mg/cm², is fairly high, the pores are not completely filled using the drop casting method. The density of NMC-622 provided by the manufacturer is about 2 g/cm³. From the SEM images, the porosity of the LLZO scaffold is estimated to be approximately 70% of the total volume. Therefore, only 11% of the pore volume is filled by NMC-622. Thinner scaffolds, similar to what is used in lithium ion batteries (about 1/10 of this thickness or ~100 μ m) would be easier

Journal of Materials Chemistry A

to infiltrate and would most likely perform better, particularly if a completely solid state
 configuration is used. Work on making thinner scaffolds and optimizing the infiltration process is
 currently underway in our laboratories.

269 The ultimate goal is to use the scaffolds in a totally solid state configuration. To this end, 270 we built bilayer structures, in which a dense LLZO layer is stacked with a porous scaffold and 271 sintered together (Figure 7a). In other words, the dense LLZO layer is employed in this 272 configuration to play the role that both the separator and liquid electrolytic solution play in a hybrid 273 cell. From the XRD patterns in Figure 7b, fewer impurities are formed in the scaffold upon 274 sintering in a bilayer configuration than those shown in Figure 5a, because the dense layer acts as 275 an additional source of lithium. Figure 7c and d show the fracture surfaces of the bilayer structures 276 with 100 µm and 20 µm thick dense layers fabricated by the two different approaches explained 277 in the experimental section, respectively. In both structures, the porous scaffold is about 150 µm 278 thick. A smooth fracture surface will be formed if the scaffold and dense layer are well connected, 279 which is important for ion transfer. Combining the results from the SEM photos and the fracture 280 surfaces, it appears that the connections are partly formed, but there are still some gaps between 281 scaffold and dense layer, which may be caused by different shrinkage rates of the two parts during 282 the sintering procedure. The overall differences in shrinkage rates can be caused by the difference 283 in porosities and additive concentrations. In addition, once a local connection is formed, the area 284 around will be pinned (SI, Figure S6b), and the uneven shrinkage may result in gaps between the 285 layers and even pinholes in the dense layer (SI, Figure S6c). It can also be seen that the channels 286 in the scaffold are oriented slightly off the normal direction of the interface.

After the active material NMC-622 was infiltrated into the scaffold, the cross section morphology of the bilayer structure was first observed in SEM in backscattered electron (BSE)

289 mode (Figure 7e), and then the elemental distribution was mapped using the SR-µXRF method, 290 focusing on the Mn K-edge signals arising from the NMC and the Zr K-edge signals from LLZO 291 (Figure 7f). The Mn signal is primarily located in the areas where Zr is absent and almost fills 292 these spaces, even though many of the NMC particles cannot be seen in the corresponding SEM 293 images. From the map as well as the SEM images, a thin layer of NMC particles are observed on 294 top of the scaffold after infiltration, indicating some heterogeneity in the distribution. A cell with 295 a lithium foil anode and bilayer with the 20 µm thick dense layer as separator was assembled and 296 the open circuit voltage (OCV) monitored over a period of about twelve hours (SI, Figure S7). 297 Initially, the OCV was close to 0V, indicating shorting of the cell. However, the potential rose to 298 2V over 2 hours, and then reached 2.8 V after 12 hours, the expected potential for a Li/NMC cell 299 in the discharged state. This indicates that there was a soft short that could have been caused by 300 pinholes in the dense film, which allowed some carbon particles to cross over and caused initial 301 voltage instability (SI, Figure S8). Although thicker dense layers might mitigate the soft short 302 problem, this would come at the cost of higher cell resistance and reduced energy density due to 303 the weight of the excess LLZO. Therefore, it remains a particular challenge when very thin dense 304 layers are used in solid-state configurations along with extremely fine particles of carbon. The tri-305 layer LLZO reported by G. T. Hitz et al. offers a successful example for densifying multi-layer 306 LLZO structures through laminating green LLZO layers as porous-dense-porous sandwich 307 structures⁴⁷. This method decreases the difference in shrinkage rates between the scaffolds and 308 dense layers and also balances the stresses on both sides. However, for the porous structure made 309 by freeze casting in the current study, the bulk scaffold needed to be sliced into thin sections, and 310 the fragile ceramic structure needed to be stabilized. Thus sintering the structure for a short time

was required. We are currently exploring making trilayers and using a related technique, whichyields thinner structures (freeze tape casting), and which will simplify this process.

313 A number of technical questions arise for this approach. The oriented low-tortuosity 314 channels in the freeze cast scaffolds should be advantageous because they minimize ion diffusion 315 distances, but it is not clear what the optimized channel sizes, wall thicknesses, and porosities 316 should be. To attempt to answer these questions, we established a simple model for semi-317 quantitative estimations of these parameters. For the model, the geometric configuration of the 318 porous scaffold shown in Figure 8a was assumed. The channels are assumed to run through the 319 thickness of the scaffold and have smooth walls, have the same constant diameter, and are 320 uniformly distributed with no bridges to form a regular hexagonal honeycomb. The top view in 321 Figure 8b shows the various parameters such as the pore diameter (d_n) , wall thickness (d_w) , porosity, 322 and number density of the pores. Taking the number density of the pores as N (per unit area), the 323 side length a (distance between centers of adjacent pores) of the regular hexagonal base is 324 calculated to be:

$$a = \left(\frac{2}{\sqrt{3}}\frac{1}{N}\right)^{1/2} \tag{1}$$

326 For a scaffold with the porosity *P*, the diameter of the pores d_p and the wall thickness d_w 327 are:

328
$$d_p = \left(\frac{4P}{\pi N}\right)^{1/2} = \left(\frac{2\sqrt{3}P}{\pi}\right)^{1/2} \cdot a \tag{2}$$

329 and

330
$$d_w = a - d_p = \left[1 - \left(\frac{2\sqrt{3}P}{\pi}\right)^{1/2}\right] \cdot a , \qquad (3)$$

respectively. It is self-evident that for higher porosities in the structure, more active material can be infiltrated into the channels resulting in higher areal capacity. However, Equation (3) suggests that the porosity cannot be close to 100%. Even when the wall thickness is infinitesimally small,

LLZO will be left at the corners of the hexagons shown in Figure 8b to maintain the integrity of

the scaffold, and a theoretically maximal porosity, $P_{max} = \frac{\pi}{2\sqrt{3}} = 91\%$, will be obtained.

334

336 When using this type of scaffold structure with active material infiltrated into the channels, which run approximately parallel to the current direction, the lithium diffusion path length is 337 338 shortened and effective NMC/LLZO contact area is increased, compared to the case in which dense 339 LLZO films are employed. A semi-quantitative evaluation of the improved performance is 340 estimated. Considering that Li ions diffuse in LLZO and in the active material at different rates, we can define a constant K as the diffusivity ratio: $K = \frac{D_{LLZO}}{D_{cathode}}$. From Einstein's random walk 341 theory⁴⁸, we know that in a certain period of time the Li ion diffusion distance in LLZO and in the 342 343 active material follow a square root relationship. In other words, in the same period of time, Li ions will migrate the length L_{NMC} in NMC as $\sqrt{K} \cdot L_{NMC}$ in LLZO. The equivalent Li ion diffusion 344 path in the porous/dense bilayer structure L_{bilayer}, assuming that the channels are all fully infiltrated 345 346 by active materials, and that Li ions need to first diffuse from NMC to LLZO and then migrate 347 through LLZO, is expressed as:

348
$$L_{bilayer} = \int_0^{t_s} \int_0^{\frac{1}{2}d_p} \int_0^{2\pi} \left[\sqrt{K} \left(\frac{1}{2} d_p - r \right) + t \right] \cdot r d\theta dr dt , \qquad (4)$$

349 where *r*, θ and *t* define a cylindrical coordinate system, and *t_s* denotes the thickness of the scaffold. 350 Combining Equations (1), (2) and (4), *L_{bilayer}* is expressed as:

351
$$L_{bilayer} = \frac{1}{24} \pi \left(\sqrt{K} d_p^3 t_s + 3 t_s^2 d_p^2 \right).$$
(5)

352 It is called the equivalent diffusion path because the diffusivity difference between Li-in-NMC 353 and Li-in-LLZO is considered, and the diffusion path length in NMC to normalized by calculating 354 its equivalent length in LLZO.

To consider a cell in which only a dense LLZO film and a dense layer of active material are used, assuming the thickness of LLZO film and amount of NMC active material are the same as used in the bilayer structure, the thickness of the active material layer is $t_a = P \cdot t_s$, and in this situation the total equivalent diffusion path length L_{dense} is calculated to be:

359
$$L_{dense} = \int_{t_s}^{t_a + t_s} \int_0^{\frac{1}{2} (d_p + d_w)} \int_0^{2\pi} (t_s + \sqrt{Kt}) \cdot r d\theta dr dt = \frac{1}{8} \pi d_p^2 t_s^2 \left(2\sqrt{K} + \sqrt{KP} + 2 \right)$$
(6)

360 To compare the equivalent diffusion path lengths of porous and dense LLZO films, the 361 $L_{bilayer}$ to L_{dense} ratio is computed to be

362
$$\frac{L_{dense}}{L_{bilayer}} = \frac{3t_s \left(\sqrt{KP} + 2 + 2\sqrt{K}\right)}{\sqrt{Kd_p} + 3t_s}.$$
 (7)

363 In most cases, the pore diameter d_p is much smaller than thickness of the scaffold t_s . Thus, 364 the ratio is approximated to be:

$$\frac{L_{dense}}{L_{bilayer}} = 2\sqrt{K} + 2 + \sqrt{K}P.$$
(8)

From this point of view, the higher the porosity is in the porous structure, the better the performance that can be obtained, and the faster the diffusion is in LLZO compared to the active materials, the more enhancement can be achieved. With NMC particles infiltrated in the LLZO scaffold, *K* can be estimated to be about 10, according to the reported Li ion diffusivity around 10^{-10} cm²/s in NMC⁴⁹ and 10^{-9} cm²/s in LLZO⁵⁰. Since porosity *P* ranges between 0 and 0.91, the equivalent diffusion path length of the bilayer structure is 88% to 91% shorter than that of the
dense LLZO for Li ions. Although there is considerable variation for the literature values of Li ion
diffusivities in LLZO⁵⁰⁻⁵³ and NMC^{49, 54-56} it is still true that the equivalent diffusion path length
of the bilayer structure is much shorter than that of the dense LLZO configuration.

In practice, this will be highly dependent upon how intimately the active material and LLZO contact each other, and will require careful optimization of the fabrication parameters. Thus a dimensionless quantity, $A_{contact}$, which is defined as the contact area per unit LLZO film crosssectional area, is calculated by summing up the contribution from two parts – the base A_b and the side-walls A_w :

380
$$A_{contact} = A_b + A_w = \frac{1}{4} N \pi d_p^2 + N \pi d_p t_s.$$
(9)

381 Substituting Equations (2) and (3) into (9), we get:

$$A_{contact} = P + \frac{4Pt_s}{d_p} \,. \tag{10}$$

383 From Equation (10), it is apparent that the diameter of the channels should be as small as 384 possible to increase contact area, but also that the porosity should be as high as possible. To 385 decrease the channel diameter, lower cooling temperatures and higher solidification rates in the 386 freeze casting experiment are preferred. However, as revealed in the experimental study, higher 387 freezing rates also decrease the wall thickness. Moreover, the wall thickness thinning rate is 388 usually slower than the channel diameter shrinking rate, resulting in lower porosity, which is not 389 desirable in terms of battery capacity, diffusion path length, and contact area. Therefore, it is not 390 useful to tune the microstructure by changing the cooling rate only. To obtain small pore diameter 391 and high porosity simultaneously, the LLZO slurry mass loading has to be decreased as well.

392 It must be emphasized that the model presented above primarily considers the Li ion 393 diffusion path length. However, in reality, more factors may need to be taken into account. Charge 394 transfer occurs at the cathode/LLZO interface during cell cycling and the kinetics will have a 395 strong impact on the performance of the cell. Besides contact area, the selection and matchup of 396 the morphology and size of the active material particles with respect to the pores in the LLZO 397 films are equally important. Large active material particles are more difficult to infiltrate into the 398 pores and channels and may result in relatively fewer points of contact between active material 399 and LLZO than if smaller particles are used. However, if small particles are infiltrated into pores 400 much larger than their diameters, there will also be particle-to-particle charge transfer resistance. 401 Moreover, volume changes during redox processes will affect the amount of contact among all the 402 components in the composite, and, thus the electrochemistry.

403

404 **Conclusion:**

405 Here we propose a novel configuration for thick composite electrodes in solid-state 406 batteries utilizing a freeze casting approach to make ionically conductive porous scaffolds, which 407 are then infiltrated with active material and other components. To illustrate the principle, we 408 prepared scaffolds using LLZO and TBA as the solvent. By changing the cooling bed temperature 409 and thus the solidification rate, the porosities and channel diameters can be varied. Sintering then 410 strengthens the structure and densifies the pore walls. 3D models of the LLZO scaffolds and 411 longitudinal sections were examined using monochromatic SR-µCT, and show that the low-412 tortuosity channels are uniformly distributed parallel to the thickness of the scaffold, with pore 413 diameters almost constant from top to bottom. The open and oriented channels with few bridges 414 make it possible for large commercial cathode particles to be infiltrated into the structure readily.

415 As an example, a composite NMC622/LLZO electrode was successfully cycled in a hybrid cell 416 configuration. Bilayer structures were also fabricated by co-sintering a dense layer and a porous 417 layer together. SR-µXRF shows that the porous layer was successfully infiltrated with active 418 material. It was possible to read an open circuit potential on a totally solid state half cell consisting 419 of a lithium anode and the infiltrated bilayer structure. Theoretical calculations were performed to 420 model the porosity of the scaffolds, indicating that the porosity cannot exceed 91%. Higher 421 porosity results in higher energy density and should result in improved rate capability, by offering 422 shorter diffusion path lengths and larger contact areas. However, smaller channel diameters result 423 in increased contact area between the ionic conductor and active material, which also benefits 424 performance. While lowering the temperature of the freeze casting experiment results in smaller 425 pore sizes, it also decreases porosity. With these design considerations in mind, it is suggested that 426 the loading of LLZO in slurries for freeze casting experiments should be lowered to meet the 427 simultaneous goals of increased porosity and smaller pores.

428

429 Acknowledgements

430 This work was supported by the National Natural Science Foundation of China (Grant No. 431 51671154 and 91860109), the National Key Research and Development Program of China (Grant 432 No. 2016YFB0700404), the Assistant Secretary for Energy Efficiency and Renewable Energy, 433 Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-434 05CH11231. This research used resources of the Advanced Light Source, which is a DOE Office 435 of Science User Facility under contract no. DE-AC02-05CH11231. H.S. would like to thank the 436 financial supports from the program of China Scholarships Council (No. 201606280062) from 437 Oct. 2016 to Sep. 2017 and from ALS Doctoral Fellowship in Residence from Oct. 2017 to Sep.

438 2018. K.C. appreciates the support from the International Joint Laboratory for Micro/Nano
439 Manufacturing and Measurement Technologies and the Collaborative Innovation Center of High440 End Manufacturing Equipment.

441

442 This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United 443 444 States Government nor any agency thereof, nor the Regents of the University of California, nor 445 any of their employees, makes any warranty, express or implied, or assumes any legal 446 responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, 447 or process disclosed, or represents that its use would not infringe privately owned rights. Reference 448 herein to any specific commercial product, process, or service by its trade name, trademark, 449 manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 450 recommendation, or favoring by the United States Government or any agency thereof, or the 451 Regents of the University of California. The views and opinions of authors expressed herein do 452 not necessarily state or reflect those of the United States Government or any agency thereof or the 453 Regents of the University of California.

454

455 **References**

- J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang and W. Xu, *Nat. Energy*, 2017, 2, 17012.
- 458 2. D. Deng, *Energy Sci. Eng.*, 2015, **3**, 385-418.
- 459 3. D. Lin, Y. Liu and Y. Cui, *Nat. Nanotechnol.*, 2017, **12**, 194-206.
- 460 4. P. Bai, J. Li, F. R. Brushett and M. Z. Bazant, *Energy Environ. Sci.*, 2016, 9, 3221-3229.

461	5.	C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J.
462		Dudney and M. Chi, Nano Lett., 2016, 16, 7030-7036.
463	6.	Y. Zhu, X. He and Y. Mo, J. Mater. Chem. A, 2016, 4, 3253-3266.
464	7.	W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, Chem. Mater., 2015, 28,
465		266-273.
466	8.	J. Wolfenstine, J. L. Allen, J. Read and J. Sakamoto, J. Mater. Sci., 2013, 48, 5846-5851.
467	9.	T. Thompson, A. Sharafi, M. D. Johannes, A. Huq, J. L. Allen, J. Wolfenstine and J.
468		Sakamoto, Adv. Energy Mater., 2015, 5, 1500096.
469	10.	R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem., 2007, 119, 7925-7928.
470	11.	A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine and J. Sakamoto, J. Power Sources,
471		2016, 302 , 135-139.
472	12.	S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J.
473		Sakamoto and D. J. Siegel, Chem. Mater., 2016, 28, 197-206.
474	13.	D. Rettenwander, G. Redhammer, F. Preishuber-Pflugl, L. Cheng, L. Miara, R. Wagner,
475		A. Welzl, E. Suard, M. M. Doeff, M. Wilkening, J. Fleig and G. Amthauer, Chem.
476		Mater., 2016, 28, 2384-2392.
477	14.	L. Buannic, B. Orayech, JM. López Del Amo, J. Carrasco, N. A. Katcho, F. Aguesse,
478		W. Manalastas, W. Zhang, J. Kilner and A. Llordés, Chem. Mater., 2017, 29, 1769-1778.
479	15.	Z. Zhang, Y. Shao, B. V. Lotsch, YS. Hu, H. Li, J. Janek, C. Nan, L. Nazar, J. Maier,
480		M. Armand and L. Chen, <i>Energy Environ. Sci.</i> , 2018, 11 , 1945-1976.
481	16.	K. Fu, Y. Gong, G. T. Hitz, D. W. McOwen, Y. Li, S. Xu, Y. Wen, L. Zhang, C. Wang,
482		G. Pastel, J. Dai, B. Liu, H. Xie, Y. Yao, E. D. Wachsman and L. Hu, Energy Environ.
483		Sci., 2017, 10 , 1568-1575.

484	17. X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G.
485	Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman and L. Hu, Nat. Mater., 2016, 16, 572.
486	18. L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S.
487	Berendts, R. Uecker, W. C. Carter and YM. Chiang, Adv. Energy Mater., 2017, 7,
488	1701003.
489	19. F. Shen, M. B. Dixit, X. Xiao and K. B. Hatzell, ACS Energy Lett., 3, 1056-1061.
490	20. H. Shen, E. Yi, L. Cheng, M. Amores, G. Chen, S. Sofie and M. Doeff, Sust. Energy
491	Fuels, 2019, DOI: 10.1039/C9SE00119K.
492	21. M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato and T. Yoshida, J. Electrochem. Soc.,
493	2010, 157 , A1076-A1079.
494	22. J. van den Broek, S. Afyon and J. L. M. Rupp, Adv. Energy Mater., 2016, 6, 1600736.
495	23. E. Dumont-Botto, C. Bourbon, S. Patoux, P. Rozier and M. Dolle, J. Power Sources, 196,
496	2274-2278.
497	24. G. Delaizir, V. Viallet, A. Aboulaich, R. Bouchet, L. Tortet, V. Seznec, M. Morcrette, J
498	M. Tarascon, P. Rozier and M. Dollé, Adv. Funct. Mater., 2012, 22, 2140-2147.
499	25. X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J. P. Mwizerwa, C. Wang and X. Xu, Adv.
500	Energy Mater., 2017, 7, 1602923.
501	26. Yao, D. Liu, C. Wang, P. Long, G. Peng, Y. S. Hu, H. Li, L. Chen and X. Xu, Nano Lett.,
502	2016, 16 , 7148-7154.
503	27. Q. Zhang, H. Wan, G. Liu, Z. Ding, J. P. Mwizerwa and X. Yao, Nano Energy, 2019, 57,
504	771-782.
505	28. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y.
506	Chen, Y. Mo, E. Wachsman and L. Hu, Sci. Adv., 2017, 3, e1601659.

507	29. J. S. Sander, R. M. Erb, L. Li, A. Gurijala and Y. M. Chiang, Nat. Energy, 2016, 1,
508	16099.
509	30. D. W. McOwen, S. Xu, Y. Gong, Y. Wen, G. L. Godbey, J. E. Gritton, T. R. Hamann, J.
510	Dai, G. T. Hitz, L. Hu and E. D. Wachsman, Adv. Mater., 2018, 30, e1707132.
511	31. M. B. Dixit, M. Regala, F. Shen, X. Xiao and K. B. Hatzell, ACS Appl. Mater. Interfaces,
512	2019, 11 , 2022-2030.
513	32. S. Deville, Adv. Eng. Mater., 2008, 10, 155-169.
514	33. L. Buannic, M. Naviroj, S. M. Miller, J. Zagorski, K.T. Faber and A. Llordes, J. Am.
515	<i>Ceram. Soc.</i> , 2019, 102 , 1021-1029.
516	34. E. Yi, W. Wang, J. Kieffer and R. M. Laine, J. Mater. Chem. A, 2016, 4, 12947-12954.
517	35. D. Gursoy, F. De Carlo, X. Xiao, and C. Jacobsen, J. Synchrotron Radiation, 2014, 21,
518	1188-1193.
519	36. R. J. Pandolfi, D. B. Allan, E. Arenholz, L. Barroso-Luque, S. I. Campbell, T. A.
520	Caswell, A. Blair, F. De Carlo, S. Fackler, A.P. Fournier, G. Freychet, M. Fukuto, D.
521	Gursoy, Z. Jiang, H. Krishnan, D. Kumar, R. J. Kline, R. Li, C. Liman, S. Marchesini, A.
522	Mehta, A. T. N'Diaye, D. Y. Parkinson, H. Parks, L.A. Pellouchoud, T. Perciano, F. Ren,
523	S. Sahoo, J. Strzalka, D. Sunday, C. J. Tassone, D. Ushizima, S. Venkatakrishnan, K. G.
524	Yager, P. Zwart, J. A. Sethian, and A. Hexemer, J. Synchrotron Radiation, 2018, 25,
525	1261-1270.
526	37. T. Xu and CA. Wang, Mater. Des., 2016, 91, 242-247.
527	38. Z. Wu, S. Ji, Z. Hu, J. Zheng, S. Xiao, Y. Lin, K. Xu, K. Amine and F. Pan, ACS Appl.
528	Mater. Interfaces, 2016, 8, 15361-15368.

529	39. Y. Ruan, X. Song, Y. Fu, C. Song and V. Battaglia, J. Power Sources, 2018, 400, 539-
530	548.
531	40. E. Markevich, G. Salitra, F. Chesneau, M. Schmidt and D. Aurbach, ACS Energy Lett.,
532	2017, 2 , 1321-1326.
533	41. G. Salitra, E. Markevich, M. Afri, Y. Talyosef, P. Hartmann, J. Kulisch, Y. K. Sun and
534	D. Aurbach, ACS Appl. Mater. Interfaces, 2018, 10, 19773-19782.
535	42. F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin and M. M. Doeff,
536	Nat. Commun., 2014, 5, 3529.
537	43. F. Lin, D. Nordlund, I. M. Markus, TC. Weng, H. L. Xin and M. M. Doeff, Energy
538	Environ. Sci., 2014, 7, 3077.
539	44. J. Zhu and G. Chen, J. Mater. Chem. A, 2019, 7, 5463.
540	45. C. Tian, D. Nordlund, H. L. Xin, Y. Xu, Y. Liu, D. Sokaras, F. Lin and M. M. Doeff, J.
541	Electrochem. Soc., 2018, 165, A696-A704.
542	46. SK. Jung, H. Gwon, J. Hong, KY. Park, DH. Seo, H. Kim, J. Hyun, W. Yang and K.
543	Kang, Adv. Energy Mater., 2013, 4, 1300787.
544	47. L. Zou, W. Zhao, Z. Liu, H. Jia, J. Zheng, G. Wang, Y. Yang, JG. Zhang and C. Wang,
545	ACS Energy Lett., 2018, 3 , 2433-2440.
546	48. G. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R.
547	Hamann, L. Hu and E. D. Wachsman, Mater. Today, 2019, 22, 50-57.
548	49. A. Einstein, Ann. d. Phys., 1905, 17, 549-560.
549	50. PC. Tsai, B. Wen, M. Wolfman, MJ. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana
550	and YM. Chiang, Energy Environ. Sci., 2018, 11, 860-871.

551	51. M. Månsson, H. Nozaki, J. M. Wikberg, K. Prša, Y. Sassa, M. Dahbi, K. Kamazawa, K.
552	Sedlak, I. Watanabe and J. Sugiyama, J. Phys. Conf. Ser., 2014, 551, 012037.
553	52. M. Amores, T. E. Ashton, P. J. Baker, E. J. Cussen and S. A. Corr, J. Mater. Chem. A,
554	2016, 4 , 1729-1736.
555	53. K. Hayamizu, S. Seki and T. Haishi, J. Chem. Phys., 2017, 146, 024701.
556	54. C. Chen, Z. Lu and F. Ciucci, Sci. Rep., 2017, 7, 40769.
557	55. Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao,
558	Y. Lin, C. Wang, K. Amine and F. Pan, J. Am. Chem. Soc., 2015, 137, 8364-8367.
559	56. S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang,
560	M. Rao, J. Zheng, X. Wang and F. Pan, Adv. Energy Mater., 2016, 6, 1501309.
561	57. SL. Wu, W. Zhang, X. Song, A. K. Shukla, G. Liu, V. Battaglia and V. Srinivasan, J.
562	Electrochem. Soc., 2012, 159, A438-A444.
5(2)	

564 Figure captions

- 565 Fig. 1 Schematics of (a) the freeze casting apparatus and (b) formation of the porous green body
- 566 by freeze drying. Insets are the bulk scaffold before and after sintering, with rulers serving as scale
- 567 bars. (c) shows slices cut from the sintered scaffold mounted in epoxy. A 200 μm thick slice is
- 568 transparent, as displayed in the lower part of (c).
- 569 Fig. 2 SEM images of the fractured LLZO scaffolds (a-b) before and (c-d) after sintering.
- 570 Fig. 3 The 3D reconstructed structure from the SR-µCT data of (a) the LLZO film and (b)
- 571 longitudinal section. The cross sections for the film are shown in (b) top and (c) left views. (e) and
- 572 (f) are the top and left views of the LLZO longitudinal section.
- Fig. 4 SEM top views of the sintered LLZO scaffolds, frozen at -20 °C and -50 °C, respectively, at
 low and high magnifications.
- Fig. 5 (a) XRD pattern of the scaffold after sintering and after epoxy removal, respectively. The
 LLZO XRD peaks are indicated in the lower part. (b) is the SEM image of the scaffold flipped
 over after drop casting of NMC particles from the other side.
- Fig. 6 (a) The cycling curves, (b) capacity and columbic efficiency, and (c) impedance curves of
 the hybrid cell from the 1st to the 90th cycle.
- Fig. 7 (a) Schematic of the bilayer fabrication. Inset shows a bilayer structure on graphite, with carbon left on the top surface after sintering. The porous scaffold and dense film XRD patterns are displayed in (b). Fractured bilayer structure with (c) thick and (d) thin dense films are presented. The SEM backscattered electron image (e) and its synchrotron radiation X-ray fluorescence maps (f) of the infiltrated bilayer structure indicate well-distributed NMC particles in areas where LLZO is absent.
- Fig. 8 (a) The 3D model and (b) top view of the simplified honeycomb structure of the porousLLZO scaffold.

