
Polymer
Chemistry

PAPER

Cite this: DOI: 10.1039/d5py01039j

Received 3rd November 2025,
Accepted 3rd February 2026

DOI: 10.1039/d5py01039j

rsc.li/polymers

A transfer learning framework integrating
molecular dynamics and group contribution
methods for predicting polymer specific heat
capacity

Sobin Alosious, a,b Jiaxin Xu, b Meng Jiang a,c and Tengfei Luo *a,b,d

Heat capacity (Cp) of polymers is an essential property for diverse applications, such as energy storage

systems, electronics thermal management, and thermal insulation. In this study, we explore a transfer

learning framework to predict polymer Cp, where models are first pretrained on large datasets generated

from molecular dynamics (MD) simulations and group contribution (GC) calculations, and then fine-tuned

using experimental data. We evaluate multiple machine learning (ML) models, including multilayer percep-

trons and graph neural networks, using various molecular fingerprints and structural descriptors. The

trained models are applied to existing polymers and virtual polymers to enable large-scale Cp prediction

and screening. We analyze structure–property relationships to identify key molecular features influencing

Cp and propose an updated GC model through a data-driven regression for quick Cp evaluation. Using

the predicted Cp, in combination with thermal conductivity and glass transition temperature, we search

polymers for four functional categories relevant to thermal applications: thermal interface materials, insu-

lators, buffers, and heat spreaders. Representative polymer candidates are identified for each category

based on the combined thermal property thresholds, demonstrating the practical relevance of predicted

values for real-world material selection. This integrated approach enables targeted selection of polymer

materials for specific thermal applications.

Introduction

Efficient thermal energy management is increasingly critical
across various sectors, including industry, electronics, and
transportation, to enhance energy efficiency, reduce carbon
emissions, and ensure system reliability.1–4 A significant
portion of industrial energy input is typically lost as waste
heat. Integrating waste heat recovery with thermal energy
storage technologies offers the potential to capture and repur-
pose this otherwise wasted energy, contributing to more
efficient energy practices.5 In electronics, overheating remains
a primary cause of component failures, underscoring the
importance of implementing robust thermal management

strategies to maintain device performance and longevity.6 In
electric vehicles, battery performance and safety are suscep-
tible to temperature control.7 Latent heat thermal energy
storage systems, which utilize phase change materials, offer an
effective means of storing and releasing thermal energy.8

For diverse applications, a comprehensive evaluation of
thermal properties, particularly thermal conductivity (TC) and
specific heat capacity (Cp), is therefore vital. While extensive
research has focused on enhancing TC to improve heat transfer
efficiency,9–13 Cp is equally important because it governs a
material’s ability to store thermal energy. Polymers have
emerged as desirable candidates for thermal energy storage and
management because of their unique combination of practical
advantages, including low cost, lightweight, mechanical flexi-
bility, and ease of processing into various shapes for scalable
manufacturing and integration, while also offering high cor-
rosion resistance and inherent electrical insulation.14–19

Various approaches exist for determining polymer Cp,
including experimental methods, molecular dynamics (MD)
simulations, group contribution (GC) techniques, and
machine learning (ML) models. Experimental techniques,
such as differential scanning calorimetry (DSC), provide direct
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and accurate measurements.20 However, they are time-consum-
ing and require significant sample preparation and cali-
bration. MD simulations provide atomistic insights and can
handle a wide range of temperatures and polymer architec-
tures,21 but classical MD tends to overpredict Cp as quantum
effects are not accounted for.22 GC methods estimate Cp based
on additive contributions of functional groups and are compu-
tationally efficient and suitable for large datasets, but their
accuracy diminishes for complex polymers with intricate struc-
tures or interactions.23 Recently, ML models have shown great
promise in predicting Cp by learning from experimental and
simulation data, offering rapid predictions and the ability to
generalize across diverse polymer chemistries.24 However, they
require large, high-quality datasets, and careful feature engin-
eering to avoid overfitting. Overall, integrating these methods
may enable cross-validation and a balanced assessment of
polymer Cp.

Recent advances in polymer informatics have further
expanded the potential of ML in this field.19,25 For example,
Bhowmik et al.24 applied Decision Tree (DT) and Principal
Component Analysis (PCA) models to predict room-tempera-
ture Cp values for 68 polymers using experimentally derived
molecular descriptors. Despite the limited dataset size, their
optimized DT model achieved testing R2 values up to 0.83
under 5-fold cross-validation, demonstrating that physically
meaningful polymer descriptors can capture key structure – Cp

relationships. Their analysis further highlighted the dominant
role of bonding, molecular-type, and atom-type descriptors in
governing polymer heat capacity, illustrating the potential of
ML for guiding polymer design even in data-scarce regimes.
Building on this, Hayashi et al.26 applied a transfer learning
(TL) strategy to bridge discrepancies between MD-calculated
and experimental polymer properties, including Cp, linear
expansion coefficient, and volume expansion coefficient. Using
MD-derived data as a source domain and fine-tuning neural
networks on limited experimental data from PoLyInfo, they
substantially reduced systematic bias in Cp predictions.
Specifically, while direct MD calculations exhibited large errors
(RMSE ≈1972 J kg−1 K−1), transfer learning reduced the RMSE
to approximately 279 J kg−1 K−1, corresponding to an error
reduction of nearly 85% relative to raw MD predictions. These
results demonstrate the effectiveness of TL in correcting MD-
induced biases and highlight its utility for polymer thermo-
physical property prediction when experimental data are
scarce. Furthermore, Malashin et al.27 explored a wide range of
ML approaches for predicting various physical properties of
polymers, including Cp. Utilizing a comprehensive polymer
dataset, they compared ensemble, tree-based, regularization,
and distance-based regression models. While their random
forest models achieved R2 values up to 0.88 for certain thermal
properties, the performance on Cp prediction was notably
lower (R2 ≈ 0.13). This highlights both the potential of ML to
capture complex polymer behaviors and the challenges of
accurately modeling specific properties such as heat capacity,
emphasizing the importance of careful model selection and
the need for improved feature representations.

In this study, we present a comprehensive TL framework for
accurate and scalable predictions of Cp in polymers. The TL
strategy integrates multiple data fidelities, including (1) low-
fidelity GC predictions derived from functional group analysis
and MD simulations and (2) high-fidelity experimental data.
We first develop extensive GC and MD datasets through auto-
mated workflows, including polymer system construction,
equilibration, and Cp calculation. ML models such as
Multilayer Perceptrons (MLP) and Graph Neural Networks
(GNNs) are pretrained on GC or MD data and subsequently
fine-tuned with limited experimental data using TL, leading to
improved performance compared to models trained on experi-
mental data alone. We also explore large language models
(LLMs) with advanced prompting strategies to complement
structure-based ML approaches. By leveraging the predictive
power of TL-enhanced models, we identify polymers suitable
for various thermal management applications by combining
Cp predictions with thermal conductivity (TC) data from our
previous studies. Finally, we develop a data-driven GC model
and analyze key structural and physicochemical factors that
govern Cp, providing both interpretability and physical
insights. The primary novelty of this work lies in the unified
multi-fidelity TL framework, large-scale Cp prediction across
real and virtual polymer spaces, and systematic benchmarking
of specialized ML and LLM-based approaches. The GC refitting
and application-oriented categorization are presented as
complementary, enabling components that enhance interpret-
ability and demonstrate practical use of the predicted
properties.

Methodology
Molecular dynamics simulations

To compute Cp of amorphous polymers, we employed a high-
throughput MD pipeline consisting of polymer model gene-
ration, equilibration, and Cp calculation using both equili-
brium and non-equilibrium approaches. The polymer gene-
ration and equilibration stages were adapted from our previous
work.13,28 An overview of the MD workflow is illustrated sche-
matically in Fig. 1.

Polymer monomers were represented by simplified mole-
cular input line entry system (SMILES) strings.29 A Python-
based pipeline built on PYSIMM30 was used to create the
initial structure of amorphous polymers. This process involves
generating a polymer chain for each constituent polymer
through polymerization, with each chain containing approxi-
mately 600 atoms. Force field parameters were assigned using
the General AMBER Force Field 2 (GAFF2),31 with partial
atomic charges assigned using the Gasteiger method. No
quantum-chemical charge derivation (e.g., AM1-BCC or RESP)
was performed, and charges were not refitted after polymeriz-
ation; instead, Gasteiger charges were assigned automatically
and consistently to all polymerized structures to enable scal-
able high-throughput simulations. GAFF2 is widely used for
calculation of thermophysical properties in polymers due to its
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broad chemical coverage and established
parameterization.26,32,33 To assess the sensitivity of MD-
derived Cp to force-field choice, a targeted comparison was
performed between GAFF2–GAFF and GAFF2–CHARMM using
identical simulation protocols. The GAFF2–GAFF comparison
yields a mean absolute percentage deviation (MAPE) of 4.8%
(95% of deviations below 17.3%), while the GAFF2–CHARMM
comparison exhibits a MAPE of 14.5% (95% of deviations
below ∼32.8%), indicating bounded but force-field-dependent
uncertainty. Parity plots illustrating these comparisons are
shown in Fig. 2(a) and (b). These results support the use of
GAFF2-based MD data as a low-fidelity input within the multi-
fidelity learning framework rather than assuming force-field
invariance. Each polymer chain was duplicated to form a six-
chain system, which was placed in a simulation box with peri-
odic boundary conditions in all spatial directions. Input
scripts compatible with large-scale atomic-molecular massively
parallel simulator (LAMMPS)34 were generated automatically
by the python pipeline for subsequent simulations. After initi-
alization, the system undergoes multiple optimization steps,
which are broadly classified into two stages: initial relaxation
and annealing.

Initial relaxation. Electrostatic interactions were turned off,
and Lennard-Jones (LJ) interactions were truncated at a cutoff
distance of 0.3 nm to avoid large forces from long-range inter-
actions during the initial relaxation of the randomly packed
system. The system was first equilibrated under an NPT ensemble
at 100 K for 2 ps using a 0.1 fs time step. This was followed by
heating from 100 K to 1000 K over 1 ns under the NVT ensemble.
Subsequently, the system was equilibrated at 1000 K and 0.1 atm
for 50 ps in the NPT ensemble, and then for 1 ns in the NPT
ensemble while ramping the pressure from 0.1 atm to 500 atm

using a 1 fs time step. SHAKE35 constraints were applied to main-
tain covalent bond lengths and ensure numerical stability.

Annealing. During this stage, electrostatic interactions were
re-enabled using the particle–particle–particle–mesh (PPPM)36

Ewald summation method, and the LJ cutoff was increased to
0.800 nm. The system was equilibrated under an NPT ensem-
ble at 1000 K and 1 atm for 2 ps with a 0.1 fs time step, then
cooled to 300 K at a rate of 140 K ns−1 with SHAKE constraints.
A final NPT simulation was conducted at 300 K and 1 atm for
8 ns using a 1 fs time step to achieve a stable amorphous
configuration.

Equilibrium MD (EMD). After equilibration, the system was
simulated under NPT ensemble at 300 K and 1 atm for 10 ns
to ensure statistically meaningful sampling of thermodynamic
fluctuations. During this production run, the instantaneous
enthalpy of the system was recorded at regular time intervals.
The Cp was calculated using the fluctuation–dissipation
theorem,37 which relates macroscopic thermodynamic
response functions to microscopic energy fluctuations:

Cp ¼ H2h i � Hh i2
kBT2 ; ð1Þ

where H is the system enthalpy, T is the absolute temperature,
and kB is Boltzmann’s constant. The angle brackets represent
ensemble averages. This approach assumes the system is fully
equilibrated and follows canonical ensemble statistics, and it
has been widely used to estimate Cp in liquids, solids, and
polymeric materials.37,38

Non-equilibrium MD (NEMD). In addition to the fluctu-
ation-based approach, we employed a direct method to esti-
mate Cp based on the enthalpy–temperature relationship.

Fig. 1 Schematic workflow illustrating the process from polymer SMILES input to Cp prediction via MD simulations and GC methods, followed by
TL using experimental data.
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Initially, the system was equilibrated at 290 K and 1 atm for 2
ns. The equilibrated system was gradually heated from 290 K
to 310 K over 10 ns under NPT conditions to simulate a con-
trolled temperature ramp. This range was centered around
300 K, the target temperature for Cp evaluation. At regular
intervals, the average enthalpy and temperature of the system
were computed and an enthalpy–temperature curve was
plotted. Cp was then calculated as the slope of a linear fit to
the enthalpy–temperature curve:21

Cp ¼ dH
dT

� �
P
: ð2Þ

EMD vs. NEMD comparison. Both EMD- and NEMD-based
approaches were evaluated for estimating polymer Cp using
the same set of representative systems. In both cases, large
deviations from experimental Cp were observed, consistent

with the known limitations of classical force fields in captur-
ing quantum vibrational contributions. For EMD, the resulting
errors are RMSE ≈1950 J kg−1 K−1 and MAE ≈1876 J kg−1 K−1,
whereas NEMD yields lower errors, with RMSE ≈1791 J kg−1

K−1 and MAE ≈1713 J kg−1 K−1, indicating improved numerical
stability and reduced sensitivity to enthalpy fluctuation noise.
Parity plots comparing EMD and NEMD predictions against
experimental values are shown in Fig. 2(c) and (d), respectively.
Based on this comparison, NEMD was selected as the MD
approach used throughout this work to generate low-fidelity Cp

data, which are treated strictly as approximate inputs for sub-
sequent TL analyses.

Group contribution method

The GC method is a well-established approach for estimating
thermophysical properties of molecules by assuming that the
total property is an additive function of the contributions from

Fig. 2 (a) Comparison between Cp calculated using GAFF2 and GAFF forcefields. (b) Comparison between Cp calculated using GAFF2 and CHARMM for-
cefields. (c) Comparison between EMD-predicted and experimental Cp values. (d) Comparison between NEMD-predicted and experimental Cp values.
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individual structural groups.39 For Cp calculations, the prop-
erty of a polymer repeat unit is expressed as the weighted sum
of predefined group contributions:

Cp ¼
XN
i¼1

ni � Gi; ð3Þ

where ni is the number of occurrences of the i-th functional
group in the repeat unit, Gi is the specific heat contribution of
that group, and N is the total number of functional groups
considered.

In this work, we used a set of 32 predefined functional
groups, and their corresponding Cp contribution values
adopted from the literature.39 A Python-based workflow was
developed using RDKit40 to parse each SMILES string, identify
all matching functional groups in the monomer, and count
their occurrences. Once the group counts were determined,
each polymer’s Cp was calculated as a linear combination of
the group contributions using eqn (3). This method provides a
rapid, structure-based estimation of Cp and serves as a comp-
lementary baseline to MD simulations and ML models. An
overview of the GC-based property prediction workflow is illus-
trated in Fig. 1.

Machine learning framework

Polymer representation. To represent polymer structures for
ML, SMILES strings were transformed into a set of comp-
lementary molecular fingerprints capturing local chemistry,
connectivity, and topological features. Multiple fingerprinting
schemes were employed to ensure robustness with respect to
molecular representation rather than reliance on a single
descriptor type. Specifically, we used circular Morgan finger-
prints (radius = 2, 2048 bits) to encode local atomic environ-
ments, MACCS keys (166 bits) to capture standardized func-
tional group motifs, and RDKit topological fingerprints (2048
bits, path lengths 1–6) to represent path-based connectivity
patterns. In addition, atom pair and topological torsion finger-
prints (both 2048 bits) were included to encode long-range
atom–atom relationships and torsional connectivity, respect-
ively. Finally, polymer embedding fingerprints were obtained
from pretrained unsupervised models trained on the PI1M
dataset, yielding dense representations that capture broader
structural and physicochemical similarities among polymers.41

Model architectures and training strategy. We employed
three classes of ML models to benchmark polymer Cp predic-
tion: multilayer perceptrons (MLPs), graph neural networks
(GNNs), and graph rationalization with environment-based
augmentations (GREA). Together, these models span fixed-
length descriptor-based learning, graph-based learning, and
interpretable rationale-driven learning.

Multilayer perceptron (MLP). MLP models were implemented
using the Keras API with a TensorFlow backend.42 The archi-
tecture consisted of two hidden layers with ReLU activation
and dropout regularization, followed by a linear output layer
for Cp prediction. Models were trained using the MSE loss and
the Adam optimizer. Key architectural and training hyperpara-

meters, including hidden-layer size, dropout rate, and learning
rate, were optimized using the Optuna framework43 to ensure
fair comparison across representations.

Graph neural networks (GNNs). Graph-based models were
implemented using the torch-molecule library.44 We evaluated
two widely used architectures, Graph Isomorphism Networks
(GIN)45 and Graph Convolutional Networks (GCN),46 which
differ in expressive power and message-passing formulation.
Hyperparameters related to network depth, embedding dimen-
sion, normalization strategy, learning rate, and regularization
were optimized using Optuna. These choices were guided by
dataset size and the requirements of the transfer-learning
framework.

Graph rationalization with environment-based augmentations
(GREA). The GREA model was also implemented using torch-
molecule.44 Unlike conventional GNNs, GREA explicitly ident-
ifies graph rationales, i.e., subgraph structures most respon-
sible for property prediction, and augments training with
environment-based perturbations. This design improves inter-
pretability and robustness by encouraging the model to focus
on chemically meaningful substructures. Hyperparameters
governing the graph encoders, embedding dimension, regular-
ization, and rationale size were optimized using Optuna.

Transfer learning strategy. To enhance the prediction accu-
racy of polymer Cp using limited experimental data, we
employed a two-stage TL approach. The philosophy behind
transfer learning is that models pretrained on large proxy data-
sets (e.g., MD or GC results) can capture general structure–
property relationships that are also relevant to experimental
Cp. These learned representations provide a strong starting
point, such that fine-tuning on limited experimental data does
not begin from scratch. All polymers appearing in the experi-
mental dataset are explicitly excluded from the MD and GC
datasets prior to pretraining and calibration, ensuring that no
experimental information is used during proxy-data training
and eliminating any possibility of data leakage. All TL models
were evaluated using a nested cross-validation (nested CV)
framework. An outer cross-validation loop defines held-out
experimental test folds, while an inner cross-validation loop is
used exclusively for hyperparameter optimization. In our work-
flow, models such as MLP, GNN, and GREA were first pre-
trained on large MD or GC datasets, then fine-tuned on experi-
mental data. For each outer CV fold, pretraining is performed
on the proxy dataset after excluding any polymers that appear
in the corresponding experimental folds, ensuring strict separ-
ation between proxy and experimental data. The pretrained
model is then fine-tuned only on the experimental training
data of the outer fold, and final performance is evaluated on
the held-out experimental test fold. Before fine-tuning, we
reset the final predictor layers with Xavier uniform initializa-
tion for weights and zero initialization for biases, helping miti-
gate overfitting and improve adaptation to experimental data.
During fine-tuning, the network architecture learned during
pretraining is kept fixed, while training-related hyperpara-
meters, including learning rate, batch size, weight decay, and
early stopping criteria, are optimized within the inner CV loop.
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A reduced learning rate is used during fine-tuning relative to
pretraining to promote stable convergence while retaining
transferable representations. Hyperparameter tuning was con-
ducted using the Optuna framework, optimizing parameters
such as learning rate, dropout ratio, hidden dimensions, and
training schedule parameters.

Reproducibility details. To enable full reproducibility, we
explicitly specify preprocessing, training settings, and the
hyperparameter search used for all results in Table 1. Polymers
are represented from repeat-unit SMILES using RDKit finger-
prints (Morgan radius 2, 2048 bits; MACCS 166 bits; RDKit
topological 2048 bits; atom-pair 2048 bits; topological-torsion
2048 bits) and optional seven RDKit descriptors (MolWt, TPSA,
NumHDonors, NumHAcceptors, NumRotatableBonds,
RingCount, FractionCSP3). Duplicate SMILES in the experi-
mental dataset are consolidated by averaging the target value.
Invalid SMILES and any rows with non-finite features/targets
are removed. When descriptors are included, input features
are standardized using training-set statistics only. All models
are evaluated using nested cross-validation (outer: 5 folds;
inner: 3 folds). Hyperparameters are optimized exclusively in
the inner loop using Optuna (TPE sampler) with validation
RMSE as the objective. MLPs are trained with MSE loss using
AdamW and early stopping on validation loss. The EXP-only
search space includes: number of layers (2–4), hidden width

(128–1024) with shrink factor (0.55–0.95), dropout (0–0.35),
learning rate (10−5–5 × 10−3), weight decay (10−8–10−2), batch
size (16–128), max epochs (80–300), and patience (10–30). For
transfer learning, any polymer present in the experimental
outer folds is removed from the proxy dataset prior to pretrain-
ing. During fine-tuning, architecture is fixed and only training
hyperparameters are tuned (learning rate 10−6–5 × 10−4,
weight decay 10−8–10−2, batch size 8–64, max epochs 80–300,
patience 10–40); all layers are trainable by default.

Large language model-based prediction

To qualitatively explore the limits of general-purpose language
models for polymer property prediction, we benchmarked
several LLMs, including LLaMA 4, Qwen3, GPT-4o, Gemini 2.0
Flash, and Mistral Large, under zero-shot and few-shot in-
context learning (ICL) settings. Unlike traditional ML models
trained on structured molecular representations, LLMs rely on
pretrained linguistic knowledge and contextual examples pro-
vided at inference time and do not involve model training or
parameter optimization in this study.

LLMs were prompted to predict polymer Cp values using
different molecular representations, including SMILES strings,
IUPAC names, and functional group counts. In the zero-shot
setting, predictions were generated without examples, whereas

Table 1 Performance comparison of different models and molecular fingerprints within the TL framework, using MD- and GC-derived datasets for
pretraining followed by fine-tuning on experimental data

Model Fingerprint

MD GC

R2 RMSE MAE R2 RMSE MAE

MLP AtomPair 0.12 ± 0.37 310.17 ± 26.93 230.56 ± 19.21 0.60 ± 0.18 215.01 ± 54.70 160.64 ± 29.31
MACCS 0.55 ± 0.12 235.04 ± 65.27 172.66 ± 41.10 0.50 ± 0.09 246.44 ± 64.87 177.73 ± 36.46
Morgan 0.30 ± 0.10 290.90 ± 62.26 214.14 ± 44.42 0.54 ± 0.18 235.50 ± 80.50 177.30 ± 43.51
PE 0.55 ± 0.09 236.75 ± 71.41 184.00 ± 42.65 0.56 ± 0.11 234.08 ± 72.59 183.25 ± 37.32
RDKit 0.21 ± 0.28 298.53 ± 43.91 207.48 ± 35.73 0.57 ± 0.19 224.24 ± 73.76 164.34 ± 49.64
Topological torsion 0.27 ± 0.36 289.03 ± 107.65 214.99 ± 72.13 0.46 ± 0.20 250.92 ± 80.41 183.30 ± 61.41

MLP + Desc AtomPair 0.29 ± 0.45 272.26 ± 47.93 222.03 ± 29.20 0.35 ± 0.39 262.28 ± 46.64 208.12 ± 30.26
MACCS 0.56 ± 0.09 233.29 ± 69.87 180.30 ± 46.80 0.52 ± 0.13 237.90 ± 54.74 179.61 ± 39.20
Morgan 0.31 ± 0.19 288.05 ± 81.28 216.93 ± 53.45 0.39 ± 0.31 259.55 ± 53.00 183.91 ± 28.21
PE 0.59 ± 0.17 222.39 ± 56.23 167.70 ± 31.74 0.60 ± 0.18 220.59 ± 87.10 159.85 ± 48.93
RDKit 0.46 ± 0.22 258.29 ± 98.34 186.01 ± 52.88 0.53 ± 0.16 237.34 ± 67.53 170.17 ± 32.48
Topological torsion 0.32 ± 0.11 284.02 ± 51.26 208.90 ± 40.43 0.43 ± 0.10 264.64 ± 75.43 184.42 ± 47.60

Polymer-family split MLP(PE) 0.47 ± 0.25 264.50 ± 57.84 207.60 ± 32.43 0.45 ± 0.29 269.42 ± 56.14 199.93 ± 34.16

GREA None 0.36 ± 0.25 276.46 ± 60.37 199.08 ± 37.83 0.43 ± 0.16 280.52 ± 63.99 199.04 ± 26.70
MACCS 0.43 ± 0.15 267.75 ± 68.19 187.78 ± 40.93 0.40 ± 0.23 289.81 ± 97.46 188.82 ± 58.65
Morgan 0.40 ± 0.13 274.88 ± 65.27 190.25 ± 42.92 0.39 ± 0.22 299.39 ± 77.13 208.49 ± 45.83
MACCS + Morgan 0.36 ± 0.30 280.74 ± 78.37 192.48 ± 47.25 0.37 ± 0.19 275.89 ± 69.63 194.27 ± 42.57

GNN None 0.41 ± 0.22 284.32 ± 72.31 193.21 ± 33.40 0.32 ± 0.26 289.65 ± 71.84 187.17 ± 37.74
MACCS 0.44 ± 0.08 268.28 ± 69.56 187.09 ± 42.27 0.47 ± 0.22 271.54 ± 79.38 190.51 ± 37.52
Morgan 0.41 ± 0.24 284.00 ± 79.09 192.69 ± 36.79 0.42 ± 0.23 284.16 ± 88.74 192.63 ± 37.19
MACCS + Morgan 0.37 ± 0.19 282.84 ± 79.39 205.65 ± 53.59 0.43 ± 0.20 268.12 ± 84.31 191.60 ± 57.22
Combined (MD + GC)

Combined Average 0.65 ± 0.18, 202.1 ± 61.9, 147.4 ± 38.4
Best 0.74 ± 0.08, 184.28 ± 60.3, 119.09 ± 46.4

The results correspond exclusively to TL models. Metrics are reported as mean ± standard deviation across 5-fold nested cross-validation.
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in the few-shot setting, a small number of contextual examples
with known Cp values were included in the prompt.

Few-shot examples were selected using a similarity-based
strategy. Each query polymer was represented using a Morgan
fingerprint, and Tanimoto similarity47 was used to identify
structurally similar polymers with available experimental Cp

data. The most similar entries were used as in-context
examples. Standardized prompts were employed to ensure con-
sistent numerical outputs across models. Because LLMs do
not involve training or hyperparameter tuning, prediction
accuracy was evaluated using standard 5-fold cross-validation,
whereas nested cross-validation was reserved for trainable ML
models to control hyperparameter optimization bias.

Datasets

We primarily make use of three types of datasets: experimental
data, and data generated from MD simulations and GC calcu-
lations. The high-fidelity experimental Cp dataset used in this
study was manually curated from the PolyInfo database and
consists of approximately 120 unique amorphous polymers
with Cp values reported near 300 ± 2 K. After removing dupli-
cate entries and averaging repeated measurements for identi-
cal polymers, this dataset represents the full set of reliable
experimental Cp data currently available under consistent
thermodynamic conditions. Due to the limited availability of
experimental Cp measurements for polymers, no larger or fully
independent external experimental dataset exists at present.
The MD dataset includes over 850 polymers whose Cp values
were computed through high-throughput NEMD simulations
conducted at 300 K. The details for system preparation, equili-
bration, and Cp extraction are provided in the Methodology
section. The GC dataset consists of over 10 000 polymers for

which Cp values were estimated using a GC method based on
the additive contributions of 32 functional groups, corres-
ponding to 298.15 K. The procedure for GC-based calculation
is also explained in the Methodology section. In addition to
these Cp datasets, we collected SMILES strings for approxi-
mately 13 000 real polymers from PolyInfo database48 and
1 million virtual polymers from the PI1M database,41 which
was generated using a recurrent neural network (RNN) trained
on real polymers from the PolyInfo database. These SMILES
datasets provide a rich molecular representation of chemical
space for virtual screening and prediction tasks. To visualize
and compare the Cp distributions across the three datasets, we
employed a violin plot (Fig. 3a), which combines a boxplot
with a kernel density estimate to illustrate the full distribution
of Cp values for each data source. The width of each violin
indicates the density of data points at different Cp ranges,
while central lines reflect the median and interquartile range.
To understand how the molecular structures from each dataset
occupy chemical space, we applied t-SNE (t-distributed sto-
chastic neighbor embedding) dimensionality reduction on
Morgan fingerprints derived from SMILES strings (Fig. 3b).
Each point represents a polymer, and proximity in the 2D plot
reflects structural similarity in the high-dimensional finger-
print space.

Results and discussion

To assess the suitability of GAFF2 for large-scale polymer simu-
lations, we performed an explicit validation by comparing MD-
predicted polymer densities with available experimental values
(Fig. 4a). The MD densities show good agreement with experi-

Fig. 3 Distribution and structural comparison of polymer datasets. (a) Violin plot showing the distribution of Cp values for the experimental (N =
120), MD-simulated (N = 851), and GC-derived (N = 10 568) datasets. (b) t-SNE visualization of the corresponding chemical space based on Morgan
fingerprints, illustrating the structural coverage of each dataset.
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ment, with an R2 of 0.50 and low absolute errors, indicating
that GAFF2 reasonably captures equilibrium packing and
structural properties across a chemically diverse polymer set.
While this validation does not imply quantitative accuracy for
all thermophysical properties, it supports the use of GAFF2 as
a consistent and physically meaningful low-fidelity proxy
within the proposed multi-fidelity and TL framework. To evalu-
ate the accuracy of the MD-calculated Cp values, we compared
them with the experimental dataset. Fig. 4b presents the parity
plot between MD predictions and experimental values. The
plot clearly shows that the MD-calculated (NEMD method) Cp

values are consistently overestimated, as indicated by a high
positive mean error (ME) of +1713.79 J (kg K)−1. Similar over-

predictions by classical MD methods have been reported in
previous studies.21,26 One fundamental reason for this overesti-
mation lies in the inherent limitations of classical MD simu-
lations, which do not account for quantum mechanical effects.
Specifically, the vibrational energy in a classical harmonic
oscillator is higher than that in its quantum mechanical
counterpart at the same frequency. For high frequency
vibrational modes, they are not fully excited at room tempera-
ture (300 K) according to the Bose–Einstein distribution.
However, in MD simulations, which follows the classical
Boltzmann distribution, all modes are fully excited despite the
temperature. This discrepancy can be quantitatively described
using the expressions for quantum and classical heat

Fig. 4 Parity plots comparing MD and GC predictions with experimental data. (a) Comparison between MD-calculated and experimental polymer
densities. (b) Comparison between MD-predicted and experimental Cp values. (c) Comparison between bias-corrected MD-predicted and experi-
mental Cp values. (d) Comparison between GC-predicted and experimental Cp values. Error bars represent the experimental uncertainty in Cp, quan-
tified as the standard deviation obtained from multiple independently reported experimental Cp values for the same polymer, with the mean value
used for comparison. All Cp values are evaluated at 300 K.
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capacities.49 The quantum heat capacity for a harmonic oscil-
lator is given by:

Cquantum ¼ 3NkB
ħω
kBT

� �2 e
ħω
kBT

e
ħω
kBT � 1

� �2 ; ð4Þ

while the classical value is:

Cclassical ¼ 3NkB: ð5Þ
From eqn (4) and (5), the ratio of the quantum to classical

heat capacities can be expressed as:

Cquantum

Cclassical
¼ ħω

kBT

� �2 e
ħω
kBT

e
ħω
kBT � 1

� �2 : ð6Þ

This ratio decreases monotonically with increasing
vibrational frequency ω, which explains the systematic overesti-
mation of Cp in classical MD simulations, particularly for poly-
mers with stiff bonds. Previous studies have demonstrated that
classical MD systematically overestimates thermophysical pro-
perties due to its neglect of quantum effects,50 and that the
deviation between MD-predicted and experimental Cp values
increases with the average bond-stretching and -bending force
constants.26 Despite this systematic bias, the strong correlation
between MD and experimental results suggests that the discre-
pancy may be addressed using data-driven correction strat-
egies, such as TL or multi-fidelity modeling. We examined
differences between MD-predicted and experimental Cp values
across different polymer classes and structural motifs.
However, only a small number of experimental polymers are
available within most individual polymer families. This
limited coverage prevents statistically reliable class-wise com-
parisons. Therefore, we focus on global trends and overall
model behavior rather than drawing conclusions about family-
specific MD discrepancies.

Motivated by the systematic and largely global overestima-
tion observed in MD-calculated Cp values, we examined a
simple empirical bias-correction as a diagnostic analysis.
Specifically, MD-predicted Cp values were linearly mapped
onto the experimental scale using polymers common to both
datasets according to

Cexp
p ¼ aCMD

p þ b; ð7Þ

where the coefficients a and b were obtained from a least-
squares fit to the overlapping MD-experimental subset. This
linear mapping primarily removes the dominant mean shift
associated with missing quantum suppression of high-fre-
quency vibrational modes in classical MD simulations. The
resulting bias-corrected MD values illustrate that the systema-
tic offset in MD-calculated Cp can be reduced in principle by a
simple linear correction, as shown in Fig. 4c. Importantly, this
bias-correction is included only as a representative, post hoc
diagnostic to demonstrate the nature and correctability of the
MD bias. Bias-corrected MD values are not used to generate

training labels, to pretrain models, or to fine-tune or evaluate
the transfer-learning framework. All reported transfer-learning
results are obtained by pretraining on raw low-fidelity labels
(MD or GC) and subsequently fine-tuning using experimental
data only.

Similarly, the accuracy of the Cp values estimated using the
GC method was evaluated by comparing them with experi-
mental data. Fig. 4d presents the parity plot between GC pre-
dictions and experimental values. The GC method yields a
moderately accurate estimation, with a coefficient of determi-
nation (R2) of 0.416. In contrast to the MD results, the GC pre-
dictions tend to slightly underestimate Cp, as indicated by a
negative ME of −132.01 J (kgK)−1. This underestimation is
likely due to the simplified additive nature of the GC method,
which neglects long-range intermolecular interactions, confor-
mational flexibility, and cooperative effects that are inherently
present in experimental systems.51 These phenomena can con-
tribute to enhanced heat capacity values, but are not captured
in the GC framework. Despite these limitations, a notable
advantage of the GC approach is its computational efficiency.
It does not require expensive molecular simulations and
allows for rapid estimation of Cp values directly from SMILES
representations. This makes GC attractive for generating large-
scale datasets for data-driven modeling.

To evaluate the utility of simulation-generated data, we
employed a TL strategy using multiple ML models trained on
MD- and GC-derived Cp values. In this work, experimentally
measured Cp values are treated as the highest-fidelity data and
serve as the sole reference for model evaluation and fine-
tuning. Both MD-derived and GC-derived Cp values are used as
lower-fidelity proxy data; however, they do not form a strict
linear fidelity hierarchy. Instead, they represent distinct
approximation pathways with different bias and noise charac-
teristics. The models tested include MLP, vanilla GNN (GIN
and GCN), and GREA. Fig. 1 illustrates the TL workflow, where
models are first pretrained on either MD- or GC-derived Cp

data and then fine-tuned using the experimental dataset. The
detailed implementation of the TL framework is described in
the Methodology section. A nested cross-validation scheme
with 5 outer folds and 3 inner folds was employed to obtain an
unbiased estimate of model performance while optimizing
hyperparameters. In each outer iteration, one fold was held
out for testing, while the remaining data were used in a 3-fold
inner loop to tune MLP hyperparameters based on validation
loss with early stopping. Final performance metrics were com-
puted by pooling predictions from all outer test folds, with
fold-wise mean and standard deviation reported to quantify
variability across splits. Table 1 summarizes the performance
of different TL models after pretraining on either MD or GC
datasets and fine-tuning on experimental data. Multiple mole-
cular fingerprints were used to represent polymer structures
for MLP models, while graph-based models were trained on
molecular graphs with or without fingerprint augmentation.
The results in Table 1 correspond exclusively to TL models.
Performance metrics are reported as mean ± standard devi-
ation across the 5 folds.
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Initially, we evaluated MLP models using six different mole-
cular fingerprinting methods: Atom Pair, RDKit, Morgan,
Polymer Embedding (PE), Topological Torsion, and MACCS
fingerprints. In addition to the fingerprint vectors, a set of
eight molecular descriptors was appended to the input fea-
tures to improve model accuracy. These descriptors include
Molecular Weight (MolWt), Topological Polar Surface Area
(TPSA), Number of Hydrogen Bond Donors (NumHDonors),
Number of Hydrogen Bond Acceptors (NumHAcceptors),
Number of Rotatable Bonds, Ring Count, and Fraction of sp3

Carbon Atoms (FractionCSP3). We observed that the impact of
incorporating molecular descriptors was fingerprint-depen-
dent, with some representations improving model perform-
ance while others led to marginal degradation. Each finger-
print was tested independently, and the results are shown in
Table 1. In parallel, we also developed graph-based models,
specifically GNN and GREA, which were trained directly on
molecular graph representations of the polymers. In addition
to the intrinsic graph features, we augmented the input with
pre-computed molecular fingerprints such as Morgan and
MACCS, as well as their combined representation. This
approach allows the models to exploit not only the atom- and
bond-level information captured by the molecular graph, but
also complementary global descriptors that encode connec-
tivity patterns and functional group presence.

To establish a fair benchmark, we trained the same model
architectures directly on the limited experimental dataset
without any pretraining. As shown in Fig. 5a, these direct-train-
ing models exhibited lower performance and higher variance,
likely due to overfitting caused by the small sample size. In
contrast, TL models pretrained on either MD or GC data and
fine-tuned with experimental data demonstrated significantly
improved performance. TL models pretrained on either MD or
GC data and fine-tuned with experimental data demonstrated
clear performance gains. Based on reductions in mean absol-
ute error (MAE), the MD-based TL model reduced prediction
error by 20.5% relative to the experimental-only model, while
the GC-based TL model achieved a larger reduction of 23.8%.
Additionally, the variance across five folds was noticeably
reduced, indicating improved model robustness. The parity
plots for the best-performing TL models using MD and GC
data are shown in Fig. 5b and c, respectively. Although the
experimental dataset spans diverse polymer families, the
number of samples per family is small and uneven, and
several polymers belong to multiple classes. This limits the
statistical reliability of family-resolved comparisons and pre-
vents robust conclusions about class-specific advantages of
MD- versus GC-based TL. Accordingly, this study focuses on
global trends and model-level behavior rather than family-
specific claims. Within this scope, neither proxy is universally
superior: GC-based pretraining offers broader chemical cover-
age and lower noise, whereas MD-based pretraining incorpor-
ates richer physical information but exhibits systematic bias
that must be corrected during fine-tuning.

To assess generalization beyond random splits, we per-
formed an additional stress test using a polymer-family

holdout strategy. The experimental dataset was grouped into
five coarse classes based on backbone chemistry: (i) poly-
acrylics and polyvinyls, (ii) polyesters and thioesters, (iii) poly-
oxides, ethers, and acetals, (iv) polyamides, imides, imines,
and urethane-based polymers, and (v) hydrocarbon and speci-
alty polymers, including polyolefins, halogenated, sulfur-con-
taining, and siloxane systems. Each group was held out in turn
as an unseen test set, while the remaining groups were used
for training and validation, with hyperparameters selected
using a three-fold inner cross-validation loop. The resulting
metrics, reported in Table 1, correspond exclusively to TL
models pretrained on low-fidelity MD or GC data and fine-
tuned on experimental data. Performance under polymer-
family holdout is slightly lower than that obtained with
random nested cross-validation, as expected for a chemically
structured split, but remains stable across all folds. This indi-
cates that the TL framework can generalize across distinct
polymer families within the available experimental domain,
while acknowledging that the evaluation remains within-
domain rather than fully external.

To utilize the complementary strengths of the GC-based
and MD-based predictive models, we examined simple ensem-
ble strategies that combine their respective predictions. When
evaluated individually, the GC-TL and MD-TL models exhibit
comparable performance, with cross-validated R2 values of
approximately 0.59 and 0.60, respectively. This indicates that
neither model provides uniformly superior Cp predictions
across the polymer chemical space. For each polymer in the
experimental dataset, two independent Cp predictions were
obtained, one from the GC-based model and one from the
MD-based model. We then considered a simple arithmetic
averaging of these predictions. Despite its simplicity, this
ensemble approach consistently outperformed both individual
models, achieving a pooled cross-validated R2 of 0.65. The
observed improvement suggests that the GC and MD models
capture partially complementary information and that aver-
aging effectively mitigates model-specific bias and variance.
The parity plot corresponding to the averaged GC and MD pre-
dictions is shown in Fig. 5d, where improved agreement with
experimental Cp values is evident relative to the individual
models. A comparison of prediction errors based on MAE for
the experiment-only model, GC-TL, MD-TL, and the averaged
ensemble is provided in Fig. 5e. For completeness, we also
evaluated an idealized upper bound in which, for each
polymer, the prediction closer to the experimental Cp value
was selected between the GC and MD models. This oracle
selection yields a higher R2 of 0.74, indicating that significant
complementarity exists between the two models. While this
approach is not deployable in practice due to its reliance on
experimental values, it provides a useful reference for the
maximum achievable performance attainable through optimal
model combination.

Having established the performance of domain-specific ML
models under the multi-fidelity TL framework, we next
examine the applicability of recent general-purpose LLMs to
polymer Cp prediction. This analysis is not intended to posi-
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tion LLMs as competitive quantitative predictors, but rather to
assess their current limitations for numerical regression tasks
in polymer science without task-specific training. The models
evaluated include Llama 4, Qwen 3, GPT-4o, Gemini 2.0 Flash,
and Mistral Large. These LLMs were used in an inference-only
setting and were not fine-tuned on molecular property data,

allowing us to probe whether implicit chemical knowledge
alone is sufficient for quantitative prediction. A cross-vali-
dation-based data partitioning scheme was employed in which
the experimental dataset was split into multiple folds. Few-
shot prompts were constructed exclusively from polymers in
the training portion of each split, while predictions were evalu-

Fig. 5 Evaluation of model performance using experimental data alone and with transfer learning (TL). (a) Parity plot of predicted vs. experimental
Cp for the model trained only on experimental data. (b) TL model fine-tuned on experimental data after pretraining on the MD dataset (MLP + PE).
(c) TL model fine-tuned on experimental data after pretraining on the GC dataset (MLP + AtomPair). (d) Parity plot for the averaged GC–MD ensem-
ble, where predicted Cp values are obtained by simple arithmetic averaging. (e) Comparison of MAE across different model architectures and TL
strategies.
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ated on the corresponding held-out data, preventing target
information leakage and enabling fair comparison across
models and prompting strategies. We examined multiple
prompting configurations under both zero-shot and few-shot
settings using 0, 5, 10, and 15 ICL examples, as well as
different input representations, including SMILES strings,
polymer IUPAC names, functional group descriptors, and their
combinations. As summarized in Table 2, all tested LLM con-
figurations perform substantially worse than traditional ML
models, with several yielding negative R2 values. These results
indicate that current LLM-based approaches lack the numeri-
cal accuracy required for quantitative polymer property predic-
tion and should be interpreted strictly as exploratory or quali-
tative baselines.

Among the LLMs tested, Qwen3 produced the most accurate
predictions. Notably, the inclusion of few-shot examples in the
prompt improved model performance compared to zero-shot
settings, and accuracy generally increased with the number of
examples provided. Furthermore, supplementing the SMILES
input with corresponding IUPAC names consistently enhanced
predictive performance. Across all evaluated LLMs and
prompting settings, SMILES-only prompts consistently yielded
lower predictive accuracy than prompts combining SMILES
with IUPAC names, indicating that the absence of name-based
contextual information degrades LLM performance.

Despite these relative improvements, the accuracy of LLM-
based predictions remains substantially lower than that of the
specialized ML models considered in this work. In several
cases, certain LLMs (e.g., GPT-4o) yield negative R2 values,
indicating performance worse than a simple mean predictor.
Accordingly, LLMs are not intended to serve as competitive
predictors of polymer Cp, but are included as an exploratory
baseline to assess whether general-purpose language models
can extract coarse structure–property signals directly from
polymer representations. The limited performance of LLMs in
this setting can be attributed to the possibility of lack of
chemical inductive bias, the absence of explicit exposure to

thermophysical property data such as Cp during pretraining,
and their reliance on syntactic molecular encodings (e.g.,
SMILES) rather than physically informed molecular descrip-
tors or graphs. As a result, their utility in the present context is
qualitative and comparative rather than predictive. Overall,
these results highlight the current limitations of LLMs for
quantitative polymer property prediction and clarify their
appropriate role relative to domain-specific ML models.

The next step in our study involved predicting Cp of poly-
mers using the trained ML models. We predicted Cp values of
13 000 real polymer from PolyInfo database. The distribution
of these predictions is shown in Fig. 6a. The predicted Cp

values range from 298.17 to 2048.61 J (kgK)−1, with the
majority of polymers exhibiting values clustered within the
1000–1200 J (kg K)−1 range.

To expand the chemical space, we further applied the ML
models to the PI1M database, which contains 1 million virtual
polymer SMILES. The distribution of the predicted Cp values
for this dataset is shown in Fig. 6b. The predicted values range
from 106.89 to 3245.39 J (kg K)−1, with the majority of poly-
mers clustered within the 1200–1500 J (kg K)−1 range. Notably,
the PI1M predictions span a broader Cp range compared to
those from PolyInfo, suggesting the presence of novel struc-
tural motifs with potentially extreme thermal behaviors not
captured in existing experimental databases. These large-scale
predictions demonstrate the feasibility of using ML models to
rapidly screen polymer candidates for desirable thermal pro-
perties, significantly accelerating the materials discovery
process without the need for costly simulations or experi-
mental measurements.

To better understand how molecular structure influences
Cp in polymers, we analyzed the correlation between predicted
Cp values and a set of structural and physicochemical descrip-
tors. The descriptors considered include molecular weight,
number of rotatable bonds, topological polar surface area, frac-
tion of sp3 hybridized carbons (as a proxy for backbone flexi-
bility), heavy atom count, molar refractivity, ring count, and

Table 2 Comparison of different LLM models for polymer Cp prediction using various identifiers and shot settings

Model # Shots Identifier R2 RMSE MAE

Llama 4 5 SMILES 0.244 ± 0.24 346.44 ± 96.49 237.28 ± 68.99
Qwen3 5 SMILES 0.296 ± 0.23 322.09 ± 7.43 206.36 ± 13.12
GPT-4o 5 SMILES −0.07 ± 0.35 399.11 ± 44.76 269.15 ± 28.59
Gemini 2.0 Flash 5 SMILES 0.264 ± 0.24 339.66 ± 80.08 241.95 ± 53.24
Mistral Large 5 SMILES 0.111 ± 0.23 372.83 ± 77.36 267.24 ± 50.76

Qwen3 0 SMILES −0.622 ± 0.72 484.01 ± 109.79 396.47 ± 113.80
5 SMILES 0.296 ± 0.23 322.09 ± 7.43 206.36 ± 13.12
10 SMILES 0.348 ± 0.15 321.99 ± 72.45 223.52 ± 49.86
15 SMILES 0.397 ± 0.15 308.36 ± 64.69 204.99 ± 39.63

Qwen3 5 SMILES 0.296 ± 0.23 322.09 ± 7.43 206.36 ± 13.12
5 SMILES + names 0.337 ± 0.16 315.99 ± 24.75 207.87 ± 18.68
5 SMILES + group 0.327 ± 0.13 321.24 ± 38.62 223.34 ± 36.08

Metrics are reported as mean ± standard deviation. Best results in each column are highlighted in bold.
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the number of hydrogen bond acceptors. The scatter plots of
Cp versus each descriptor, along with their respective Pearson
correlation coefficients, are shown in Fig. 7a–h.

The Debye model provides a theoretical basis for estimating
the volumetric heat capacity at constant volume:52

CvðTÞ ¼ 9nkB
T
ΘD

� �3ðΘD=T

0

x4ex

ðex � 1Þ2 dx; ð8Þ

where n is the atomic number density, kB is the Boltzmann
constant, ΘD is the Debye temperature, and T is the absolute

temperature. At temperatures much higher than ΘD, this
expression approaches the classical limit:

Cv � 3nkB; ð9Þ

which represents three thermally accessible vibrational
degrees of freedom per atom. In polymers, many high-fre-
quency bond vibrations, especially those involving C–H or
CvO stretching, are not excited at room temperature. The
effective number of thermally active modes feff is therefore
smaller than the classical limit of 3n.

Fig. 6 Histogram of ML-predicted Cp values for polymers in two datasets. (a) Predicted Cp distribution for over 13 000 polymers from the PolyInfo
database. (b) Predicted Cp distribution for 1 million virtual polymers from the PI1M dataset.

Fig. 7 Correlation between predicted Cp values and various molecular descriptors for the PolyInfo dataset (N ≈ 13 000 polymers): (a) molecular
weight, (b) number of rotatable bonds, (c) topological polar surface area, (d) fraction of sp3 carbons, (e) heavy atom count, (f ) molar refractivity, (g)
ring count, and (h) number of hydrogen bond acceptors. Each scatter plot includes the corresponding Pearson correlation coefficient.
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For condensed polymer solids, the difference between Cp

and Cv is negligible because Cp − Cv = α2BVT ≪ Cp, where α is
the thermal expansion coefficient, B the bulk modulus, V the
molar volume, and T the temperature.52 Xie et al.53 proposed a
modified form of the Debye expression for amorphous poly-
mers by reducing the effective atomic density to exclude hydro-
gen atoms that contribute only to high-frequency modes:

Cp � 3nCkB ¼ 2ðn� nHÞkB; ð10Þ

where nH is the number density of hydrogen atoms and nC is
the adjusted density of thermally active atoms. This model
reproduces experimental Cp values of amorphous polymers
with approximately 20% accuracy and emphasizes that the
main contribution to Cp at 298 K arises from low-frequency
torsional, skeletal, and conformational vibrations.54

Among all descriptors, the fraction of sp3 carbons shows
the strongest positive correlation with Cp (r = +0.82), confirm-
ing that flexible single-bonded carbon frameworks enhance
the density of low-frequency modes.55 The number of rotatable
bonds also shows a positive correlation (r = +0.36), indicating
that torsional flexibility contributes to higher Cp through low-
frequency modes, whereas ring count exhibits a negative corre-
lation (r = −0.52) because cyclic and aromatic structures
restrict conformational motion and increase local stiffness.56

Other descriptors, such as molecular weight, TPSA, heavy atom
count, molar refractivity, and hydrogen bond acceptors, show
weaker negative correlations (r = −0.25 to −0.30). Although
heavier atoms tend to lower individual bond vibrational fre-
quencies, their incorporation is often accompanied by bulkier
or more rigid substituents that suppress accessible low-fre-
quency modes.56 Similarly, higher TPSA and larger numbers of
hydrogen bond acceptors correspond to polar groups that
form strong intermolecular interactions and further limit
structural flexibility.56 These effects collectively reduce the
number of thermally active degrees of freedom feff, leading to
lower Cp. Therefore, polymers with greater conformational
flexibility exhibit higher Cp values, whereas rigid frameworks
have lower heat capacities due to fewer accessible vibrational
modes.

While ML-based models provide accurate Cp predictions,
classical GC methods remain attractive due to their simplicity

and scalability. To improve the quantitative accuracy of GC-
based Cp estimation, we next introduce a data-driven refitting
strategy that leverages large-scale predicted datasets to update
the GC parameters. The methodology leverages the predicted
Cp values of 1 million polymers from the PI1M database, pre-
viously computed using our TL-based ML model. For each
polymer, we extracted functional group counts from its mole-
cular structure. These counts were then related to the corres-
ponding predicted Cp (in J mol−1 K−1) using a non-negative
least squares regression approach. The relation follows the
standard additive GC framework:

Cmolar
p ¼

Xn
i¼1

Ni � GCi; ð11Þ

where Cmolar
p is the molar Cp of the polymer, Ni is the number

of occurrences of functional group i, GCi is the fitted contri-
bution of group i to Cp, and n is the total number of functional
groups considered. The regression was constrained to produce
only non-negative GC values to maintain physical
interpretability.

The regression analysis was performed using TL-predicted
Cp values for 13 000 PolyInfo polymers and 1 million PI1M
virtual polymers, and the resulting refitted GC values are
reported in Table 3 alongside the original literature-based GC
parameters (Satoh formulation) as compiled by van Krevelen
and te Nijenhuis39 for direct comparison. To assess the per-
formance of the newly proposed GC, we compared predicted
Cp values against experimental values from the PolyInfo
dataset. Fig. 8a shows the parity plot using the original litera-
ture-based GC values, which achieves an R2 value of 0.416.
When recalculated using our newly fitted GC values derived
from the 13 000 PolyInfo polymers, the R2 improves to 0.484
(Fig. 8b). The GC values fitted using the 1 million predicted
PI1M data further enhance the correlation, yielding an R2

value of 0.562 (Fig. 8c), which corresponds to a 35% improve-
ment over the original GC approach. The refitting procedure
results in modest adjustments to the original literature-based
GC values rather than introducing new functional groups or
qualitative changes. Larger deviations are observed for certain
halogen-containing groups (e.g., Br and I), which are inter-
preted as empirical corrections arising from correlations

Table 3 Comparison of original and refitted GC parameters for Cp at 298.15 K

Functional group COrig
p CRefit

p Functional group COrig
p CRefit

p Functional group COrig
p CRefit

p

–CH3 30.90 35.54 –O– 16.80 25.98 –F 21.40 32.81
–CH2 25.35 25.35 –CO– 23.05 30.71 –Cl 27.10 27.10
>CH– 15.60 15.50 –COO– 46.00 53.37 –Br 26.30 78.24
>C< 6.20 6.20 –COOH 50.00 50.00 –I 22.40 140.45
vCH2 22.60 22.60 –OH 17.00 26.41 –CN 25.00 25.00
vCH– 18.65 27.70 –NO2 41.90 41.90 –CONH– 46.00 54.00
vC< 10.50 10.50 –NH2 20.95 20.94 –SO2– 50.00 49.72
–NH– 14.25 14.24 >N– 17.10 17.10 –SH 46.80 46.80
–S– 24.05 24.00 1-Sub benzene 85.60 92.00 2-Sub benzene 78.80 85.00
3-Sub benzene 65.00 80.00

GC parameters are defined in molar units (J mol−1 K−1) following the Satoh formulation as compiled by van Krevelen and te Nijenhuis.39
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present in the large predicted dataset rather than as physically
fundamental constants. Because the refitted GC parameters
are derived from model-predicted Cp values, they necessarily
inherit uncertainties and biases associated with the underlying
TL model. Accordingly, these parameters are not interpreted
as intrinsic physical constants, but as data-driven corrections
that improve empirical consistency with experimental trends
within the scope of the available data. Further experimental
measurements across chemically diverse polymers will be
required to fully validate and refine these group contributions.

To extend the structural interpretation to the level of func-
tional groups, we developed a separate tree-based regression
model trained using functional-group occurrence counts as
input features and the predicted polymer Cp values as targets.
This approach captures how the presence of specific functional
groups influences Cp across the dataset. The feature impor-
tance of this model was analyzed using the Shapley Additive
Explanations (SHAP) method to quantify the direction and
magnitude of each group’s contribution (Fig. 9a and b).

Groups such as –NH–, CH3, and CH display positive SHAP
values, indicating that their inclusion increases Cp. These
structural motifs are associated with sp3 bonding and local tor-
sional flexibility that enhances the density of low-frequency
modes. In contrast, groups such as CvO, vCH, aromatic
rings, and –OH exhibit negative SHAP values, corresponding to
their tendency to increase bond stiffness or restrict rotational
motion. Halogen-containing groups show mixed behavior:
heavier atoms such as Cl and Br yield small positive SHAP
values, whereas strongly electronegative atoms such as F
decrease Cp. The resulting SHAP hierarchy reproduces the
same physical trend obtained from the descriptor analysis:
chemical environments that promote soft, collective motions
contribute positively to Cp, while those that introduce rigidity
or strong electronic delocalization reduce it.

To qualitatively verify the SHAP-derived group ordering
using an independent physical measure, we performed
vibrational density of states (VDOS) analysis on a set of small
molecules containing CH3, CH2, and other representative func-
tional groups (Fig. 10). The VDOS was obtained from the

Fourier transform of the mass-weighted velocity autocorrela-
tion function (VACF). The velocity trajectories (vx, vy, vz) of all
atoms were first extracted from the MD simulations. Prior to
analysis, the overall translational and rotational (center-of-
mass and rigid-body) motions were removed to isolate the
intrinsic vibrational dynamics. Each atom i was assigned a
mass-weighted velocity defined as

wiðtÞ ¼ ffiffiffiffiffiffi
mi

p
viðtÞ; ð12Þ

where mi is the atomic mass and vi(t ) is the instantaneous vel-
ocity vector. The mass-weighted VACF was computed as

CðmÞðτÞ ¼
X
i

wið0Þ � wiðτÞh i; ð13Þ

and subsequently normalized with respect to its zero-time
value,

CðmÞ
normðτÞ ¼

CðmÞðτÞ
CðmÞð0Þ ¼

P
i

wið0Þ � wiðτÞh i
P
i

wið0Þ � wið0Þh i : ð14Þ

The normalized VACF was then Fourier-transformed to
obtain the VDOS,

gðωÞ ¼
ð1
0
CðmÞ
normðτÞe�iωτdτ; ð15Þ

where ω is the angular frequency.37

The VDOS from different chemical groups indicates their
contributions to the overall Cp (Fig. 10) shows the low-fre-
quency spectral area (0–250 cm−1). The vibrational frequency
corresponding to room temperature is approximately 200 cm−1

based on the Bose–Einstein distribution. Therefore, we calcu-
late the areas under the curve for different chemical groups in
these studied cases. The integration window was extended to
0–250 cm−1 to capture all relevant torsional and skeletal
motions before the onset of higher-frequency stretching
vibrations.56

Across all test molecules, the CH3 group consistently exhi-
bits the largest integrated low-frequency area (A0–250), confirm-

Fig. 8 Comparison of GC model performance for Cp prediction: (a) using literature-based GC values, (b) using GC values fitted from 13 000
PolyInfo polymers, and (c) using GC values fitted from 1 million virtual polymers from PI1M database.
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Fig. 9 (a) SHAP summary plot showing the distribution of SHAP values for each functional group across the dataset, where red and blue points rep-
resent high and low feature values, respectively. (b) Directional SHAP analysis showing the mean signed SHAP values for functional groups. Positive
SHAP values (blue bars) indicate groups that increase Cp, whereas negative SHAP values (red bars) indicate groups that decrease Cp.

Fig. 10 Vibrational density of states (VDOS) spectra obtained from molecular dynamics simulations after rigid-body motion removal and mass-
weighted velocity correction. The low-frequency region (0–250 cm−1) captures collective, torsional, and skeletal vibrations that dominate polymer
heat capacity at ambient temperatures. Panels (a–f ) show representative small-molecule fragments, comparing CH3 groups with selected functional
groups from different chemical environments.
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ing its strong association with soft torsional and skeletal
vibrations. Functional groups such as CvO, aromatic, S, F,
and Br display smaller A0–250 values compared to the CH3

group within the same molecule, indicating comparatively
stiffer local bonding and reduced accessibility of low-frequency
modes. The only group that shows a comparable or slightly
larger spectral area than CH3 is –NH–. These observations gen-
erally align well with the SHAP ranking.

In addition to descriptor-based analysis, SHAP interpret-
ation, and VDOS decomposition, we further examine local,
atom-level contributions using the GREA model. Based on
nested cross-validation, GREA is not the best-performing pre-
dictive model and is therefore used here primarily as a tool for
interpretability. The central feature of GREA is its environ-
ment-based augmentation, in which atomic representations
are conditioned on their surrounding chemical context. This
allows the model to distinguish similar functional groups
embedded in different environments and yields chemically
meaningful atom-level attributions. The details of the GREA
framework and its underlying formulation are described in the

original work by Liu et al.44 Fig. 11 presents representative
rationale visualizations for two high-Cp polymers (Fig. 11a and
b) and two low-Cp polymers (Fig. 11c and d). Highlighted
regions indicate atoms that contribute most strongly to the
predicted Cp. For high-Cp polymers, the model assigns greater
importance to flexible aliphatic segments and heteroatom-con-
taining linkages, which increase vibrational freedom and con-
tribute to higher heat capacity. In contrast, low-Cp polymers
are characterized by rigid, highly fluorinated backbones and
heavy halogen substitution, consistent with reduced
vibrational freedom. Overall, these atom-level rationales
provide localized and chemically intuitive confirmation of
trends identified through descriptor analysis, SHAP values,
and VDOS calculations, and help connect the model predic-
tions to underlying physical mechanisms. These atom-level
rationales should be interpreted as associative rather than
causal. The highlighted contributions reflect correlations
learned from the available training data between local chemi-
cal environments and predicted Cp, and do not imply direct
mechanistic causation.

Fig. 11 Representative GREA-based rationale visualizations illustrating structure–property attribution for polymer Cp prediction. Panels (a) and (b)
show high-Cp polymers, where the highlighted atoms correspond primarily to flexible aliphatic segments, ester linkages, and bulky substituents that
promote enhanced vibrational freedom. Panels (c) and (d) show low-Cp polymers, with attributions concentrated around rigid aromatic units, halo-
genated groups, and stiff backbone motifs associated with constrained molecular motion. Highlighted atoms indicate the top 30% of nodes ranked
by model-derived importance.
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With validated predictive models and a refined GC frame-
work in place, we finally demonstrate how the predicted ther-
mophysical properties can be used for application-oriented
polymer screening and categorization. Using the ML-predicted
Cp values, we identified promising polymer candidates for
various thermal applications. Although the primary focus of
this study is on Cp, selecting materials based solely on Cp is
not sufficient for practical applications. As a demonstration of
practical screening scenarios, we therefore incorporated two
additional thermal properties, thermal conductivity (TC) and
glass transition temperature (Tg), sourced from our previous
studies.9,13,28 Table 4 provides a comprehensive overview of the
categorization framework used. It includes: (i) the names of
four application-specific polymer categories; (ii) threshold
values for Cp, TC, and Tg, defined separately for the PolyInfo

dataset and for the larger PI1M database; (iii) functional
descriptions outlining the role of each category; and (iv) repre-
sentative example applications. Because PI1M contains a sub-
stantially larger and more diverse set of polymers, the corres-
ponding thresholds were set at slightly higher values to reflect
its broader property distribution. The threshold values for
each property were chosen based on the distribution and
upper–lower bounds of the TL-predicted values in each
dataset, highlighting polymers with clearly distinct thermal
behaviors. The application-oriented categorization presented
here is intended as a high-level screening and prioritization
framework rather than a device-level design or certification
scheme. The Cp, TC, and Tg thresholds are defined heuristi-
cally to translate large-scale property predictions into appli-
cation-relevant guidance, rather than as strict performance

Table 4 Categorization of polymers based on thermal property thresholds, representative examples, and example applications

Category
Thresholds
(PolyInfo)

Thresholds
(PI1M) Functional description Example applications Representative examples

Thermal interface
materials (high Cp,
high TC, high Tg)

Cp ≥ 1600 Cp ≥ 1800 Efficient heat transfer across
interfaces with high thermal
stability under operating
conditions

Interface pads in
CPUs/GPUs, power
electronics, EV battery
modules

High-Tg engineering polymers
(e.g., PEEK-like systems) used in
thermally demanding structural
applications

TC ≥ 0.4 TC ≥ 0.5
Tg ≥ 100 °C Tg ≥ 130 °C

Thermal insulators
(high Cp, low TC,
high Tg)

Cp ≥ 1700 Cp ≥ 2000 Minimizes heat transfer while
maintaining thermal and
mechanical stability at
elevated temperatures

Fire-resistant coatings,
aerospace insulation,
protective gear

Polyethylene-based materials
exhibiting low TC and moderate-
to-high Cp under ambient
conditions

TC ≤ 0.2 TC ≤ 0.2
Tg ≥ 120 °C Tg ≥ 110 °C

Thermal buffers
(high Cp, low TC,
low Tg)

Cp ≥ 1800 Cp ≥ 2200 Acts as a thermal reservoir for
energy absorption and
damping at sub-ambient
conditions

Cold chain packaging,
biomedical storage,
low-temperature wraps

HDPE and related polyolefins
with low Tg and strong thermal
buffering behavior

TC ≤ 0.2 TC ≤ 0.2
Tg ≤ 10 °C Tg ≤ −50 °C

Heat spreaders
(low Cp, high TC,
high Tg)

Cp ≤ 1000 Cp ≤ 700 Rapid dissipation of localized
heat under high thermal
loads and cycling

LED spreaders,
aerospace electronics,
laser cooling systems

Sulfur- and heteroatom-rich
polymers reported to exhibit
elevated TC and thermal
robustness

TC ≥ 0.4 TC ≥ 0.6
Tg ≥ 150 °C Tg ≥ 150 °C

Fig. 12 Scatter plots of ML-predicted polymer properties in the Cp–TC–Tg space. (a) Predictions for experimentally known polymers from the
PolyInfo dataset (N = 13 000), categorized into four functional application classes. (b) Predictions for virtual polymers from the PI1M dataset (N =
1 million), showing broader chemical diversity while following the same classification boundaries.
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requirements. The selected threshold ranges are consistent
with typical thermophysical property values reported for poly-
mers in the literature. Mass-specific Cp of common polymers
are generally reported in the range of approximately
1200–3000 J kg−1 K−1 at ambient conditions, while bulk
polymer TCs typically lie between about 0.1 and 0.5 W m−1

K−1.39 Reported Tg span a broad range, from below room temp-

erature for flexible polymers to above 150–200 °C for thermally
stable engineering polymers.39,57 These literature-consistent
ranges provide physical context for the heuristic thresholds
adopted in Table 4.

We propose a categorization framework to link predicted
thermal properties with application-specific needs. The
thermal interface materials category targets applications

Fig. 13 Selected polymer candidates from the PolyInfo dataset representing four functional categories based on predicted Cp, TC, and Tg, with
corresponding polymer class labels. Selection was based on threshold criteria from Table 4.
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requiring efficient heat dissipation and structural stability,
favoring polymers with high Cp, high TC, and high Tg.

58

Thermal insulators, commonly used in high-temperature
environments, are characterized by high Cp, low TC, and high
Tg, which minimize heat transfer.59 Thermal buffers, relevant
for energy storage or damping applications, require high Cp,
low TC, and low Tg to provide thermal management at sub-
ambient conditions.60 Finally, we define heat spreaders as
materials prioritizing rapid heat conduction and thermal resi-
lience, requiring low Cp, high TC, and high Tg, which are ideal
for high-performance electronics.61 As a qualitative validation
of the application-oriented categorization, we examine whether

well-known polymers are placed into categories consistent
with their established thermophysical behavior reported in the
literature. This comparison is intended to verify the physical
plausibility of the screening framework rather than to serve as
device-level validation. For example, polyethylene-based
materials are widely used in applications where low TC and
thermal buffering are desirable. High-density polyethylene
(HDPE) exhibits mass-specific Cp in the range of approximately
1300–2400 J kg−1 K−1 and bulk TC on the order of 0.3–0.5 W
m−1 K−1 at ambient conditions, together with a very low Tg.

39

These literature-reported properties satisfy the defining criteria
of the low-conductivity categories in Table 4 (thermal insula-

Fig. 14 Selected polymer candidates from the PI1M dataset representing four functional categories based on predicted Cp, TC, and Tg. Selection
was based on threshold criteria from Table 4 with stricter cutoffs for this dataset.
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tors/thermal buffers), consistent with the established use of
polyethylene materials in insulating and thermal buffering
roles. Similarly, high-performance engineering polymers such
as poly(ether ether ketone) (PEEK), which exhibits a high Tg of
approximately 143 °C and is commonly employed in thermally
demanding environments requiring structural stability, are
preferentially grouped into categories characterized by elevated
Tg thresholds.

39,57 While PEEK is not selected for high thermal
conductivity, its classification reflects the intended role of
high-Tg criteria in identifying thermally stable polymer classes.
These examples demonstrate that the proposed threshold-
based categorization recovers well-established qualitative dis-
tinctions among polymer classes, supporting its use as a first-
pass screening and prioritization tool. The case studies show
that ML models can quickly identify polymer candidates given
property targets, and that this approach is generalizable to any
custom-defined property targets.

Fig. 12a shows a scatter plot of the PolyInfo polymers,
visualizing the relationship between Cp, TC, and Tg. The over-
laid shaded regions indicate the approximate areas occupied
by polymers with distinct combinations of thermal properties,
corresponding to the four application categories discussed in
Table 4. These regions highlight clusters of datapoints with
relatively high or low values of Cp, TC, and Tg, representing
typical candidates for applications such as thermal interface
materials, insulators, buffers, and heat spreaders. Similarly,
Fig. 12b presents the plot for the PI1M dataset. The same
region boundaries are overlaid to visualize the distribution of
newly screened polymers across the functional application
space. With 1 million polymers, the PI1M dataset spans a
larger chemical space, and since the threshold values are
higher, it offers a selection of polymer candidates with more
extreme properties.

Fig. 13 presents the selected polymer candidates from the
PolyInfo database, with five representative polymers shown for
each of the four application categories. Each polymer is
depicted with its chemical structure, along with its polymer
class, and corresponding thermal property values. For the
selected polymers, the Cp values predicted using the ML
model were cross-checked using the newly proposed GC
method. For selection, only polymers where both ML-predicted
and GC-derived Cp values satisfied the threshold criteria,
defined in Table 4, were included. We adopted the GC method
for Cp validation instead of MD simulations, as MD-predicted
values tend to be systematically overestimated. This figure also
illustrates the structural and thermal property diversity of
representative polymers across four functional categories. In
the Thermal Interface group, polyesters and polyphenylenes
stand out with high values of Cp, TC, and Tg. The thermal insu-
lator and buffer categories are mostly polyacrylics, polyolefins,
and polyvinyls, which exhibit high Cp but low TC, which are
favorable for thermal resistance and energy absorption.
Conversely, the heat spreader category includes polymers such
as polysulfides and polyimines, which display relatively low Cp

and high TC and Tg, ideal for efficient heat spreading. These
examples highlight real polymer candidates tailored for

specific thermal roles, reinforcing the utility of data-driven
screening in materials design.

Similarly, Fig. 14 shows the selected polymer candidates
from the P11M dataset, with five representative polymers dis-
played for each application category. The selections are based
on the higher threshold values defined for P11M in Table 4.
Each polymer is shown with its ML-predicted Cp value, along
with the TC and Tg. Because the proposed application categories
are derived from multiple predicted properties (Cp, TC, and Tg),
uncertainties from the individual predictive models may
accumulate in the final classification. Accordingly, the resulting
application labels should be interpreted probabilistically and
used for candidate prioritization rather than definitive assign-
ment. In addition, we verified that modest variations (on the
order of ±10%) in the threshold values for Cp, TC, and Tg do not
qualitatively alter the overall distribution of polymers across
application categories, indicating that the screening results are
robust to small threshold perturbations. By leveraging both
established and large-scale virtual datasets, we demonstrate the
potential to discover high-performing candidates across a broad
chemical space. These selected polymers provide a strong foun-
dation for further computational or experimental evaluation
and showcase the practical relevance of data-driven screening
strategies in polymer thermal property design.

Conclusion

This work presents a comprehensive TL framework for predict-
ing the Cp of polymers, a key property for efficient thermal
energy management in various applications. ML models were
first pretrained using large datasets generated from MD simu-
lations and GC method calculations, and then fine-tuned on
experimental data to improve accuracy. Multiple ML models
were evaluated, including MLP, GNN, and GREA architectures,
using a range of molecular fingerprints and structural descrip-
tors. MLP model with TL showed superior performance, high-
lighting the effectiveness of combining structural priors with
experimental trends.

The trained models were applied to polymers from both
known and virtual datasets to perform large-scale Cp screening.
We further explored LLMs as few-shot, training-free baselines;
however, their performance was substantially inferior to domain-
specific ML models, limiting their applicability for quantitative
property prediction. Structure–property analysis, supported by
SHAP interpretation and VDOS analysis, revealed that polymers
with a higher fraction of sp3-hybridized carbons and more rotata-
ble bonds tend to exhibit increased Cp values because enhanced
vibrational flexibility increases the number of accessible low-fre-
quency modes. These trends align with the theoretical under-
standing that a greater number of low-energy, thermally accessi-
ble vibrational DOF significantly contributes to Cp in polymers.

In addition, we proposed new GC values through data-
driven regression, providing an interpretable and lightweight
alternative for Cp estimation. Based on predicted Cp, along
with TC and Tg, polymers were classified into four application-
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relevant categories: thermal interface materials, insulators,
buffers, and heat spreaders. Representative candidates were
identified for each category, demonstrating the practical utility
of the screening framework. Overall, this study demonstrates
how integrating multi-fidelity data, ML, and interpretable
modeling can accelerate polymer discovery. The framework is
adaptable and can be extended to other thermophysical pro-
perties, offering a valuable tool for guiding the design of
advanced materials for thermal energy applications.
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