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The iminophosphonamide [R,P(NR’),]™ ligand is an analog of phosphate (R,PO,7), replacing its oxygen
atoms with two amide groups. This review aims to provide the first comprehensive report on coordination
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chemistry dealing with iminophosphonamide ligands, focusing on the s-block, p-block, transition, and
f-block metals. In particular, this monoanionic ligand’s coordination mode and reactivity with the metal
centers are discussed. The last section of the review is dedicated to the reported chiral iminophosphona-
mine ligands and corresponding metal complexes.

1 Introduction

In coordination chemistry, tailor-made ligand systems are
crucial for creating metal complexes with specific properties.
Monoanionic chelating ligands such as p-diketiminates,* ami-
notroponimates,’

bis(phosphinimino)methanides,*”
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amidinates,®® and closely related guanidinates®* are a well-
established class of ligand systems. Of these N-donor ligands,
amidinates belong to the NXN ligand framework with a carbon
atom at the center (i.e., X = C). The coordinated complexes
containing an NXN motif are typically referred to as non-metal-
locene derivatives. Upon replacing the central atom X, many
N-X-N-type bidentate chelating ligands can be created, and
such ligands are thought of as hetero analogs of the allylic
ligand.

The boraamidinate, sulfinamidinate, triazenide, and imino-
phosphonamide systems are examples of N-X-N ligands,
where X = BR,">!* SR,">® N,'92°%% and PR,,>**° respectively
(Fig. 1). As expected, electronic tuning of the ligand backbone
occurs upon alteration of the central atom X in the NXN
ligand. It is reasonable to assume that these heteroatomic
ligand systems have a similar coordination chemistry.
Nonetheless, the ligand system’s closure inspection indicates
that the corresponding bond lengths and bite angles vary,
which significantly affects how the corresponding complexes
behave chemically. In contrast to the other NXN ligands, the
iminophosphonamides (X = PR,) have the longest X-N bond
(1.60 A), which result into a comparatively wider bite angle in
their metal complexes.”® Furthermore, it has been experi-
mentally observed that some iminophosphonamides can exist
in a zwitterionic form, denoted as N"-P'-N~, where the nega-
tive charge is localized on the nitrogen atoms of the iminopho-
sphonamide ligand. This zwitterionic form is a key difference
in the electronic properties between iminophosphonamides
and closely related amidinates.>”

Additionally, the highest occupied molecular orbital
(HOMO) of iminophosphonamide ligands can exhibit either
C,, or Cy symmetry, whereas the HOMO of amidinate ligands
demonstrates only C,, symmetry. The presence of C; symmetry
in iminophosphonamide ligands allows for effective in-plane
donation of n-electron density from the nitrogen center to the
d,. orbital of the metal center. In contrast, the C,, symmetric
HOMO of amidinates results in only lateral donation, leading
to significant puckering of the metallacycles.””

Furthermore, the presence of a phosphorus center in the
ligand backbone makes it easy to track the reaction progress
via *'P NMR spectroscopy. Moreover, the central R,P unit of

Fig. 1 Different derivatives of the amidinate ligand system.
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the iminophosphonamide offers a higher steric demand in
comparison to the other NXN ligand frameworks. By changing
the substituents (R, R’) in the iminophosphonamide ligand,
the steric factor can be varied.

The following three types of bonding modes can be offered
by the iminophosphonamide ligand, which depends upon the
type of the metal atoms (Fig. 2).

Generally, the following two major preparative approaches
can be used to synthesize the iminophosphonamide ligand
(Scheme 1):

(1) Kirsanov condensation: in this approach, a bromo phos-
phonium salt, [R,PXX']'Br~ (X and X' = Cl or Br), is generated by
oxidizing tertiary phosphine, R,PX (X = Cl and Br) with bromine.
In the second step, the produced bromo phosphonium salt can
react with primary amines (R'NH,) to form a diamino phos-
phonium salt, which is then transformed into the equivalent
iminophosphonamine with the aid of a strong base.*®*°

(2) Staudinger reaction: the Staudinger reaction for the syn-
thesis of iminophosphonamine is more versatile. In this pre-
parative approach, a reaction is carried out between a stoichio-
metric quantity of an organic azide (R'N;) and phosphonamine
(R,PNHR’) or phosphine (R,PH), which immediately releases
N, and yields the iminophosphonamine ligand.***?

To avoid any potential hazards associated with the di-
substituted phosphanes and azides in the Staudinger reaction,
Kirsanov condensation could be employed as an alternative
synthetic method.

Based on the above-mentioned synthetic methods, various
iminophosphonamine ligands have been reported in the litera-
ture. Using these ligands, the literature presents a variety of
iminophosphonamide metal complexes, ranging from main
group, over transition metals to rare earth metals. The syn-
thesized metal complexes can be formed either by direct
deprotonation (Scheme 2a) or through salt metathesis reac-
tions (Scheme 2b).

Fl{. FI{. 5.
N N—
R\P'/ R\P/N\M R\P/C '\:/I
FEAN Fa\ A\ !
R ’T‘_M R l}l/ R |}l—|\l/|
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Bridging (p)

Fig. 2 General coordination modes observed in the iminophosphona-
mide ligand.

Kirsanov Condensation

a)2 eq R'NH, NHR
N . + NHR' . '

R,PCI+Br, —=[R,pcler] B —DL2€aB g o B R
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Staudinger reaction
2eqR'N; NHR' R'N NHR'
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Scheme 1 General synthetic methods for iminophosphonamine (B =
base).>

This journal is © the Partner Organisations 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5qi00275c

Open Access Article. Published on 09 april 2025. Downloaded on 01.11.2025 17.42.08.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Inorganic Chemistry Frontiers

R
R R R _P_ _R
R' \P/ R, \N//_Q g HR" ( )
~ _ + a
SNTTNTT 4RMRY ——
|
i
R R R R
R P _R' R P _R'
~N N7 ~N AN
NN NN s mx ()

N/ + R'MX ——  \ /
g y
R

Scheme 2 Common chemical reactions involved in the synthesis of
iminophosphonamide metal complexes, by (a) direct deprotonation or
(b) through salt metathesis reactions.

To the best of our knowledge, reviews dealing with the
coordination chemistry of most of the above-mentioned NXN
ligand systems are known with the exception of iminopho-
sphonamide ligands (Fig. 1)."*?*® Some parts of the review
have already been published in the dissertation of one of the
authors.?” This review will give a comprehensive account of the
coordination chemistry dealing with the iminophosphona-
mide ligand, particularly coordination modes and reactivity
with the s-block, p-block, transition, and rare earth metal
elements. This also includes the developments in the field of
enantiopure iminophosphonamine ligands so far.

2. Achiral complexes of
iminophosphonamides

2.1 s-Block metal complexes

The s-block metal complexes of the iminophosphonamine
ligand are important since these metal complexes serve as
reagents to transfer the ligand to other metal centers.

The alkali metal complexes of the ligand are commonly syn-
thesized by deprotonation of the iminophosphonamines with
alkali metal precursors such as n-BuLi, NaH, [Na{N(SiMe3),}],
KH, [K{N(SiMe3),}], [Rb{N(SiMe;),}], and [Cs{N(SiMes),}] or
direct deprotonation of elemental metals such as rubidium
and caesium. The literature represents alkali metal complexes
of various NPN motifs such as {PhZP(Z,S—iPr2C6H3N)2}H, {Ph,P
(2,4,6-Me;CqH,N),JH,**3°  {Ph,P(2,6-'Pr,CeH;NH)P(Ph,)(=N
(CeH,-2,4,6-Me;))},*® and {Ph,PN(SiMe;),JH.*!

Upon closely looking at the structures of alkali metal com-
plexes of the various ligands, it is observed that depending on
the ionic radius of the metals and N-substituents, the aggrega-
tion state of the complexes differs. For example, the solid state
of the potassium salt [K{Ph,P(2,6-"Pr,C¢H;N),}], is polymeric,
as depicted in Scheme 3.%%

The K:--C contact length in the polymeric potassium
complex lies in the range of 3.100-3.468 A. The *'P{'"H} NMR
spectrum of the polymeric potassium complex exhibits only
one signal at § = —17.5 ppm, suggesting the symmetric coordi-
nation of the ligand in the solution. *"P{'H} of the polymeric
potassium is slightly upfield shifted compared to its starting
ligand, § = —16.7 ppm. In contrast, the deprotonation of the
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Scheme 3 Syntheses of Li, Na and K complexes of {Ph,P(ArN),} (Ar =
2,6-'Pr,CeHs and 2,4,6-MesCgH,).*®

{Ph,P(2,6-Pr,C¢H;N),}H ligand with n-BuLi and Na(SiMes),
resulted in the formation of dimeric complexes [Li{Ph,P
(2,6-'Pr,CeH3N),}], and [Na{Ph,P(2,6-'Pr,C¢H;N),}],, respect-
ively. However, upon recrystallization, the later mother-liquor
of the dimeric lithium complex [Li{Ph,P(2,6-Pr,CcH;N),}],
resulted in the formation of unusual crystals of [Ph,P
(2,6-Pr,CeH3N){2,6-"Pr,CeH;N(Ph,P)(N-N=N-2,6-"Pr,C¢H;)}
Li,] and [{2,6-'Pr,CeH;N(Ph,P)(N-N=N-2,6-'Pr,C¢Hj)},Li,]. The
formation of these phosphazide products was attributed to the
incomplete N, evolution during the Staudinger reaction of
ligand formation (Scheme 4).

Additionally, the THF adducts [Li{Ph,P(2,6-"Pr,C¢H;N),}
(thf)] and [Li{Ph,P(2,6-'Pr,C¢H;N),}(thf),] were isolated either
by performing the reaction in n-hexane/THF or by the addition
of THF to the dimeric [Li{Ph,P(2,6-'Pr,C¢H;N),}], complex.
The dimeric molecular structure of the sodium corresponding
complex exhibited Na---n®-Dipp-arene interaction with the
second ligand having an average Na:--C centroid distance of
2.50 A.

Moreover, the deprotonation of {Ph,P(2,4,6-Me;CsH,N),}H
with n-BuLi in n-hexane resulted in the formation of a dimeric
complex, [Li,{Ph,P(2,4,6-Me;CsH,N),},]. The treatment of the
{Ph,P(2,4,6-Me;CcH,N),}H ligand with Na{N(SiMe;),} in
toluene resulted in the formation of a homoleptic sodium
complex, [Na,{Ph,P(2,4,6-Me;C¢H,N),},], and the molecular
structure of this homoleptic complex was undetermined.
However, the THF adduct of the sodium complex could be
identified by recrystallizing the product in THF. Additionally,
the potassium complex crystallized in polymeric form [K{Ph,P
(2,4,6-Me;CH,N),}, similar to [K{Ph,P(2,6-Pr,CeH;N),},..

Furthermore, when the ligand {Ph,P(Me;SiN),}H was depro-
tonated with n-BuLi, NaH, KH, Rb, and Cs, the coordination

n-Dipp HéN’Dipp N-Dipp
11 //
Ph N _N N
P_ .Dipp  Dipp-N N v s
o 1Pp-N3 Ph_li Ph_3 :
N < e ) ~ Ph_l
ph H YLl Ph)P\\N/Dlpp i Ph:P\eN,Dipp
H

Scheme 4 Formation of phosphazide through incomplete N, evolution
during the Staudinger reaction.*®
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pattern in the series from Li to Cs complexes exhibits a non-
uniform trend (Scheme 5).*' The molecular structures of the
lithium and potassium complexes exhibit monomeric forms,
[{Ph,P(NSiMes;),}Li(thf),] and [{Ph,P(NSiMe;),}K(thf),], where
the central metal ions are coordinated by two and four THF
molecules, respectively. However, the sodium complex nonuni-
formly crystalized as highly reactive sodium/sodiumate ion
pair [{Ph,P(NSiMe;),},Na|[Na(thf)s]. In this ion paired sodium
complex, the metal ions exit in two different coordination
states, one sodium is octahedrally coordinated by six THF
molecules, whereas the other ion is tetrahedrally coordinated
by four nitrogen atoms of the iminophosphonamide ligand.
Conversely, Rb and Cs metal complexes are found in dimeric
[{Ph,P(Me;SiN),Rb(thf)},] and [{Ph,P(Me;SiN),Cs},] forms.

Iminophosphonamide alkaline earth metal complexes are
generally synthesized by deprotonating the relevant iminopho-
sphonamines with alkaline earth metal amides, [M{N
(SiMes),}].

The alkaline earth metals (M = Be, Mg, Ca, Sr, and Ba), as
opposed to alkali metal complexes of the {Ph,P(Me;SiN),}~
ligand, show a consistent coordination pattern (Scheme 6).*>
The alkaline earth metal complexes exist in a mononuclear
form with additional coordination of THF molecules, [{Ph,P

Ph_ _Ph
P
MeSi~ N7 \y—SiMes
&L
S S
| 1
Me,Si— N\¥/P/N\SiMe3
PR “Ph
Ph\P/Ph CST
Me,Si—N7\N—SiMe, SiMey on E‘Mes
thfs | | ph_ N b \
Rb/Rb\ . N RLEGS @1
| 1t ph7 N P N
Me.si—N < N~siMe NH ) M=Lli,n=2
&5SiT N7 3 L SiMe =K, n=
Ph/P\Ph SiMey 3 M=K, n=4
NaH l
?iMe3 ?iM(—:3
PAN N
0.5
Ph/P\C )/ [Natenle
N
|
SiMe; SlMe3
Scheme 5 Iminophosphonamide complexes of alkali metals: (a) n-Buli
and (b) KH.**
SiMe, Me,Si
i |
Ph ) N
\P// [M{N(SiMe;),},(thf),] Ph_ o
P\ - phe \ M(thf),,
‘H - 2 NH(SiMe;),
SiMe, I
Me,Si 2
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n=0 22 22
m=0 01 2 2

Scheme 6 Iminophosphonamide complexes of alkaline earth metals.*?

3558 | /norg. Chem. Front., 2025, 12, 3555-3581

View Article Online

Inorganic Chemistry Frontiers

(NSiMe3),},M(thf),,], depending on the ionic radius of central
metals.

Furthermore, Stasch has incorporated sterically protected
iminophosphonamide ligands such as {Ph,P(2,6-"Pr,CeH;N),}~
to stabilize the low-valent [Mg]"™ complexes.*®

In this regard, the iminophosphonamide ligand was first
deprotonated by MeMgX (X = Br and I), which resulted in the
formation of [{Ph,P(2,6-Pr,C¢H;N),}MgX(Et,0)]. To form an
ether-free Mg(u) complex, the ether adduct of the iminopho-
sphonamide [{Ph,P(2,6-'Pr,CcH;N),}MgX(Et,0)] complex was
heated in toluene under reduced pressure, which afforded
[{Ph,P(2,6-Pr,CeH;N),},Mg,(1-X),]. One electron reduction of
the halide bridged magnesium complex was performed using
[{(™**nacnac)Mg},], which resulted in the low valent mag-
nesium [{PhZP(Z,6—iPrZCGH3N]2}2Mg2] complex (Scheme 7). The
stability of the low valent magnesium species could be attribu-
ted to the P(v) center and steric and kinetic factors of the imi-
nophosphonamide ligand. The Mg(1) species was characterized
by multinuclear NMR spectroscopy and single-crystal X-ray
diffraction. The observed Mg-Mg bond distance, 2.8445(9) A,
in the complex is also in the range of previous reports.**™*®
Moreover, when two equivalents of tert-butyl isocyanate
reacted with Mg(1) species, it resulted in the formation of color-
less C-C-coupled product [{Ph,P
(2,6-'Pr,CeH;N),Mg},(N'BuCO),]. This product has a bridging
tert-butyl isocyanate fragment that coordinates the Mg*"
centers via N, N’ and O, O’ coordination modes.

This dimeric magnesium complex, [{Ph,P
(2,6—iPrZC6H3N)2}ZMg2] was also used to examine the mecha-
nisms of anionic ligand exchange and fullerene reduction.’

In 2001, Stalke’s group altered the coordination ability of
the {Ph,P(Me;SiN),}~ iminophosphonamide ligand, by repla-
cing the phenyl substituents of phosphorous with pyridyl moi-
eties; thus, a novel Janus head {Py,P(Me;SiN),}” ligand was
reported.*® The ligand was synthesized by the reaction of di(2-
pyridyl)phosphane with 2 equiv. of trimethylsilylazide via the
Staudinger method. The NPN coordination pocket in the {Py,P
(Me;SiN),}~ ligand and two distant pyridyl substituents indi-
cate that the Janus head ligand exhibits two possible chelating
coordination pockets.

At room temperature, the protonated Janus-type ligand
reacts with [M{N(SiMes),},] (M = Sr or Ba) furnishing [{Py,P

?“’p D\'pp Dipp I’Dipp
Ny \ / \ / \

4 P\Ph

\// MeMgX (X = Br, 1) in Et,0  Ph \/ y
reduced pressure  Ph™ \ / Ny / \

Ph
\NH -CH, Ph™ \ e

toluene, A
MgX(Et,0)

|
Dipp I ’ .
Dipp X=Br, | Dipp Dipp
Dipp = 2,6-Pr,CgH
e [{(Me*nacnac)Mg},]
DimT /:Bu lllipp Dipp [f\pp
N N\ N
Ph\P/ \Mg/OIN\Mg/)\P/Ph 2 eq. 'BUNCO '
— ~, VIg, ~,
Ph \N/ o~ N\/ \N/ Ph P \ \N/ Ph
N B | i |
Dipp Dipp Dipp Dipp

\/\ /\/

toluene

Scheme 7 Low-valent magnesium iminophosphonamide complexes
and their reactivity.*®
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iminophosphonamide-based alkaline earth

(NSiMe3),},Sr(thf)] and [{Py,P(NSiMe;),},Ba(4,4-bipy)], com-
plexes. The 4,4"-bipyridine ligands help to reveal a zigzag poly-
meric arrangement in the solid-state structure of the barium
complex (Scheme 8).**

2.2. p-Block: group 13 and 14 compounds of the
iminophosphonamides

2.2.1 Iminophosphonamide complexes of group 13 metals.
The group 13 metal complexes of the iminophosphonamide
typically form four-membered metalacyclic rings. In this
context, Singh’s group has reported various boron compounds
of the iminophosphonamide.*® As depicted below, the reaction
of HBCl,-SMe,, PhBCl,, and H,BCl-SMe, with a lithium salt of
the iminophosphonamine {Ph,P(2,6-'Pr,C¢H;N)(N‘Bu)}H pre-
pared in situ resulted in salt metathesis and afforded chloro
borane, chlorophenyl borane and dihydro borane complexes of
the iminophosphonamide, respectively. Moreover, treatment
of the chlorophenyl borane complex with AlH;NMe,Et
afforded a phenyl borane complex (Scheme 9).

The formation of all these complexes was confirmed by
multinuclear NMR and IR spectroscopy and HRMS, and the
molecular structures of all these complexes were determined
by single-crystal X-ray diffraction. The molecular structures
suggested that the boron center adopts tetrahedral geometry
for all these compounds.

The aluminum complexes of the iminophosphonamide
{Ph,P(Me;SiN),}~ were reported by H. Roesky. These com-
plexes were obtained either by a base elimination reaction
between the iminophosphonamine {Ph,P(Me;SiN),}H and
trialkyl/triamide precursors of group 13 or by salt metathesis
processes involving group 13 metal halides and in situ pro-
duced lithium iminophosphonamide (Scheme 10).°*°" The tet-
racoordinated dimethyl complexes [{Ph,P(NSiMe;),}Me,M] (M
= Al, Ga, or In) exhibited distinct melting points. By determin-
ing the matching cryoscopic molecular weight, the monomeric
character of these metal complexes was verified.>® The alumi-
num monohydride complex, which was synthesized by the
reaction of [Ph,P(NSiMe;),H] and AlH;-NMes, adopted a dis-
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Scheme 10 Synthesis of group 13 iminophosphonamide complexes.>*

torted trigonal bipyramidal geometry. The P-N bond lengths
for each of these complexes are consistent with previously
reported single and double bond lengths.>> Few group
13 metal complexes based on distinct iminophosphonamide
backbones such as {Ph,P(2,6-'Pr,C¢H;N)(N‘Bu)}2° and {PH
(‘Bu)(2,6-"Pr,CeH;N),} ~>* have been structurally characterized.

In this context, the deprotonation of the iminophosphona-
mine ligand {Ph,P(2,6-"Pr,CeH;N)(N‘BuH)}*® with AlH;-NMe,H
in an equivalent ratio resulted in the formation of dimeric
aluminum complex [{Ph,P(2,6-"Pr,CeH;N)(N‘Bu)}AIH(p-H),AlH
{Ph,P(2,6-Pr,CcH;N)(N'Bu)}] based on the solid-state structure
(Scheme 11). The molecular structure revealed that each alumi-
num center adopted a distorted trigonal bipyramidal
geometry.

The terminal hydride, one of the bridging hydrides and one
of the nitrogen atoms of the iminophosphonamide ligand
adopted the equatorial plane, whereas the remaining bridging
hydride and another nitrogen of the ligand occupied the axial
plane with the N-Al-H bond angle of 159.50(2)°. The alumi-
num hydride signals were assigned to a broad singlet at é =
5.20 ppm in the "H NMR spectrum. Further deprotonation of
the ligand {Ph,P(2,6-'Pr,C¢H;N)(N‘BuH)} with AlMe; furnished
facile formation of [{PhZP(Z,G—iPr2C6H3N](N‘Bu)}AlMeZ]. The

By fBu ‘8u Bu

4 |
N » \\/ NPAWL AlgeNMeH P NH 1) n-Buli Ph\P/N\ A
(Al i 78° ¥
Ph \/ \ /‘\/ ~ph 78°C, E,0 Ph/(\N 72’);?3&0 Ph /N/ Na
1 - 3
Ar’ Ar Ar > Al
=B, Al Ga
Ar=2,6-Pr,CoHy
AlMe,
-78°C, Et,0
4
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Ph Me
h\P/ \A‘/Me&%\ /N\A‘/Me . Ph){ >AI/
Ph N w [\ © ~MeB(CeFs), e
Me ,N "MeB(C4Fs)s 6Fs

I A a

Scheme 11 Group 13 metal complexes substituted by the bulky imino-
phosphonamide ligand.26
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Al-Me resonance appeared as a singlet at § = 0.12 ppm in the
"H NMR spectrum of the complex. Furthermore, the *'P{"H}
NMR spectrum of the complex showed a single peak at § =
30.23 ppm. Additionally, treatment of [{Ph,P(2,6-'Pr,CsH;N)
(N“Bu)}AlMe,] with B(CgFs); resulted in the formation of cat-
ionic aluminum species [{Ph,P(2,6-"Pr,C¢H;N)(N‘Bu)}AlMe]'[B
(CeFs)3;Me]”, which was characterized by multinuclear NMR
spectroscopy. It was observed that the cationic species slowly
converts into neutral tetracoordinated aluminum species via
Me and C¢F5 exchange. Additionally, the salt metathesis reac-
tion between the lithium salt generated in situ and ECl; (E = B,
Al, and Ga) furnished the corresponding metal dichloride
complexes, [{Ph,P(2,6-'Pr,C¢H;N)(N‘Bu)}ECL,] (E = B, Al, and
Ga). The identity of these complexes was confirmed by multi-
nuclear NMR and IR spectroscopy, HRMS and X-ray diffraction
techniques.

Vrana et al. investigated the reactivity of bis(organoamino)
phosphanes PhP(NHR)(NHR') (R = R’ = ‘Bu; R = By, R’ =
2,6-Pr,CqHy; R = R’ = Ph) and ‘BuP(NHDip), with Al(ur) com-
pounds (Scheme 12).** In this regard, the reaction of PhP
(NHBu), and PhP(NH'Bu)(2,6-Pr,C¢H;NH) with AlMe;
resulted in the formation of [{PhP(NHR)(NR')}AIMe,] (R =R’ =
‘Bu; R = ‘Bu, R’ = 2,6—iPrZC6H3) complexes via methane elimin-
ation. Furthermore, upon heating, these complexes showed H
atom migration from nitrogen to the phosphorous center,
which resulted in [{PhHP(NR)(NR)}AIMe,] (R = R’ = ‘Buy; R =
‘Bu, R = 2,6—iPr2C6H3) complexes. In contrast to this, when
PhP(NHPh), was reacted with AlMe;s, it resulted in the for-
mation of an intermediate adduct, [Ph(H)P(NHPh)(=NPh)
AlMe;], which was converted into [Ph(H)P(NPh),AlMe,] due to
the first hydrogen atom migration followed by methane elim-
ination. Furthermore, hydrogen atom migration was observed
when the bis(organoamino)phosphanes {R"P(NHR)(NHR')} (R”
=Ph, R=R ='Buy; R” = Ph, R = By, R’ = 2,6-'Pr,C4H; and R” =
‘Bu, R = R = 2,6"'Pr,C¢H;) were partially deprotonated by
n-BuLi, whereupon the reaction with AICI; resulted in [{R"HP

A )
R n—r__ Unui R \P/E\AI/X
H o H 2) AlX, LN .
~CH
il K
+aMe,  HY X = Cl, Me; R" = 'Bu; R = R' = 2,6-Pr,CeH,
X=Cl;R" =Ph; R=R'=Bu
methane X=Cl; R" =Ph; R= 'Bu; R'= 2,6-Pr,CH,
R" = Ph
e, (R" = Ph)
R R
\
Ph\P/N\AI/Me . Ph N—=AlMe,
{ A R=R'='Bu AR
NH  Me R=1Bu, R'=2,6-Pr,CcH, NH  R-g=ph
R g
CH,
hydrogen migration methane elimination

SE(Oal R=r'=t8u
HTN TN
N Me R=R'=Ph
R R =Bu, R = 2,6-Pr,CgH;

Scheme 12 Reactivity study of Al(i) compounds with bis(organoamino)
phosphanes, PhP(NHR)(NHR').>*
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Scheme 14 Syntheses of the monovalent heavier group 13 iminopho-
sphonamide complexes.>®

(NR)(NR)}AICL,] (R” = Ph, R = R’ = ‘Bu; R” = Ph, R = ‘By, R’ =
2,6-'Pr,C¢H; and R” = ‘Bu, R = R’ = 2,6-Pr,C¢H,).

Apart from this, Nakata’s group has demonstrated nucleo-
philic substitution reactions of [{Ph,P(N‘Bu),}AICl,] using
various nucleophiles (Nu) such as N(SiMejs),”, {Fe(CO),Cp}~
and Cp~ that resulted in the formation of an aluminum(m)
monochloride complex bearing a nucleophile, [{Ph,P(N‘Bu),}
AIC](Nu)] (Scheme 13).>* The identity of all these aluminum(u)
mono- and di-chloride complexes was confirmed by various
spectroscopic techniques and the molecular structures were
identified by single-crystal X-ray diffraction.

Interestingly, by taking advantage of the sterically protected
iminophosphonamide {Ph,P(2,6-"PryCeH;N),}~ ligand,
Stasch’s group reported monovalent group 13 complexes
[{Ph,P(2,6-Pr,CeH;N),}E] (Ga(i), In(1), and TI(1)) (Scheme 14).>

Other than the monomeric form for Ga(i), a weakly bonded
dimer was obtained, which was structurally characterized. The
Ga(1) complex upon exposure to dry air affords an oxidized Ga
(1) complex, [{Ph,P(2,6-"Pr,CeH;N),}Ga(p,-0),Ga{Ph,P
(2,6-'Pr,CsH3N),} .

2.2.2 Iminophosphonamide compounds of group 14
elements. The heavier analogues of carbene compounds are
collectively termed tetrylenes [R,E:] with (E = Si, Ge, Sn and Pb
with R = supporting ligand). Lappert and co-workers in 1974
led the field of tetrylenes and reported the first germylene and
stanylenes,’® %" after which, the amidine-stabilized divalent
group 14 compounds [{PhC(N’Bu),}ECl], (E = Si, Ge, and Sn)

This journal is © the Partner Organisations 2025
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Fig. 3 Literature-known tetrylenes based on
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were reported.®'®* Since then, during the past 20 years, the

corresponding chemistry has significantly expanded.®'** As
compared to well-known amidinato-tetrylenes, the examples of
tetrylenes stabilized by iminophosphonamide are few (Fig. 3).

These examples include the structurally characterized germy-
lene [Ph,P(N‘Bu)(2,6-'Pr,C¢H;N)GeX] (where X = Cl, O'Bu, OTf),
[(RO),P(NSiMe;),|GeCl, [{(RO)(Me;SiO)P(NSiMes),} GeCl], (R =
'Pr) and stannylene [{Ph,P(NSiMe;),},Sn] and [{(Ph)(R)P(N‘Bu),}
SnX] (where R = CH,Ph or 8-CoHgN; X = Cl or N(SiMes),)
compounds.

Recently, an iminophosphonamide variant (i.e. [{Ph,P(N‘Bu),}
SiCl]) of the amidinate [{PhC(N‘Bu),}SiCl] has been reported by
Nakata’s group.”' The study suggested that the chlorosilylene
supported by iminophosphonamide has stronger o-donor ability
in comparison to common N-heterocyclic carbenes (NHCs) and
other NHSis. Further when the synthesized silylene reacted with
1 equivalent of [RhCl(cod)],, it led to the formation of a chlorosi-
lylene-Rh(i) complex, [RhCl(cod)}{Ph,P(N‘Bu),SiCl}]. The *°Si{'H}
NMR spectrum of the complex exhibited a doublet at § =
27.3 ppm, which is due to the coupling of *°Si with '®*Rh and
3P (Ysirn = 114.5 Hz; YJsi_p = 13.4 Hz). Further, the cationic tris
(silylene)}-Rh()) complex, [RhCHPh,P(N‘Bu),SiCl};]", and the
14-electron Y-shaped Rh(i) complex, [RhCH{Ph,P(N‘Bu),SiCl},],
were produced by the reactions of {Ph,P(N‘Bu),SiCl} with [RhCl
(cod)], in 1/4 and 1/6 equivalents, respectively. Additionally, treat-
ing the {Ph,P(N‘Bu),SiCl} with [Pd(PPh;),] resulted in the for-
mation of a homoleptic Pd(0) complex, [Pd{Ph,P(N‘Bu),SiCl};].
Interestingly, when the chlorosilylene was treated with
[PdMe,(tmeda)], it afforded a ps-silylene-bridged tetranuclear pal-
ladium complex, with different oxidation states of the palladium
centre (Scheme 15).”> The XPS analysis of the cluster suggested
the presence of mixed oxidation states, Pd(0) and Pd(u), in the
complex.

Further, Nakata’s group has demonstrated that when the
salt metathesis reaction was performed between chlorosilylene
and KN(SiMejs), or K[CpFe(CO),], the formation of silaimine
instead of expected silylene was seen (Scheme 16). It was
observed that the conversion of silaimine occurred via ring
opening rearrangement of sterically hindered four-membered
silylene. The DFT study suggest that combination of steric hin-
derance and the electronic factor of the substituents is the
main reason for this intramolecular P-N bond cleavage of the
intermediate silylene.”

It is also demonstrated that the synthesis of [{Ph,P(N‘Bu),}
SiX] (X = Br and I) by heavier halo substitution of the chlorosi-

This journal is © the Partner Organisations 2025
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Scheme 15 Syntheses of an iminophosphonamide monochloride sily-
lene and its reactivity.”*”?
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Scheme 16 Generation of silaimine via intramolecular P—N bond clea-
vage of iminophosphonamido silylene.”®

lylene could be achieved via a halogen exchange reaction
between the chlorosilylene [{Ph,P(N‘Bu),}SiCl] and alkali
halides (Scheme 17). The resulting Si-X bonds of [{Ph,P
(N‘Bu),}SiX] (X = Br, I) are considerably longer than expected
possibly due to repulsion between the Si and the halogen lone
pairs.”* Further, the oxidative addition of these heavier halo
silylene with elemental selenium afforded a colorless product
of bromo-and iodo-silylene selone. Moreover, the reaction of
chlorosilylene with Fe(CO)s in THF resulted in the formation
of silylene-tetracarbonyliron(0), [Fe(CO),{Ph,P(N‘Bu),SiCl}],
which is characterized by various spectroscopic techniques,
and the molecular structure was determined by single-crystal
X-ray diffraction.”

B reco, Bu B B
LN N Fe(cO)s Ph( N .. 3uBrorNal,THF,25°C  Ph N_ . se  Ph N se
L N AT e N a LGN oS
N al ’ N a ) N X N X
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Scheme 17 Reactivity of [{Ph,P(N‘Bu),}SiCl].”47®
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Furthermore, other than Si(u), Nakata’s group explored the
iminophosphonamide ligand with its heavier analogs such as
Ge(n), Sn(u), and Pb(u) (Schemes 18 and 20).”°7”% The salt elim-
ination reaction between the lithium salt of the iminopho-
sphonamide ligand and GeCl,-dioxane gave the three-co-
ordinated chlorogermylenes of the type {Ph,P(NR),GeCl} (R =
‘Bu; R = Dipp = 2,6-"Pr,CeH;).”® When {Ph,P(N'Bu),GeCl} was
reacted with ] equivalent of [Rh(cod)Cl], the formation of a
chlorogermylene-Rh(i) complex, [RhCl(cod){Ph,P(N'Bu),GeCl}],
was seen. In contrast to this, when {Ph,P(NDipp),GeCl} was
treated with 1 equivalent of [Rh(cod)Cl], in the presence of CO,
it resulted in the formation of a five-membered germarhoda-
cycle, [{Ph,P(NDipp),}Rh(CO),GeCl,] (Scheme 18).

The application of a germylene-based ligand was also
demonstrated by using the chlorogermylene-Rh(1) complex
[RhCl(cod){Ph,P(N‘Bu),GeCl}] as a catalyst to hydrosilylate and
hydroborate diphenylacetylene.

The lithium salt of the ligand, [Li{PhZP[Z,G—iPrZCGHSN)
(N“Bu)}], generated in situ was treated with one equivalent of
GeCl,-dioxane to give the germylene monochloride [{Ph,P
(2,6-"Pr,CeH;N)(N'Bu)}GeCl].** Its reactivity was further investi-
gated towards generating adducts with transition metals, oxi-
dation, and salt metathesis processes (Scheme 19).

More recently, Driess and coworkers have reported the syn-
thesis of a new chelating bis(iminophosphonamido-germy-
lene)xanthene ligand, {Ph,P(N‘Bu),Ge(u)(Xant)Ge(i)
(N‘Bu),PPh,}, (Xant = 9,9-dimethyl-xanthene-4,5-diyl).”® The
redox noninnocent character of the ligand was used to stabil-
ize monoatomic, two-coordinate Bi(r) and Bi(u) species. The
nucleophilic nature of the Bi(1) species was investigated
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Scheme 18 Syntheses of variably iminophosphonamide-substituted
chlorogermylene and their Rh(i) complexes.”®

u
\ Fe(CO),
Fej(cOly PR N
ph—PR \ / \
/ Cl
Ar
:Bu Bu Bu
| \
Ph\P/NH 1) nBuli Ph P/E‘\G =S/Se Ph\ AN/
. € ]
PR 2) GeClydioxane  ph Y Ph/P\ O
| |
Ar Ar AT/
'Bu\
Ar=2,6-Pr,CeHsy AgOTF ph. N
h’P\ e
/N oTf

Scheme 19 Synthesis and reactivity of an iminophosphonamide-stabil-
ized germylene monochloride.®®
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through redox reactions with AgOTf and MeOT{, leading to the
formation of Bi(u) species.”®

Moreover, [{Ph,P(N‘Bu),}SnCl], synthesized by Nakata’s
group, was employed as a precatalyst for the hydroboration of
carbonyls and imines. The result of the DFT calculations pro-
posed that the hydroboration of carbonyl involves [{Ph,P
(N‘Bu),}SnH] as an intermediate, which proceeded through
hydride transfer to carbonyl groups and eventually resulted in
the boronate esters.”®

Apart from this, Nakata’s group has reported various low-
valent Pb(u) species ligated by the iminophosphonamide
{Ph,P(N‘Bu),} . The general salt elimination reaction of [{Ph,P
(N‘Bu),}Li] with PbCl, furnished the chloroplumbylene {Ph,P
(N‘Bu),PbCl}. Further substitution of the chloride with {N
(SiMes),}~ resulted in the formation of aminoplumbylene
[Ph,P(N‘Bu),PbN(SiMe;),]. A mono cationic plumbyliumyli-
dene [Ph,P(N'Bu),Pb:]" was generated through the chloride
abstraction of [Ph,P(N‘Bu),PbCl] with NaB(CeF5), (Scheme 20).
The cationic [Ph,P(N‘Bu),Pb:]"[B(CeF5),]~ plumbyliumylidene
served as an efficient catalyst for the hydroboration of benzo-
phenone and benzaldehyde.””

Moreover, tetracoordinated [{Ph,P(NSiMe;),},E] (E = Sn and
Pb) complexes of Sn(u) and Pb(u) have been reported by salt
metathesis route (Scheme 21).%” The *'P{"H} NMR spectrum of
[{Ph,P(NSiMe;),},E] showed a single resonance at & =
25.4 ppm, whereas the ?°Si NMR spectrum showed a doublet
at § = —5.2 ppm, with a coupling constant of *Jg;_p = 8 Hz. The
tetrylenes exist in a distorted trigonal bipyramidal geometry,
with the lone pair occupying the equatorial position. The
molecular structure of the stanylene and plumbylene showed
that both the four membered metalylene (ie., [{Ph,P
(NSiMe;),},M], M = Sn and Pb) planes are twisted with each

Bu

7
~P( _Pb*
PPN Ny SiMe,
/
\\I\ea Bu .
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P L > ASR7ZN
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Scheme 20 Iminophosphonamide-stabilized plumbylenes and
plumbyliumylidenes.””
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Scheme 21 Synthesis of iminophosphonamide-stabilized homoleptic
stanylene and plumbylene.®”
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other possibly due to the presence of lone pair and steric
crowding from SiMe; groups.

2.3 Transition metal complexes of the iminophosphonamide
ligands

Numerous studies have been conducted on amidinate (NCN)-
stabilized transition metal complexes, and their catalytic appli-
cations in a range of organic transformations have been
documented.®®" The transition metal chemistry of the imino-
phosphonamide (NPN) ligand is still in its infancy compared
to amidinate ligands. However, some iminophosphonamide
transition metal complexes have been used as catalysts in
recent decades, for example in alkene polymerizations,®>%*
cyclopropanation reactions,®" % and olefin oligomerizations.*®

2.3.1 Syntheses of Ti, Zr, and Hf complexes. In 1999,
Collins’ group reported the synthesis of iminophosphonamide
complexes of group 4 metals (Ti and Zr) via the amine elimin-
ation route (Scheme 22). The zirconium complexes of bis(imi-
nophosphonamide), [{Ph,P(N-p-tolyl),},ZrCl,] and mixed imi-
nophosphonamide [Cp{Ph,P(N-p-tolyl),}ZrCl,] were character-
ized by single-crystal X-ray diffraction. The synthesized com-
plexes exhibited efficient catalytic activity towards the polymer-
ization of ethylene in the presence of MAO.*

Also the bis(iminophosphonamide) complexes, [{Ph,P
(NR),}>MCL,] (R = p-tolyl, benzyl and M = Ti, Zr) were investi-
gated towards ethylene polymerization. The result of catalysis
suggested 50 to 100 times higher catalytic activity of the [{Ph,P
(NR),}»,ZrCl,] (R = p-tolyl, benzyl) complex than its Ti
analogue.

Collins’ group also reported a range of group 4 metal com-
plexes coordinated by bis(iminophosphonamide). Piano-stool-
type iminophosphonamide compounds were formed. In this
regard, the amine elimination reaction between variably sub-
stituted iminophosphonamine, {Ph,P(NR),}H (R = p-tolyl,
benzyl, SiMes, C¢Fe, 3,5-(CF3),Ph) and CpZr(NMe,); followed
by metathesis with excess Me,NH-HCI resulted in the for-
mation of [Cp{Ph,P(NR),}ZrCl,] (R = p-tolyl, benzyl, SiMe;,
CeFs, 3,5-(CF;),Ph). During the amine elimination, the inter-
mediate [Cp{Ph,P(NC¢Fs),}Zr(NMe,),] rearranged in a novel
terminal difluoride complex, [Cp{Ph,P(NCsF,NMe,),}ZrF,], as
described in Scheme 23.

Furthermore, when [Cp{Ph,P(NR),}ZrCl,] (R = p-tolyl,
benzyl, SiMe;, C¢F¢, 3,5-(CF3),Ph) was reacted with MeMgBr or
Meli, it furnished the corresponding dialkyl complex.®®%°

It was observed that the bis(iminophosphonamide)-ligated
zirconium complexes, [{Ph,P(NR),},ZrX,]| (R = p-tolyl, benzyl,
Ce¢Fs; X = Cl and Me) and piano-stool-type iminophosphona-
mide-ligated zirconium complexes, [Cp{Ph,P(NR),}ZrX,] (R =

< R Rog B e §
e
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Scheme 22 Group 4 (M = Ti and Zr) iminophosphonamide complexes
as efficient polymerization catalysts.®”
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iminophosphonamide complexes of

p-tolyl, benzyl, C¢Fs; X = Cl and Me), showed good catalytic
activity towards ethylene polymerization in the presence of
activators such as [Ph;C][B(CsFs),] or PMAO.

The iminophosphonamide complexes of titanium and zir-
conium of the form [{Ph,P(N‘Bu)(NR)},MCl,] (M = Ti, Zr and R
= Ph, SiMe;) were synthesized by reacting the corresponding
iminophosphonamide ligand and MCl; (M = Ti and Zr)
(Scheme 24).*°

The ethylene polymerization using these complexes as cata-
lysts did not give a satisfactory result, which was anticipated
due to steric crowding around the metal center.

Furthermore, Manners’ group reported perhalogenated bis
(iminophosphonamide) complexes, [{Cl,P(NSiMe;),}
MCI;]'THF (M = Ti, Zr and Hf) and [{Cl,P(NSiMe;),}NbCl,], by
the reaction of {Cl,PN(SiMe;),(=NSiMe;)} with corresponding
metal halides in dichloromethane. The formation of these
complexes was anticipated as the [3 + 1] cyclocondensation of
the ligand and metal center, resulting in the elimination of
Me;SiCl (Scheme 25). Interestingly, a mixture of product for-
mation was observed when 1.5 eq. of the ligand {CI,PN
(SiMe;),(=NSiMe;)} was treated with NbCls. The reaction
mixture exhibited many signals between § = 14.5 and 6.5 ppm
in the *'P{'"H} NMR spectrum. Finally, the product was charac-
terized by single-crystal X-ray diffraction, which showed the
formation of wunusual heterocycles  [CL;Nb{N(SiMej)
PCI,N},CI,Nb{N(SiMe;)PCI,N(SiMe;)}] and [Cl,Nb{N(SiMe;)

Bu R R
Ph. NH NN
phoNhtgy RNa o TN Bl (\ | /)\ _
Ph™\\ mcl, ph /|\ M =Ti,Zr; R =Ph
'}‘ M =Ti, Zr; R = SiMe;
R BU BU
Scheme 24 Synthesis of Ti and Zr complexes of
iminophosphonamides.*°
[« el
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Scheme 25 Synthesis of unusual heterocycles of niobium stabilized by
iminophosphonamide.®*
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PCI,N(SiMej3)}],-p-Cl(NPCL,N); the later complex was con-
sidered as the first example of Nb complex containing the six-
membered CINbDNPNNb ring.”*

2.3.2 Syntheses of Cr, Fe, Ru, Co, and Rh complexes of imi-
nophosphonamide. Gambrotta’s group reported various chro-
mium iminophosphonamide complexes by treating the vari-
ably substituted iminophosphonamines Ph,PBr(NHR), (R =
‘Bu, ‘Pr, and Ph) with n-BuLi first. Subsequent reactions with
CrCl, resulted in the formation of divalent chromium com-
plexes, [{Ph,PN(R),}Cr(p-Cl),Li(THF),] (R = ‘Pr and ‘Bu) and
[{Ph,PN(Ph),},Cr,(p-Cl);Li(DME);] (Scheme 26).%° Similarly,
the trivalent chromium complex [{Ph,PN(‘Bu),},Cr,(p-Cl)s(pa-
Cl),Li(THF),] was obtained by the reaction of CrCl; with a
doubly deprotonated ligand. Further treatment of both diva-
lent and trivalent chromium complexes with AlMe; resulted in
the formation of a homoleptic cationic chromium complex,
[{Ph,PN(*Bu),},Cr]"[AIMe;Cl]". The structures of all these com-
plexes were elucidated by X-ray diffraction. Moreover, the cata-
lytic activity of these complexes was screened for the oligomeri-
zation of ethylene. The results showed that in the presence of
methyl aluminoxane, the divalent chromium complex [{Ph,PN
(“Bu),}Cr(p-Cl),Li(THF),] exhibited the best catalytic activity.

Furthermore, treatment of the divalent chromium complex
[{PPh,N(‘Bu),}Cr(p-Cl),Li(THF),] with the Grignard reagent
CH,=—CH-MgCl resulted in the formation of the trinuclear
chromium complex [r-{Ph,P(N‘Bu)},Crl,{s,1'’,n*n*-CsHy} o-
{Ph,P(N'Bu)},Cr]. The trinuclear complex was also structurally
characterized by single-crystal X-ray diffraction. The molecular
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Scheme 26 Chromium complexes of iminophosphonamide as active
catalysts for ethylene oligomerization. 8692
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structure of the complex suggests that the one chromium
center possessing iminophosphonamide, (i.e., [{Ph,P(N‘Bu),}
Cr]), is part of a planar metalla cyclopentadiene ring, whereas
the other chromium centers are situated perpendicular of the
metalla cycle with & bonds. This complex served as an efficient
and selective catalyst for ethylene trimerization.”>

The Fe(m) complex of the iminophosphonamide [{Ph,PN
(Ph),};Fe] was synthesized by treating the iron(ur) silylamide
[Fe{N(SiMes),};] with the phosphinohydrazine {NPh(Ph,P)
NHPh} in 1:3 proportion, respectively (Scheme 27). During
the deprotonation reaction of the phosphinohydrazines, it
rearranged and converted into the iminophosphonamide
{Ph,P(NPh),}. The synthesized iron(mr) complex was isolated as
fine yellow crystals that were stable towards the air. The com-
plexes displayed strong absorptions at 1300 cm™' and
1270 cm™" in their IR spectra, which were attributed to the
stretching vibrations of the N-P-N ligand backbone.*?

The 16 VE and 18 VE half sandwich complexes of ruthe-
nium containing [(n*CsMeg){R,P(NR"),}RuCl] and [(n>CsMes)
{R,P(NR'),}Ru]'[BF,]” (R = Ph, Et and R’ = p-Tol, Me) were syn-
thesized by reacting the appropriate precursor of variably sub-
stituted iminophosphonamides with [(CsMeg)RuCl,], followed
by halide abstraction, respectively (Scheme 28).>”°*°¢ The cen-
troid (Ru-C¢Mes) distance falls between 1.662(4) A and 1.675
(3) A, which is a common range for neutral half-sandwich
ruthenium complexes. The Ru-Cl bond in the range of
(2.437-2.445 A) of the 18 VE [(n°-C¢Meg){R,P(NR’),}RuCl] com-
plexes is elongated, and dissociates even in an apolar solvent,
forming the corresponding 16 VE [(n%CeMeg){R,P(NR'),}
Ru]'[CI]” cationic complex that can be readily separated as
salts with weakly-coordinating anions such as BF,".

The stability of the 16 VE cation of the ruthenium complex
arises from the sufficient n-donation from the iminophospho-

ph i ph
P=N
//\
Ph,R Ph’N\‘ o
[Fe{N(SiMe;),}5] + 3 NPh 4>3NH(S'M : ten—Y pp
PhHN Mesh h\N// S
W N
Ph—P—N bh
/N
Ph Ph

Scheme 27 Synthesis of the homoleptic Fe(i) iminophosphonamide
complex.®®
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Scheme 28 Synthesis of the half-sandwich Ru(i) iminophosphonamide
complex.?’
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namide ligand. The characterization of these complexes was
carried out by NMR spectroscopy, X-ray diffraction, and
elemental analysis. The molecular structure of the 16 VE cat-
ionic ruthenium complex suggested the two-legged piano-
stool-type geometry with the iminophosphonamide ligand per-
pendicular to the C¢Hg ring. These complexes also served as
efficient catalysts in the ROMP polymerization of norbornene.

Furthermore, Poli’s group investigated the ruthenium
complex of the iminophosphonamide, [(n°-Cym){Ph,P(N-
pTol),}RuCl], as a precatalyst for ketone transfer hydrogen-
ation by isopropanol, which revealed the hydridic ruthenium
complex, [(n°-Cym){Ph,P(N-pTol),}RuH], as the active catalyst
in a basic medium (Scheme 29).°” This ruthenium hydride
complex is stabilized by dihydrogen bonding in the isopro-
panol. The transfer hydrogenation mechanism was investi-
gated by NMR spectroscopy and DFT calculations.

Moreover, Poli and Kalsin’s group reported a variety of
ruthenium arene complexes, [(Arene)RuCl{R,P(NR’),}] bearing
various substituents on iminophosphonamide ligands and a
variety of arene rings (Fig. 4).°*

The general synthesis of these complexes is shown in
Scheme 30. These complexes were characterized by multinuc-
lear NMR spectroscopy and X-ray diffraction analysis. A com-
parative investigation of these complexes as precatalysts was
carried out towards acetophenone transfer hydrogenation in
basic and base-free isopropanol.

The study revealed two distinct reaction pathways depend-
ing on the basicity of the N-substituents. In the case of
[(Arene)RuCK{R,P(NR'),}] (R’ = aryl), the active catalyst was
observed only once the neutral hydride [(Arene)RuH{R,P
(NR'),}] is generated in basic isopropanol, whereas when one
of the nitrogen substituents is Me (i.e., R" = Me) in [(Arene)
RuCHKR,P(NR'),}], it readily catalyzed the reaction without base
(Scheme 31).

~o oA oA

Tol, RL ’NEN(SiMe3)Z OIN e, ToIN/Ru
— N
Ph\lz&/ CeDs Pr;;/,',\&N/ \HK 5 Phﬂl?&/ "
y
Tol Tol )C])\ TOI

Scheme 29 Generation of ruthenium hydride complex stabilized by
iminophosphonamide.®”
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Fig. 4 Variety of ruthenium iminophosphonamide complexes.>*%%
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Scheme 31 Possible reaction pathways for acetophenone hydrogen-
ation-catalyzed Ru(i) iminophosphonamide.®*

In the literature, the number of structurally characterized
Co(u) complexes is limited to a few iminophosphonamide
backbones such as {Ph,P(p-‘Bu-CcH,N),} and {Ph,P(2,4,6-
Me;CeH,N), 1 %% The synthesis of the later homoleptic cobalt
complex is described below (Scheme 32).*° The molecular

structure of the homoleptic [{Ph,P(p-Bu-C¢H,N),},Co] and
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Scheme 32 Synthesis of the homoleptic Coli) iminophosphonamide
complex.*®

[{Ph,P(2,4,6-Me;CsH,N),},Co] is isostructural, and suggests
that the central Co(u) atom adopts a distorted tetrahedral geo-
metry with dihedral angles of 82.7(2)° and 88.01°, respectively,
between two average CoN,P planes.

The four Co-N bond distances of these complexes are also
in agreement with each other [{Ph,P(p-"Bu-C¢H,N),},Co]
(1.999-2.025 A) and [{Ph,P(2,4,6-Me;C¢H,N),},Co] (2.015(1)-
2.045(1) A).

More recently, Kalsin’s group has reported novel examples
of structurally characterized half-sandwiched 18 VE and 16 VE
rhodium iminophosphonamide complexes.”® These com-
plexes, [Cp*RhX{(Ph,P(N-R)(N-R')}] (Cp* = CsMes; X = Cl; X =
PFg; R, R’ = p-Tol, p-Tol; p-Tol, Me; and Me, Me) coordinated
with either symmetric or non-symmetric iminophosphona-
mides (Scheme 33). Most of the half-sandwich rhodium com-
plexes were synthesized in a similar way to the analogous
ruthenium complexes.>”*® Furthermore, the reactivities of the
cationic 16 VE rhodium complexes [(n*>-CsMes)}{Ph,P(N-p-Tol)
(NR)}Ru]'[PFs]” (R = p-Tol and Me) were studied towards the
reaction with pyridine and CO. The result indicated that due
to the low coordination enthalpy of the pyridine adduct, it is
stable only at low temperatures. In contrast when CO was
reacted with the cationic compley, it resulted in the formation
of a CO-inserted product.

Additionally, the fulvene complexes [(n*-CsMe,CH,){Ph,P
(N-p-Tol)(NR)}Rh] (R = p-Tol and Me) were generated by the
reaction of [(n°>-CsMe;){Ph,P(N-p-Tol)(NR)}RuCl] (R = p-Tol and
Me) with NaN(SiMej,),. Further the reaction of [(n*-CsMe,CH,)
{Ph,P(N-p-Tol)(NR)}Rh] (R = p-Tol) with isoprene was carried
out, which resulted in the formation of [(n’n"'-CsMe,(CH,)C
(Me)=CHCH,)Rh{Ph,P(N-p-Tol),}], which was considered as

@

Tol ; ( AgPF, ah
N/Rh CHZCIZ / \ PF& @
To\/N\\PJ,N\R —C0

o, | o, l

ph\,,&/
\
R=Tol; R = Me PH N\R 0

R=Tol

Scheme 33 Synthesis of the cationic half-sandwich rhodium complex
and its reactivity.%®
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Scheme 34 Synthesis of the fulvene rhodium complex and its reactivity
with diene.®®

the first example of 1,4-metallacycloaddition of diene to the
fulvene complexes [(n*-CsMe,CH,){Ph,P(N-p-Tol)(NR)}Rh]
(Scheme 34).

2.3.3 Syntheses of Ni, Pd and Pt complexes of iminopho-
sphonamide. In 1981, Keim’s group made a ground-breaking
discovery by reporting the first-ever nickel and palladium com-
plexes, [(n*-C3H;){N(SiMe;),(C;Hs)P(N(SiMe;),)}M] (M = Ni and
Pd), utilizing an iminophosphonamine ligand (Scheme 35).5>

During the formation of these compounds, bis(n*-allyl) Ni/
Pd complexes underwent an unanticipated allyl rearrangement
due to the iminophosphonamide ligand, which resulted in the
production of a c-bonded =-allyl group. These compounds
acted as an active catalyst for the polymerization of ethylene at
70 °C and 50 bar.

Later in 1985, Fink’s group reported that the combination
of the iminophosphonamide ligand and [Ni(COD),] or [Ni(n*-
C3H;),] is a capable system for the polymerization of a-olefins
into chains with variable methyl branching at
temperatures.®®

Collins’ group has synthesized a variety of Ni iminopho-
sphonamide complexes, as described in Scheme 36."°°

[(n*-C3Hs5){Ph,P(NR),}Ni] (R = SiMe; and p-Tol) was syn-
thesized by the reaction of in situ generated salt of the differ-
ently substituted {Ph,P(NR),} (R = SiMe;, 2,4,6-Me;CcHo,
p-Tol) ligands with [(n’-C3Hs)NiBr],. These complexes are
stable in the open air for a short time. The NMR spectroscopy
of these complexes revealed the non-fluxional behavior of the
n-allyl group; however, through {Ph,P(NR),} ligand reorienta-
tion, the chemical exchange could be observed. The molecular
structure of these [(n*-C3H;){Ph,P(NR),}Ni] complexes revealed
the long Ni---N bond distance in the range of 1.941(1)-1.973(2)
A having an acute NPN bite angle with the ligand. When [(n’*-
C3H;){Ph,P(NR),}Ni] was employed as a catalyst in the
polymerization of ethylene, it resulted in no active catalysis. In
search of an active catalyst, [{Ph,P(NSiMe;),}NiPh(PPh;)] was
prepared from [NiPh(PPh;),Br] and in situ generated {Ph,P
(NSiMe;),}~ ligand. The complex is active for 1-hexene isomeri-
zation without any activator, and produces R-methyl styrene

low

S\Me3
Ni(coo), Messi
Polyethylene -(Lcc?_lﬂSlN;I P N(SiMes), + < > I %
24 Me, sin’ N SlMeg)z
S\Me3
M = Ni, Pd

Scheme 35 Syntheses of nickel and palladium iminophosphonamide
complexes.8%9°
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when reacting with propene. However, it was observed that in
the presence of suitable phosphine scavengers, [{Ph,P
(NSiMe3),}NiPh(PPh;)] can polymerize ethylene. Furthermore,
all these complexes are active towards the dimerization of
ethylene in the presence of polymethylaluminoxane (PMAO).

Various homoleptic Ni(un) complexes such as [{Pr,P
(NMe),},Ni], [{Ph,P(2,4,6-Me;-C¢H,N),}1,Ni], and [{Ph,P
(NPh),},Ni] have also been reported and structurally
characterized.’>'*" In this regard, Singh’s group reported the
synthesis of homoleptic [{Ph,P(2,4,6-Me;-C¢H,N),},Ni| by
in situ deprotonation of the corresponding iminophosphona-
mine ligand followed by treatment with [(PPh;),NiCl,]
(Scheme 36). The characterization of the Ni(u) complex was
further carried out by NMR spectroscopy and single-crystal
X-ray diffraction. The 'H NMR spectrum of the complex
showed chemically non-equivalent protons of the o-methyl
protons of the mesityl rings, which was attributed to the
agostic interaction of the o-methyl protons with the Ni(u)
centers. Furthermore, the *'P{'"H} NMR spectrum of the Ni(u)
complex exhibited single resonance at —16.83 ppm, which is
significantly upfield shifted as compared to the corresponding
ligand (36 ppm). The non-equivalence nature of the o-methyl
protons of the mesityl rings and agnostic interaction was
further confirmed by the molecular structure of the Ni(u)
complex having a Ni---H distance of 2.673(1) A

Wang’s group has reported various nickel iminophosphona-
mide complexes having a carbene substituent at the side
arm.’®® These complexes efficiently catalyzed cross-coupling
reactions of Grignard reagents with aryl chlorides or fluorides
(Scheme 37).

Zeise’s salt analogue of the iminophosphonamide [{(CH;),P
(NCH3),}PtCl(C,H,)] was reported by Nahrstedt’s group,
by treating the lithium salt of the corresponding iminopho-
sphonamine with [KPtCl;(C,H,)] in 2/1 molar ratio, respect-
ively (Scheme 38).'°® The formation of the metal complex was
confirmed and characterized by multinuclear NMR
spectroscopy.
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Ustynyuk and Kalsin’s group reported various palladium
and platinum complexes of the iminophosphonamide
(Scheme 39).°>'®* The structural analysis of these complexes
was carried out by single-crystal X-ray diffraction. The results
suggested an intramolecular weak C-H---Pd interaction in
[{Ph,P(p-"Pr-C¢H,N),}Pd(PPh;)Cl] and an intermolecular weak
C-H---Pd interaction in homoleptic [{Ph,P(p-"Pr-C¢H,N),}Pd]
complexes. It was observed that these weak interactions influ-
enced the MNPN metallacycle planarity. The synthesized palla-
dium complexes [{Ph,P(p-"Pr-C¢H,4N),}Pd(PPh;)Cl] and [{Ph,P
(p-COOEt-C¢H,N),}Pd(n>-allyl)] were also tested as catalysts in
the Tsuji-Trost allylation and the Suzuki-Miyaura cross-coup-
ling reactions.

More recently, Stassner’s group reported the cyclometalated
NHC Pt(u) complexes of iminophosphonamide (Scheme 40)."%
These complexes were synthesized by first treating the NHC
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Scheme 39 Syntheses of palladium and platinum iminophosphona-
mide complexes.®®10%
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salt with Ag,0, which resulted in the formation of silver
carbene complexes. Further transmetalation of the silver(i)
carbene complex with [Pt(COD)Cl,] led to the formation of
chloro bridged platinum complexes [{C"C*}(u-Cl)Pt], (C"C* =
cyclometalated N-heterocyclic carbene). Finally, a salt meta-
thesis reaction with the in situ prepared lithium salt of the imi-
nophosphonamide and chloro bridged platinum complexes
yielded the expected platinum iminophosphonamide com-
plexes [{Ph,P(NPh),}(C"C*)Pt] after purification by neutral
column chromatography.

The formation of complexes was confirmed by various tech-
niques such as multinuclear NMR spectroscopy, elemental
analysis, single-crystal X-ray diffraction and mass spectrometry
as well. The "*>Pt NMR spectrum of the iminophosphonamide
complex showed a signal at —3510 ppm (R = H) and
—3483 ppm (R = 5,6-OC¢H,), which is comparatively downfield
shifted compared to the chloro bridged platinum complexes
(—4050 ppm) in deuterated dimethyl sulfoxide.

The molecular structure of the complex suggested that the
nitrogen atoms of the ligand coordinated to the metal center
with 79.37(7)° NPtN bite angle (R = H). Furthermore, the NPtN
and NPN planes are almost uniplanar with a slight deviation
of 2.73°. The photophysical study of these complexes exhibited
that depending on the NHC substituents, the emissive states
of the Pt(u) complexes vary. The study of these complexes was
examined by cyclic voltammetry (CV) and differential pulse vol-
tammetry (DPV), and the results were supported by density
functional theory (DFT).

2.3.4 Syntheses of Cu, Ag and Zn complexes of iminopho-
sphonamide. In 1999, Hofmann’s group reported a copper()
olefin complex, [{‘Bu,P(NSiMe;),}Cu(C,H,)], stabilized by a
sterically demanding {‘Bu,P(NSiMe;),}” ligand (Scheme 41)."°°
The stability of the Cu(1) olefin complex is due to the small N-

Sive;
Ph N—Cu—n,

$iMe; SiMe, SiMe; SiMe,

s 3 ‘ SiMe,
4 i §
Bu NH 1) n-Bui Bu

YN P 0l LB e 0, B N o, AN\ _‘Bu
L ) AN i e \&/CUWQHZ —>‘Bu:p\(>Cuio,Cu\’2/P<,Eu
I | ) ) N
S'Mei(a) SiMes sive, S‘ME@)' $iMe, @ $iMe,
Nz
c:‘:u Ph*cozme
SiMe,
Bu_ N CO,Me
AN 2
R Scu
Bu \'.“/ :<Ph
SiMe,
(c)
Scheme 41 Iminophosphonamide-supported (a) copper() binuclear

copper complex, (b) olefin-copper(i) complex, (c) copper(l) carbene and
(d) bis(p-oxo) copper(n) species.'*®71%8
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Cu-N bite angle (77.80(9)°), which enhances the =-back
bonding with the olefin and forms a strong dative bond with
Cu(). Using this copper(1) olefin complex, Hofmann’s group
was able to identify the Cu-carbene complex [{'Bu,P(NSiMe;),}
CuC(Ph)(CO,Me)] that is important for catalytic cyclopropana-
tion.*®> Furthermore, the reactivity of the Cu(i) olefin complex
[{‘Bu,P(NSiMej3),}Cu(C,H,)] has been reported towards O, gas,
leading to the formation of a neutral butterfly bis(p-oxo)
copper(m) species.'”” Additionally, a salt metathesis reaction
between CuCl and [{Ph,P(NSiMes;),}Li] afforded the binuclear
copper complex, [{Ph,P(NSiMe;),},Cu,].'°® The corresponding
crystal structure shows that the two Cu(i) centers are linearly
coordinated via a bridging coordination mode of the two imi-
nophosphonamides. The Cu-Cu distance is 2.62 A, and thus,
it is in the range of cuprophilic interactions.®%*°

Only one structurally characterized example of a Cu(u) imi-
nophosphonamide complex has been reported and was
accessed by the deprotonation of {Ph,P(2,4,6-Me;CsH,N),}H
with [Cu{N(SiMe;),},], resulting in the formation of the mono-
nuclear homoleptic complex [{Ph,P(2,4,6-Me;CsH,N),},Cul]
(Scheme 42).*°

Bhoomishankar’s group reported the silver complexes of
pyridyl substituted iminophosphonamide."**'** In this
regard, treatment of [P(NHpy),]Cl with AgClO, led to the for-
mation of a pentanuclear Ag() complex, [Ags{P
(Npy)2(NHpy),},][ClO,4]5. Alternatively, this complex can also be
synthesized by treating [P(NHpy),]Cl with a base first. This
resulted in the formation of a neutral iminophosphonamine,
P(=Npy)(NHpy); ligand. Subsequent reaction with AgClO, also
formed the  pentanuclear Ag() complex [Ags{P
(Npy)2(NHpy),},][ClO4]; (Scheme 43). The five-fold positive
charge due to five Ag(1) ions in the cluster is stabilized by two
anionic iminophosphonamide ligands and three perchlorate
anions. Both ligands functioned as hexadentate donor ligands.
The molecular structure of the metal complex revealed that the
intermetallic Ag---Ag interaction lies in the range from 2.9647
(7) A to 3.1772(12) A and is comparable with the literature.'"
Additionally another Ag(h) complex, [Ags{P
(Npy)2(NHpy),}][OTf]s, was synthesized by reacting [P(NHpy),]
Cl with the more reactive silver triflate Ag(OTf). In both com-
pounds, the same cation, [Ags{P(Npy),(NHpy),}.]", suggested
the thermodynamic stability of the pentanuclear Ag(r) complex
with different counter anions.

NSiM
F'h\ /NH M Ny S~
Ph/(\N —

O

Scheme 42 Synthesis of iminophosphonamide-supported homoleptic
copper(i) complex.*°
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To the best of our knowledge, divalent zinc complexes have
only been obtained by using {Ph,P(2,6-"Pr,C¢H;N),}*° and
{Py,P(Me;SiN),}**'"® as non-chiral ligands. In this regard,
Stasch’s group has demonstrated that a monovalent zinc
complex could be stabilized by the sterically demanding {Ph,P
(2,6-Pr,CeH;N),} ligand (Scheme 44). As shown, the heterolep-
tic zinc complex [{Ph,P(2,6-Pr,CeH;N),}Zn(j1-X),Zn{Ph,P
(2,6-'Pr,CH;N),}] can be obtained either by salt metathesis
between the potassium salt of the ligand and ZnBr, or by react-
ing the pre-synthesized heteroleptic complex [{Ph,P
(2,6-'Pr,CeH3N),}ZnR] with I,. Further, the single electron

Dip Dip
N N Dip\
Ph\P/< N, TR Ph\'{/ KNSV} Leh N7 | e,
Ph \N/ “RH P \NH HN(SiMe;), - - 'Kx\Ph,P\( P
| (R =Me, Et) ) N\Diﬁ
Dip Dip
Dip = 2,6-(Pr),CgHy
Dip Dip
| I
X
I, Ph\P/E‘\Z Y \z ’S\P/Ph ZnBr,
RI Ph N\ " " 7" Ph -KBr
oo
Dip Dip (X=8r,1)
[((Mesnacnac)Mg)z]
Dip Dip
| I
N N
ph\P/ \Zn—Zn/ >\P/Ph
PN\ .7/ “Ph
i \
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Rl or EtBr (R =Me, Et)
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|
Ph N
VAN Ph
Ph/P\</Zn—R + 1/2 \ / N, / Ny >\p<
N \ / \ e N/ Ph
| -
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Scheme 44 Syntheses of Zn() and Zn() iminophosphonamide

complexes.
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reduction of [{Ph,P(2,6-"Pr,CeH3N),}Zn(p-X),Zn{Ph,P
(2,6-'Pr,CeH3N),}] by [{(M*nacnac)Mg},] afforded the mono-
valent zinc complex [{thP(Z,6—iPrZC6H3N)2}Zn]2. The interme-
tallic Zn-Zn distance is 2.3132(9) A, which is consistent with
previously known dimeric Zn(x) species.

The 'H NMR spectrum of [{Ph,P(2,6-Pr,CcH;N),}Zn],
shows the absence of a [{Ph,P(2,6-Pr,CsH;N),}ZnH] species,
which further support the presence of a Zn-Zn bond in the
complex. Moreover, the reactivity of this Zn(i) complex was
explored towards small molecules such as RI (R = Me and Et)
or EtBr, which resulted in the umpolung of the alkyl halides.

2.4 f-Block metal complexes based on
iminophosphonamides

Compared to the well-researched amidinate chemistry of rare
earth metals, there has been relatively little investigation into
the related coordination chemistry with iminophosphona-
mides. Most contributions since the 1990s have come from the
field’s pioneers, Edelmann and Schumann.*>'** ' In these
early reports, ligands consisting of silyl, aryl, and alkyl-substi-
tuted N-centers of various iminophosphonamide complexes
have been generally used in rare earth metal chemistry
(Fig. 5).""7

The early reports of lanthanide iminophosphonamide
metal complexes are based on silyl-substituent (I, Fig. 5). In
particular, Edelmann’s group reported and structurally charac-
terized the Sm(m) and Yb(un) complexes [{Ph,P(NSiMejs),},Sm
(p-Ix)Li(thf),] and [{Ph,P(NSiMe;),},Yb(thf),] bearing the same
iminophosphonamide ligand in 1991 (Scheme 45).*'°
Furthermore, Edelmann’s group reported in 1995, a series of
[{Ph,P(NSiMe;),},Ln-COT] (COT = cyclooctatetraene) (Ln = Ce,
Pr, Nd, and Sm) complexes bearing the same ligand

Ph  Ph Ph Ph Ph Ph
N/ \/ \/

P P P
Me,;Si—N“=SN—SiMe, Arl-NZ=SN—Ar? BU—N*="N-'Bu

Fig. 5 Iminophosphonamide ligands wused in rare earth metal
complexes.t”
SiMe;
[Ln(u-Cl)(thf),COTI, Ph N /©)
= pp-R( _tn
THE N g
- 2LiCl giMeg Ln = Ce, Pr, Nd, Sm
SiMe, $iMe, $SiMe,
! hf
Ybl Ph N M N e
NN 2 N N\
2 Ph"’\a/“ THF Ph/P\(N/z:f\ rz’P\Ph
SiMe, - 2L $iMe, $ive,
Phﬁh SiMe,
P
Sml, Me,Si~ \\ o, thf
THF wessie / ‘,/L'\t nf

N
Ph—px/

o SlMe3

Scheme 45 Syntheses of silyl-substituted iminophosphonamide com-
plexes of lanthanides.!'>11¢
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(Scheme 45)."" These complexes were obtained by salt meta-
thesis of [{Ph,P(NSiMe;),}Li] and [Ln(p-Cl)(thf),COT],.

Most of the alkyl and aryl substituted iminophosphona-
mide lanthanide complexes were used as catalysts for the
polymerization of olefins."**'*! In this regard, in 2010, Cui
and co-workers demonstrated that selective isoprene polymer-
ization could be achieved when different lanthanide metal
complexes were employed as catalysts (Scheme 46). The bis
(alkyl)iminophosphonamide complex of lutetium, [Ph,P{(2-
pyridyl-N)(=NCsH Me,)}(thf)Lu(CH,SiMe;),], was synthesized
by the deprotonation reaction of the iminophosphonamine
Ph,P{(2-pyridyl-NH)(=NCsH,Me,)} with [Lu(CH,SiMe;);(thf),].
Furthermore, when the Ph,P{(2-pyridyl-NH)(=NCsH;Me,)}
ligand was reacted with [Nd(BH,);(thf);], an unprecedented
reaction occurred leading to the formation of a bis(boro-
hydride) neodymium complex. The synthesized lutetium
complex [Ph,P{(2-pyridyl-N)(=NCsH,Me,)}(thf)Lu(CH,SiMej;), ]
in combination with proper cocatalysts ([PhMe,NH][B(C¢Fs)a]
and AliBu3) afforded the 3,4 selectivity, whereas the neody-
mium borohydride complex selectively afforded the trans-1,4
product in the presence of ([PhMe,NH]B(C¢Fs),] and
Mg"'Bu,)."*°

Cui’s group in 2014, also reported the dialkyl complexes of
lutetium ligated with variably substituted iminophosphona-
mide of type II (Fig. 5 and Scheme 47). The structural determi-
nation of these complexes was carried out by various spectro-
scopic techniques including single-crystal X-ray diffraction.

These complexes were tested as catalysts in the polymeriz-
ation of isoprene. The result indicated that all these complexes
appeared as effective 3,4 regioselective catalysts. Depending on
the ligand substituent, the syndio- and iso-3,4 selectivity of the
isoprene polymerization was observed, which was supported
by DFT calculations.**®

Furthermore, a series of bis(alkyl) complexes [{Ph,P(2,4,6-
Me;CsH,N)(NAr)}Ln(CH,SiMe3),(thf),] (Ln = Lu, Y, Sc, and Er;
Ar = Ph and 2-pyridyl) were generated and structurally charac-

Ph Ph  Ph
Ph \/

\ / Ph Ph
N\ N /—\ N
@'"AN [N(BH,),(thf),] @n/ %N [Lu(CH,SiMe), thf)) ’N \ / Q
N thf 12h =N toluene, 1h UL
H o | e, Sivey Mes; S\J of

BH,
(BH,); Wessi

Scheme 46 Synthesis of selective polymerization catalysts based on
iminophosphonamide.12°

R Ph  Ph
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¢ \> TE,0RT, 1N
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Scheme 47 Synthesis of  dialkyl lutetium complexes of

iminophosphonamides.''®
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terized."™® These complexes were tested for isoprene polymer-
ization in the presence of [Ph;C][B(C4Fs5),] and Al'Bus.

Research on the catalytic polymerization of isoprene by Cui
revealed that the substituents on the nitrogen atoms and the
atomic radii of the corresponding central metal atoms deter-
mine the catalytic activity and selectivity.'** Furthermore, it
was investigated how the molecular architectures of the com-
plexes and their catalytic capabilities correlate.

The study on regio- and stereoselective isoprene polymeriz-
ation was further carried out using dialkyl lanthanide com-
plexes of iminophosphonamide [{Ph,P(2,6-PrC¢H;N),}Ln
(R),(thf)] (Ln = Sc, Lu, Y, and Er; R = CH,SiMe; and for Ln = La
and Nd; R = CH,-p-Tol) as catalysts in the presence of activator
systems [Phsc][B(C6F5)4]/AliBu3 and [Ph;C][B(C¢Fs)4]/AlEt;,
respectively. The study found that the lanthanide complexes,
[{Ph,P(2,6-"PrC¢H;N),}Ln(CH,SiMe;),(thf)] (Ln = Sc, Lu, Y, and
Er) with a smaller ionic size in the presence of [Ph;C][B
(C6Fs)s)/AI'Bu; tend to favor a high 3,4-regio and stereo-
selectivity for the polymerization of isoprene (up to 98.1%)
While the 4-methylbenzyl neodymium and lanthanum com-
plexes [{Ph,P(2,6-"PrCsH;N),}Ln(CH,-p-Tol),(thf)] (Ln = La and
Nd) in the presence of [Ph;C][B(C¢Fs)4]/AlEt; demonstrated
efficient catalytic activity in the trans-1,4-selective polymeriz-
ation of isoprene (Scheme 48).'2%1%4

Of the three above-described NPN ligand backbone types,
Sundermeyer’s group initially introduced the {Ph,P(N‘Bu),}
ligand (Fig. 5, III) into the rare earth metal chemistry in
2016.""7 For instance, dialkyl or monoalkyl substituted rare
earth metal (Sc and Y) complexes of {Ph,P(N‘Bu),} can be syn-
thesized by reacting the iminophosphonamine with [Ln
(CH,SiMej3);(thf);] in an appropriate ratio (Scheme 49).

Alternatively, {Ph,P(N‘Bu),}H was reacted with ScCl; and
MeLi to give [{Ph,P(N‘Bu),},Sc(Me)thf] (Scheme 49).

Moreover, the mono-alkyl substituted complexes are reac-
towards the abstraction of acidic -CH protons
(Scheme 50)."'7 In this regard, an in situ prepared yttrium
mono alkyl [{Ph,P(N‘Bu),},Y(CH,SiMe;)] complex when treated
with phenylacetylene resulted in the formation of a highly air-
and moisture-sensitive colorless yttrium alkyne complex. The
formation of the alkynyl complex was confirmed by multinuc-
lear NMR spectroscopy. The *'P{'H} NMR spectra of the
yttrium alkynyl [{Ph,P(N‘Bu),},Y(C=CPh)] complex exhibited a
single resonance at § = 17.8 ppm upfield shifted compared to
the monoalkyl yttrium complex (§ = 19.5 ppm). Furthermore,
the reaction of [{Ph,P(N‘Bu),},Y(CH,SiMe;)] with [PhNHMe,][B

ph Ph
\P/
N</>N
L
: I\ thf
Ao/ ) :
[Ph3C][BlC5F5)4]/AlEt3
Ln=Nd,la

tive

Ph Ph
%m{}

MEJS|

Me,Si
r|

W

trans-1,4 Polyisoprene

[Ph4Cl[B(C4F5),)/AlBU;

3,4 Polyisoprene Ln=Sc, Ly, Y, Er Isoprene

Scheme 48 Regio- and stereoselective isoprene polymerization using
iminophosphonamide-stabilized lanthanide complexes.'?*
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Scheme 50 Syntheses of cationic and alkynyl yttrium complexes.'*

Ph/ Y-
N/ ~

(CeFs)s] afforded the cationic yttrium complex [{Ph,P
(N“Bu),},Y]'[B(CFs5)4]”- The formation of the cationic complex
was confirmed by NMR spectroscopy, which displayed signals
corresponding to PhNMe, and SiMe,. The other characteristic
signals in the multinuclear NMR spectra were also consistent
with the product formation.**”

More recently, Konchenko’s group reported a variety of tris-
iminophosphonamide lanthanide complexes utilizing chromo-
phore 2-(phen-2'-yl)-1,3-benzothiazole (Pbt) substituents at the
nitrogen centers of the iminophosphonamine, Ph,P(HNPbt)
(NPbt).**®

The corresponding iminophosphonamide lanthanide com-
plexes were synthesized by a salt metathesis between LnCl;
and in situ generated K{Ph,P(NPbt),} regardless of the stoichio-
metry of the precursors. In all cases, [Ln{Ph,P(NPbt),},]" (Ln =
Y, Sm, Gd, and Dy), where [Ln{Ph,P(NPbt),},]" exists as cat-
ionic fragment and [Ph,P(NPbt),]” as its counter anion, were
isolated (Scheme 51). Furthermore, the photoluminescence of
Ph,P(HNPbt)(NPbt) showed two emission bands in the visible
range, suggesting the relationship between the color of
luminescence and the excitation wavelength. In contrast, only
a single band was observed when the photoluminescence was
measured in solution. This peculiar observation is conditioned
to the specific effect of packing in the solid state of the ligand.
Furthermore, the potassium salt K{Ph,P(NPbt),}, [Gd{Ph,P
(NPbt),},][Ph,P(NPbt),] and [Dy{Ph,P(NPbt)},][Ph,P(NPbt),],

o [ )] 9o

N
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3 p - - Ph_ / \ Ph
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Scheme 51 Synthesis of luminescent lanthanide complexes.*?®
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when excited, showed bright emission bands of different
colors depending on the metal center, both in solution and in
the solid state.

More recently, Konchenko’s group reported the yttrium
complex using a nonsymmetric benzothiazole-functionalized
iminophosphonamide ligand. The yttrium complex was syn-
thesized by in situ deprotonation of iminophosphonamine
with potassium hydride followed by a reaction of yttrium tri-
chlorides in THF (Scheme 52). The molecular structure of the
protonated ligand and yttrium complex showed that there is
intermolecular z-stacking between the 2-(phen-2’-yl)-1,3-ben-
zothiazole (Pbt) fragments.'*® Edelmann’s group reported both
lanthanide and actinide iminophosphonamide metal com-
plexes (M = Nd, Pr, Th, and U) by reacting [{Ph,P(NSiMej;),}Li
(thf),], with anhydrous chlorides of lanthanide and actinides
(Scheme 53)."'* The formation of these metal complexes was
accessed through multinuclear NMR spectroscopy, elemental
analysis, and mass spectrometry. The *'P{'"H} NMR spectrum
of the thorium complex, [{Ph,P(NSiMej;),},ThCl,], and the
dioxouranium complex, [{Ph,P(NSiMe;),},UO,], displayed a
single resonance in the positive region at § = 17.4 ppm and § =

N Cl
LN + KH, YClg \P/C\Yl—thf
Ph” \N/H thf Ph” \N/\

< O<D

Scheme 52 Synthesis of a luminescent yttrium complex.12®
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Scheme 53 Syntheses of lanthanide and actinide iminophosphonamide
complexes.**
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42.9 ppm, respectively, while the rest of the metal complexes
exhibited a single peak in the negative region ranging from
—231.3 ppm to —139.6 ppm.

3 Enantiopure iminophosphonamide
metal complexes

As discussed in the above sections, the coordination chemistry
dealing with nonchiral iminophosphonamide is well explored.
In contrast to this, few reports of chiral iminophosphonamide
are known in the literature.

In this context, Hill's group reported the DACH (DACH =
trans-1,2-diaminocyclohexane) bis(iminophosphonamide)-
bridged ligands in 2007.'>' The DACH substituted ligands
were synthesized by deprotonating the trans-1,2-diaminocyclo-
hexane with 2 eq. of n-BuLi in toluene, first. Subsequent reac-
tion with 2 eq. of Ph,PCl resulted in an exothermic reaction
due to precipitation of LiCl. Further reaction with the appro-
priate azide afforded rac-|{trans-1,2-C¢H;,{HNP(Ph,)N(Ar)},]
(Scheme 54). The "H NMR spectrum of the ligands exhibited
the expected signals including the NH resonances; addition-
ally, the purity was confirmed by the appearance of single
signals in their corresponding *'P{"H} NMR spectrum. This
variably substituted rac-[¢trans-1,2-C¢H;,{HNP(Ph,)N(Ar)},] imi-
nophosphonamine at one of the nitrogen atoms was treated
with 1 eq. of triethyl aluminum. This led to the formation of
the monometallic aluminum complex rac-[trans-1,2-CcH,,{NP
(Ph,)N(Ar)},AlEt] having a N, chelate, whereas when the ligand
was treated with 2 eq. of AlEt; it furnished the bimetallic
aluminum complex having N, chelates.

Similarly, when the ligands rac-[trans-1,2-C¢H;,{HNP(Ph,)N
(Ar)},] were reacted with [M(NR,);] (M =Y and Sc; R = SiMe;
and SiHMe,), it resulted in the formation of the N, chelates of
M =Y and Sc (Scheme 55). The bimetallic aluminum com-
plexes rac-[trans-1,2-C¢H;,{NP(Ph,)N(Ar)},(AlEt,),] (Ar = 2,4,6-
Me;CeH,, 2,6-Me,CgH;) displayed the single resonances in the
*1p{'H} NMR spectrum in a very narrow range (i.e., 34 ppm to
37 ppm), suggesting the symmetric coordination environment
around the metal centers.

In contrast, the *'P{"H} monometallic aluminum complex
rac-[trans-1,2-C¢H1,{NP(Ph,)N(Ar)},AlEt] (Ar = 2,4,6-Me;CcH,
and 2,6-Me,C¢Hj3) exhibited two peaks with an equal integral
ratio based on integration. These signals were assigned by the
Karplus relationship with the axial cyclohexane protons.

2 eq. PPh,CI 2 eq. ArNy
60°C, 14 h N AN

/ N h
Ph% PPh,
N N,

Q 2 eq. n-Buli

HN e, Tolueme N hu Ph,P(HIN  N(H)PPh,

A “Ar
Ar =2,4,6-Me;CeH,
Ar=2.6-Me,CqH;
Ar = 2.5-Me,CeHy
Ar=3.5-Me,CeH,

Scheme 54 Synthetic
(An)}). 12

route for rac-[trans-1,2-CgH1,{HNP(Ph,)N
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Scheme 55 Syntheses of metal (M = Al, Sc, and Y) complexes of rac-
[trans-1,2-CeH12{HNP(Ph2)N(Ar)},l.12

Further, these monometallic and bimetallic complexes were
employed as catalysts for methylmethacrylate (MMA) polymer-
ization at room temperature. The results showed that both
mono metallic rac-{trans-1,2-C¢H;{NP(Ph,)N(Ar)},AlEt] (Ar =
2,4,6-Me;CgH, and 2,6-Me,CcH;) and bimetallic aluminum
complexes, rac-[trans-1,2-C¢H;,{NP(Ph,)N(Ar)AlEt,},] (Ar =
2,4,6-Me;CgH, and 2,6—Me2C6H3), require three-component
Gibson initiators,"?” (L,AIR/MAD/Ni(acac),) (MAD = bis(2,6-di-
tert-butyl-4-methylphenoxide)aluminum methyl) for active
polymerization to yield a syndiotactic (>80%) pattern with
broad polydispersity indices (~2). In contrast, efficient cataly-
sis with a mostly isotactic (>80%) pattern close to mono-
disperse was observed when the yttrium complexes, rac-{trans-
1,2-CeH1,{NP(Ph,)N(2,4,6-Me;C¢H,)},Y(NR,)] (R = SiMe; and
SiHMe,), were employed as catalysts.

Later in 2017, Guan’s group has reported a variety of func-
tionalized chiral iminophosphonamines, where the chiral
centers were present at one nitrogen atom of the diamines
(i.e., (1R,2R)-diaminocyclohexane or (1R,2R)-diphenylethyl-
enediamine) (Fig. 6)."*

Further metal complexation of these ligands was accessed
by treating the ligands with metal benzyl compounds of alka-
line earth and rare earth metals (Scheme 56).

The "H NMR spectra of the metal complexes confirmed
complete deprotonation of the ligand. Further, the synthesized
metal alkyl complexes bearing chiral iminophosphonamines
were investigated as catalysts in the cross-dehydrogenative
coupling of amines with prochiral silanes. The best catalytic
activity was observed with the yttrium complex bearing a 1,2-

y\P/Cy Ph Cy\P/CY
R N\ \
LINT W (RN “N—Ar
| Phi., |
(R) H (R) H
- /N\
Ar = Ph, Mes B Ar = Ph, Mes, biphenyl

Fig. 6 Variably substituted chiral iminophosphonamines.

This journal is © the Partner Organisations 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5qi00275c

Open Access Article. Published on 09 april 2025. Downloaded on 01.11.2025 17.42.08.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Inorganic Chemistry Frontiers

Ar=Mes; M =Mg; m=2
Ar=Mes;M=Ca; m=2
Ar=Mes;M=Sc;m=3
Ar=Mes;M=Y;m=3
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(R)}
M=Mgm=n=2 . Sh-ar V\/
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Scheme 56 Syntheses of alkaline and rare earth metal complexes of
chiral iminophosphonamines.!2®

diphenyl ethylenediamine moiety compared to the one with a
1,2-diamino cyclohexane moiety. This catalyst was further sub-
jected to broad substrates of amine and prochiral silane,
which showed excellent yield of the silylamines (Table 1)."*®
All of the isolated silylamines were found to have a negative
specific optical rotation.

Due to the high moisture sensitivity of the isolated silyla-
mines, the conventional chiral HPLC method to determine ee
was unsuccessful. Therefore, to assess the ee of silylamines,
the stable derivative of silylamines was isolated. In this regard,
the silylamine-boron derivative was synthesized by direct
deprotonation/boronation in a single pot (Scheme 57). The
resulting chiral silylamine boron derivative was analyzed using
chiral HPLC, which exhibited the best catalytic activity having

Table 1 Substrate scope for the catalytic formation of silylamines;
the yield was recorded by *H NMR spectroscopy and the values in
the bracket are isolated yields'2®
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Scheme 57 Asymmetric chiral silamine catalysis using the yttrium
benzyl complex.1?®

71% isolated yield and 23% ee when the yttrium complex
bearing 1,2-diphenyl ethylenediamine at one end and biphenyl
substituent at another nitrogen end of the iminophosphona-
mide was employed as the catalyst.

Further in 2019, Rufanov’s group reported various C2-sym-
metric bis(iminophosphonamide) ligands.>® These ligands
were synthesized by reacting the (R)-1,1'-binaphthyl-2,2'-
diamine {(R)-Binam} with Ph,PCl with Et;N in DCM, resulting
in the formation of (R)-N,N-bis(diphenylphosphanyl)-2,2'-
diamino-1,1"-binaphthyl [(R)-Binam-P]. Further, the Staudinger
reaction was performed between the (R)-Binam-P and R-N; (R’
= ‘Bu, Dip, and 1-Ad), which resulted in a series of C2-sym-
metric bis(iminophosphonamide) ligands [(R)-Binam(Ph,PN
(H)R),] (R’ = ‘Bu, Ad and Dip) (Scheme 58). The ligands were
characterized by multinuclear NMR (*H, *'P, '*C) spectroscopy,
EI-MS and elemental analysis, whereas the molecular structure
of [(R)-Binam(Ph,PN(H)'Bu),] was determined by growing suit-
able crystals for X-ray diffraction in a concentrated solution of
[(R)-Binam(Ph,PN(H)Bu),] in DMSO. The ligand crystallized
with 2 molecules of DMSO, forming N-H---O hydrogen bonds
with the DMSO molecules.

To the best of our knowledge, the coordination chemistry of
the [(R)-Binam(Ph,PN(H)R'),] is yet unknown.

In contrast to the above-described chiral iminophosphona-
mines, where chirality was close to one nitrogen atom, the chir-
ality centers close to both nitrogen atoms of the iminophospho-
namines were largely uncommon. In this regard, P. Roesky’s
group reported in 2019 that the [Ph,P{N(R)CH(CH;)Ph},] ligand
has chiral centers at both ends of the ligand."*® The ligand was
synthesized by performing a Staudinger reaction between (R)-
a-methylbenzyl azide and HN(R-CHMePh)(PPh,). The consti-
tution of the ligand was confirmed by NMR spectroscopy, IR
spectroscopy, and elemental analysis, and its molecular struc-
ture was accessed by single-crystal X-ray diffraction.

When the ligand [Ph,P{HN(R)CH(CH;)Ph}{N(R)CH(CH,)
Ph}] was deprotonated with appropriate alkali metal bases, it

Ph_ Ph

L

NZ SNHR'
N_ _NHR'
K
PH Ph

R' = Bu, Ad, Dip

OO 2PPhyCl OO H pph,
NH  exs, Et;N N

NH, DCM N_
99 g™

exs. R'Ny

Scheme 58 Synthesis of
ligands.**

C2-symmetric  bis(iminophosphonamide)
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Scheme 59 Syntheses of alkali metal complexes of [Ph,P{N(R)CH(CH5)
Ph}].129

resulted in the formation of dimeric metal complexes, [Ph,P{N
(R)CH(CH3)Ph},M,]| [M = Li, Na, K, and Rb]. Interestingly,
when the ligand was treated with cesium precursors, it formed
dimeric [Ph,P{N(R)CH(CH;)Ph},Cs,] and 1D-polymeric [Ph,P
{N(R)CH(CH;)Ph}Cs],, species in 1/1 ratio (Scheme 59).
Complete deprotonation of the ligand was confirmed by the
disappearance of the NH signal in the "H NMR spectrum of
the metal complexes. The *"P{'H} NMR spectra of all these
metal complexes also exhibited single resonances in the range
from 6 = 12.6 to 6 = 20.6 ppm, which is downfield shifted as
compared to the ligand [Ph,P{HN(R)CH(CH;)Ph{N(R)CH(CH;)
Ph}] (6 = 2.7 ppm). Moreover, the molecular structures of these
metal complexes were confirmed by X-ray diffraction, which
revealed that the cesium complex adopts both dimeric and
polymeric forms, whereas the rest of the metal complexes exist
in dimeric forms. The photoluminescence (PL) investigations
at variable temperatures of the ligand [Ph,P{N(R)CH(CH;)Ph},]
and all its alkali metal complexes [Ph,P{N(R)CH(CH;)Ph}M],
[M = Li, Na, K, Rb, and Cs] revealed that the ligand is fluo-
rescent in nature at all temperatures. In contrast, the alkali
metal complexes showed phosphorescence at low temperatures
(<100 K) and thermally activated delayed fluorescence (TADF)
above ~150 K with a PL quantum efficiency of up to 36% for
[Ph,P{N(R)CH(CH;)Ph},Na,].

DFT calculations revealed the small S;/T; energy gap for all
the alkali metal complexes; further, the effective intersystem
crossing S;/T; energy states was due to the dimeric forms of
these metal complexes."*®

To understand the effect of the ligand substituent on the
photophysical properties of the metal complexes, symmetri-
cally [Ph,P{N(R)CH(CH;)Ph},], [Ph,P{N(R)CH(CH;)naph},]
(naph = naphthyl)- and non-symmetrically [Ph,P{NDippH{N(R)
CH(CH3)Ph}] (Dipp = 2,6-"Pr,C¢H;)-substituted chiral imino-
phosphonamines were synthesized. The new symmetric ligand
[Ph,P{N(R)CH(CH;)naph},] and the non-symmetric [Ph,P
{NDippH{N(R)CH(CH;)Ph}] ligand were obtained by reacting
the iminophosphorane with corresponding azides.'*°

Performing transamination between the [Ca{N(SiMe;),}
(thf),] and above-mentioned symmetric and non-symmetric
ligands afforded the homoleptic calcium complexes, [{Ph,P{N
(R)CH(CH3)Ph},},Ca], [{Ph,P{N(R)CH(CH3)naph},},Ca] and
[{Ph,P(NDipp{N(R)CH(CH;)Ph}},Ca] (Scheme 60). The PL
study of these metal complexes in solid state at various temp-
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Scheme 60 Syntheses of chiral homoleptic calcium complexes.**°

eratures exhibited blue green PL. The emission of [{Ph,P{N(R)
CH(CHj3)naph},},Ca] was assigned to the fluorescence of
naphthyl rings, whereas the emission of complexes [{Ph,P{N
(R)CH(CHj3)Ph},},Ca] and [{Ph,P(NDipp{N(R)CH(CH;)Ph}},Ca]
exhibited phosphorescence at low temperatures and TADF at
elevated temperatures. Different PL lifetimes suggested that
the ligand substituents played a vital role in the PL of these
calcium complexes. Moreover, all these homoleptic calcium
complexes showed excellent catalytic activity in the hydrobora-
tion of ketones at room temperature.’*® Further the coordi-
nation chemistry of the [Ph,P{N(R)CH(CH;)Ph},] ligand was
explored with group 13 metal centers."®" In this regard, when
the ligand was treated with LiAlH,, it resulted in the formation
of [Ph,P{N(R)CH(CH;)Ph},AlH]. Treating the lithium salt of
the ligand [Ph,P{N(R)CH(CH;)Ph}Li], with MCl; (M = Al and
Ga) resulted in the formation of corresponding monochloride
complexes [Ph,P{N(R)CH(CH;)Ph},MCl] (M = Al and Ga).
Moreover, the halide abstraction of the monochloride com-
plexes afforded corresponding tetracoordinated cationic com-
plexes [{Ph,P{N(R)CH(CH;)Ph},},Al]"[GaCl,]” and [{Ph,P{N(R)
CH(CH;)Ph},},Ga] TAICL,] (Fig. 7).

All these complexes were thoroughly characterized by multi-
nuclear NMR and IR spectroscopy, elemental analysis, and
X-ray diffraction.”"

The effect of substituent variation in the iminophosphona-
mide metal complexes on photoluminescence (PL) was further
investigated with d'° configured metal centers. In this regard,
various Cu(1) and Zn(u) metal complexes of iminophosphona-
mides were synthesized (Scheme 61). The binuclear Cu(1) com-
plexes [Ph,P{(NR)(NR')},Cu,] (R = R’ = (R)CH(CH3)Ph and R =

Ph Ph *

Ph Ph Ph Ph
Ph, E/P Ph, E/P Php ( /Z:Ph -
Ph- P( \AI ) Ph Ph/P( \M/ ¢-ph Ph- ( 7'4 ~Ph |mcl;
| e N Y
H 7 \/ Cl 7 Ph Ph
Ph Ph Ph Ph
M= Al Ga M= Al M'= Ga
M= Ga, M' = Al

Fig. 7 Monometallic aluminum and gallium complexes of the [Ph,P{N
(RICH(CH3)Ph},] ligand.™*
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Scheme 61 Syntheses of the selected Cu() and Zn(i) iminophosphona-
mide complexes for photoluminescence study.132

R’ = (R)CH(CHj)naph) were synthesized by a salt metathesis
reaction between CuCl and lithium and the potassium salt of
the iminophosphonamides [Ph,P{(NR)(NR')},M,] (M = Li, for R
=R’ = (R)CH(CH;)Ph and M =K for R = R’ = (R)CH(CH;)naph).
Similar the one-pot reaction of CuCl, K(NSiMej3), and the imi-
nophosphonamines {Ph,P{(NHR)(NR)} (R = (R)CH(CH;)Ph; R’
= 2,6-'Pr,C¢H, and R = R’ = 2,6- PrZC6H4) in equivalent ratios
resulted in the formation of corresponding binuclear Cu()
complexes [Ph,P{(NR)(NR)},Cu,] (R = (R)CH(CH;3)Ph; R’ =
2,6-Pr,CcH, and R=R’ = 2,6-iPr2C6H4). Furthermore, when the
deprotonation of the iminophosphonamine {Ph,P(NHR)(NR')}
R = (R)ICH(CH,)Ph; and R = (R)CH(CH;)Ph; R’ =
2,6-Pr,C¢H,) was performed with ZnR, (R = Me and Ph), it
resulted in the formation of corresponding homoleptic com-
plexes, [Ph,P{(NR) (NR’)}ZZn (R = R’ = (R)CH(CH;)Ph and R =
(R)CH(CHj3)Ph; R’ = 2,6- PrZCGH4) However, the deprotonation
reaction between Ph,P{(2,6-'Pr,CsH,N),}H and ZnPh, resulted
in the formation of a heteroleptic complex, [Ph,P
{(2,6-"Pr,CeH,4N),}ZnPh], due to the steric crowding from the
Dipp (Dipp = 2,6-'Pr,C¢H,) group. The formation of all these
complexes was proven by various analytical techniques such as
single-crystal X-ray diffraction, multinuclear NMR spec-
troscopy, elemental analysis and IR spectroscopy. The solid-
state PL measurement of these metal complexes in the temp-
erature interval 5-295 K revealed that depending on the ligand
substituents, the PL ranged from prompt fluorescence to TADF
to long-lived phosphorescence. Additionally, step-scan FTIR
spectroscopy was performed for [{Ph,P(2,6-'Pr,C¢H,N),}Cu], to
characterize the excited triplet state on the microscopic time
scale.™?

Moreover, photoluminescence studies further
extended to the lanthanide metal complexes. Therefore, chiral
homoleptic  lanthanide complexes [{Ph,P{N(R)CH(CH,)
Ph},};Ln] (Ln =Y, La, Sm, Tb, and Lu) were synthesized by per-
forming a salt metathesis reaction between [{Ph,P{N(R)CH
(CH;)Ph},}K], and LnCl; in 1.5/1 molar ratio (Scheme 62)."*
The Sm(m) complex exhibited both ligand- and metal-centered
PL depending on the excitation wavelength. For the PL of the
Tb(m) complex a quantum yield of 15% in the solid state was
observed.

were
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Very recently, the group 4 (i.e., Zr and Hf) metal complexes
of chiral iminophosphonamide ligands [Ph,P{N(R)CH(CHj,)
Ph},] and [Ph,P{NDipp{N(R)CH(CH;)Ph}] (Dipp =
2,6-'Pr,CeH;) have been reported.’®® These metal complexes
were synthesized by adopting the amine elimination method
between [M(NMe,),] (M = Zr and Hf) and [Ph,P{HN(R)CH(CHj,)
Ph},] and [Ph,P{HNDippH{N(R)CH(CH;)Ph}] in equimolar
ratios (Scheme 63). The synthesized metal complexes were
extensively characterized using several spectroscopic and
analytical techniques. The structural determination of the
complexes was carried out by using single-crystal X-ray
diffraction.

Furthermore, the -catalytic efficiency of the zirconium
complex of the symmetric ligand [Ph,P{(NR)(NR')}Zr(NMe,)s]
(R = R’ = (R)CH(CH3)Ph) and the hafnium complex of the
unsymmetrical ligand [Ph,P{(NR)(NR')}Hf(NMe,);] (R = (R)CH
(CH3)Ph and R’ = Dipp) was explored towards intramolecular
hydroamination and hydroboration reactions, respectively.

4. Conclusions

In conclusion, we present an account of coordination com-
pounds of nonchiral iminophosphonamides with s-block,
p-block, transition, and f-block metals. The broad application
of this ligand in wide areas of coordination chemistry is
caused by various advantages: (i) The substituents on the
nitrogen atoms can be varied by a wide range of functional
groups including enantiomeric pure substituents. (ii) Due to
the stepwise synthesis of iminophosphonamides, asymmetric
substitution patterns can easily be realized. This allows for,
e.g., a convenient access to bridged bis(iminophosphona-
mides), which may act as chelating ligands. (iii) The steric
demand of the iminophosphonamide can be adjusted due to
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the flexible variation of the substituents on the nitrogen
atoms. (iv) By having a phosphorous atom in the backbone of
the ligand, the reaction can be monitored in situ by *'P NMR
spectroscopy. This makes iminophosphonamide superior to
other N,N'-chelating ligands such as amidinates.

The review demonstrate that the iminophosphonamides
differ more significantly from the amidinates than their
formal similarity would suggest. However, the chemistry of
iminophosphonamides in comparison to amidinates is still
significant less developed. With this review, we hope to inspire
chemists considering iminophosphonamides as suitable
ligands for their research.
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