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romise of emerging nanomaterials
as a sustainable platform to mitigate antimicrobial
resistance

Sazedur Rahman, †a Somya Sadaf,†b Md Enamul Hoque, *c Akash Mishra,b

Nabisab Mujawar Mubarak, de Guilherme Malafaiaf and Jagpreet Singh *g

The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases

have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at

least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase

to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing

threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research

to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative

due to their unique physicochemical properties, and ongoing research holds great promise for

developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide

an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by

acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that

can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have

emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial

infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for

preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the

properties and mechanisms of NMs for the development of effective strategies against antibiotic-

resistant bacteria.
1. Introduction

Nanotechnology emerged as a crucial area of scientic research
since the 21st century, and drives technological advancements
in computer chips, construction materials, healthcare, envi-
ronmental protection, new energy forms, and electricity
transportation.1–4 Nanomaterials are materials having specic
physical or chemical characteristics or biological impacts that
have an exterior size, internal size, or surface structure that falls
within the nanoscale range.5–7 More precisely, a nanostructured
material is thought to have dimensions ranging from 1 to
100 nm.8–10 However, in medicine, these values may vary up to
a diameter of 200 nm.11 In the context of themedication delivery
system, nanotechnology is an inventive method that can be
utilized. Currently, a diverse range of natural and synthetic
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nanomaterials are being researched to determine whether they
can be used as medication delivery systems, as the rise of drug-
resistant strains of disease-causing bacteria is one of human
health's most signicant concerns today. More than 2 million
serious diseases are caused by antibiotic-resistant bacteria
globally.12,13 Recent research shows that by the year 2050,
bacterial infections are expected to cause 10 million deaths
annually, which will exceed the current number of deaths
caused by cancer.14 Therefore, nanomaterials are used as new
antimicrobial agents to treat and prevent infectious diseases.
Nanomaterials can overcome antibiotic resistance mechanisms
by executing various new bactericidal routes, binding and
breaking bacterial membranes, and causing cytoplasmic
component leakage because of their unique physio-chemical
characteristics.15 Nanomaterials can target biolms and
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overcome recalcitrant infections due to their size (average
diameter of 100 nm) and physical properties (size, shape,
surface area, composition, etc.).16 In addition, they are effective
against bacteria resistant to antibiotics because of their large
surface-to-volume ratios, which make the surface-to-inner atom
ratio of the material higher than in bulk materials with the
same surface-to-volume proportions.17–19 Thus, nanomaterial-
based therapeutic approaches are promising tools for
combating difficult-to-treat bacterial infections, as they can
circumvent existing mechanisms affiliated with multi-drug
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resistance.20 So, it is worthwhile to write a review on the inves-
tigation of nanomaterials and their efficacy against antibiotic
resistance. Fig. 1 demonstrates the classication of inorganic
nanoparticles with antibacterial characteristics and their uses.

This article comprehensively analyzes the signicance of
nanomaterials in addressing antibiotic resistance by elaborately
discussing every related aspect. For different types of nano-
materials, the review discusses the techniques of interacting
with microorganisms and the mechanism to ght against
microbial pathogens. In addition, the physicochemical features
of nanomaterials are presented in this review to study their
toxicity so that health and safety can be ensured for nano-
material usage. This review also presents economical and
environmentally friendly plant-based nanomaterial extraction
and the efficacy of nanomaterials as a novel drug delivery
system. Furthermore, this review suggests that nanomaterials
hold great promise for revolutionizing the eld of medical
science through their ability to mitigate antimicrobial resis-
tance in the human body and their potential to replace tradi-
tional chemical antibiotics.
1.1. Antibiotic resistance

Antimicrobial resistance in pathogenic bacteria is a chronic
global health concern affecting every region of the world and is
linked with high morbidity and death rates.22–27 Recently, anti-
biotics have been misused and overused, allowing bacteria to
proliferate and increasing antimicrobial resistance (AMR).28

This has resulted in antibiotics losing their power to halt the
spread of illnesses and has resulted in a rise in the prevalence of
infectious diseases.29–32 Convincing data connects antibiotic
consumption to the emergence of resistance. Although
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guidelines and restrictions inuence consumption, it is ulti-
mately the result of several physician consultations.33–35 Anti-
biotic resistance is a natural phenomenon that arises in
bacteria because of the inherent evolutionary character of
bacteria, as well as bacteria's facile and quick adaption to
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different environments, which has both microbiological and
clinical denitions.36 Microbiologically, antibiotic resistance
can be dened as the existence of a genetically specied resis-
tance mechanism that has been acquired or mutated, which
classies the microorganism as resistant or vulnerable
depending on using a specied break in a clinical laboratory
test. In contrast, “clinical resistance” refers to antimicrobial
activity correlated with an increased likelihood of unsuccessful
treatment.37

In most cases, the mechanism of action of an individual
antibiotic is sufficient enough to allow it to operate against only
one particular target spot inside the bacterial cell. Antibiotics
are known for their ability to impede bacterial cell wall forma-
tion, disrupt the cellular membranes, inhibit nucleic acid
synthesis, inhibit photosynthesis, and inhibit folic acid
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Fig. 1 Antimicrobial inorganic nanoparticles and their uses (Reprinted from21 by permission of the Taylor & Francis Ltd, https://
www.tandfonline.com/).
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synthesis, as illustrated in Fig. 2a.38 Several stages are required
for an antibiotic to exert its antibacterial effect. It must rst
penetrate bacterial cells (inux), then be stable or be triggered
and collected to inhibitory amounts. Aer that, it can nd its
target, engage with it, and exert antimicrobial effects. Regard-
less of the antibiotic's mechanism of action, chemical compo-
sition, or range of activity, changes to either of these stages lead
to bacterial resistance.39

The resistance mechanism to antibacterial drugs is demon-
strated in Fig. 2b. Antibacterial resistance mechanisms may be
categorized as follows.41

3 The development of enzymatic action that interferes with
or alters the structure of antimicrobials,

3 Alterations in the permeability of the bacterial wall and the
membrane surrounding the cytoplasm,

3 Changes made to the target locations of antibacterial
agents,

3 Enhanced removal of an antibiotic from the cells of
bacteria (bacterial efflux).

Therefore, the ability of a species of bacteria to withstand the
activity of a certain antibiotic owing to inherent structural and
functional characteristics can be dened as the resistance
mechanism for that species of bacteria. Fig. 3a illustrates how b-
lactam antibiotics may target a Penicillin-binding protein (PBP)
© 2024 The Author(s). Published by the Royal Society of Chemistry
to kill bacteria. In this instance, as shown in Fig. 3a, antibiotic A
can enter the cell through a protein that spans the membrane,
travel to its target, and then prevent the formation of peptido-
glycan when it has been there. Further, Antibiotic B can also
enter the cell through a porin, just like Antibiotic A. However,
unlike Antibiotic A, Antibiotic B is effectively eliminated via
efflux. Antibiotic C cannot get through the outer membrane, so
it cannot enter the PBP, which is the target of its action. Hence,
the antibiotics fail to kill the target bacteria.42

Several investigations have demonstrated that reasons
behind the treatment, selection of agent, and duration of anti-
biotic treatment are all unsuitable 30–50% of the time.43–45

Antibiotic resistance has several causes, including insufficient
regulatory requirements and usage inconsistencies, a lack of
awareness of best practices that lead to unnecessary or inef-
fectual antibiotic usage, feeding antibiotics rather than regu-
lating infection in poultry and livestock, and internet marketing
made inexpensive antibiotics readily available.46,47 The devel-
opment of antibiotic resistance is a natural process that occurs
in bacteria, as illustrated in Fig. 3b. However, using different
antibiotics in agriculture, healthcare, and the environment is
responsible for antibiotic resistance. Additional major elements
that are dominant factors for antibiotic resistance include
infection control guidelines, water hygiene systems, medicine
RSC Adv., 2024, 14, 13862–13899 | 13865
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Fig. 2 (a) Antibiotic mechanism of action, and (b) antibiotic resistance mechanisms in bacteria (Reprinted with permission from,40 An Open
Access article distributed under the terms of the Creative Commons Attribution License).
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quality, sanitation settings, diagnostics and therapies, and
movement restrictions.43 Moreover, the transfer of genes across
organisms, in addition to changes in several genes upon that
microorganism's chromosome, plays a signicant part in the
development of antibiotic resistance.48

There are two distinct ways in which the AMR gene may be
transferred: chromosomal mutation and extrachromosomal
mutation. Chromosome mutation situations arise when alter-
ations are formed in the entire genome of bacteria, especially on
the main chromosome, and it is shown through transmissions
along the vertical direction, which means that it is passed down
through generations of progeny. Chromosomal mutation
occurs on its own and cannot be reversed. It causes alterations
in the bacterial genome because of various aspects that can be
physical, chemical, or both. These changes, in turn, cause
changes inside the microorganism that modify the permeability
and the drug objective to prevent antibiotics from affecting
bacteria.49 As a result, chromosomal mutation relies on whether
the pathogen's appropriateness or virulence changes. If genet-
ically changed microorganisms dominate or develop more
oen, they would begin to reproduce and cause disorders.

Furthermore, another type of antimicrobial gene transfer is
extrachromosomal resistance, which can be characterized as
the transmission of genetic material through plasmids, inte-
grons, and transposons. Plasmid transmission may transmit
antibiotic-resistance genes to the host cell, and drugs can alter
this process by increasing transmission.49 On the contrary,
transposons are sequences already present in the genome and
have a high capacity for recombination and mobility. This
implies that they can readily be incorporated into a bacterium's
genome. It is possible to move them from one plasmid to
13866 | RSC Adv., 2024, 14, 13862–13899
another and from a plasmid toward a chromosome vice
versa.50,51 In addition, in the event of integrons capable of
encoding AMR cassettes skilled in catching and expressing
integrase genes, such integrons recognize the foreign gene and
integrate it at integron sites.

Moreover, bacteria can convey resistance genes to other
bacteria via horizontal gene transfer, which increases the
potential for this phenomenon to spread.58 In addition, bacteria
that develop resistance to numerous medications are known as
multi-drug resistant bacteria (MDR) and are sometimes known
colloquially as “superbugs.” Any bacterium has the potential to
acquire multi-drug resistance (MDR). Nonetheless, a category of
pathogens known as the “ESKAPE” group has a heightened
propensity to do so. The “ESKAPE” group consists of the indi-
viduals listed below:

3 E means Enterococcus faecium,
3 S means Staphylococcus aureus,
3 K means Klebsiella pneumoniae,
3 A means Acinetobacter baumannii,
3 P means Pseudomonas aeruginosa, and.
3 E means Enterobacter spp.
1.2. Importance of nanomaterials in AMR

Nanotechnology is now essential in scientic and technical
advancements in the medical and pharmaceutical elds.
Nanomaterials enable altering materials' chemical and physical
characteristics.52,53 In addition, the bigger the surface-volume
ratio of the nanoparticles, the stronger their chemical and
biological activity.54 Nanomaterials have been used for various
applications, notably drug delivery, light ablation treatment,
biological imaging, biosensor applications, and even as an
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Intrinsic antibiotic resistance mechanisms (Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer,42

Copyright 2015); (b) transmission factors for antimicrobial resistance (Reprinted with permission from,43 AnOpen Access article distributed under
the terms of the Creative Commons Attribution License).
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approach to prevent antibiotic resistance, and have shown to be
highly advantageous.55,56 Thus, some nanomaterials have
features that make them effective against viruses, bacteria, and
fungi, and they also have a high capability for combating
illnesses caused by pathogens.57,58

Nanomaterials as antimicrobial supplements to antibiotics
are very promising and receiving widespread attention because
they can ll voids where medicines typically fail, such as
battling mutants resistant to many drugs and biolm.59,60

Nanomaterials, such as organic nanoparticles and metal oxide,
now used in antimicrobial therapy, exhibit various inherent and
© 2024 The Author(s). Published by the Royal Society of Chemistry
changed chemical composition characteristics. Every one of the
nanoparticles, independent of the chemical makeup, can
combat bacteria through multiple methods. Such a multilayer
mode of action makes it far more difficult for bacteria to
become resistant to the treatment. Moreover, the ability of
nanomaterials to transport antibiotics to bacteria while also
performing the function of a drug carrier leads to an increase in
medication efficacy and a reduction in the amount of drug the
body is exposed to. Drug resistance in biolms is caused by
numerous factors, including a reduction in drug incorporation
through the extracellular matrix (ECM), a decrease in bacterial
RSC Adv., 2024, 14, 13862–13899 | 13867
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Table 1 Nanomaterials for the elimination of antibiotic resistance

Antibiotics

Mechanism of action

Possible approaches of
nanomaterials to avoid
resistance Ref.Class

Resistance mechanisms of
choice

Peptide antibiotics Modications to the outer
membrane

Disruption of either the cell
wall or the membrane

Physical damage to the cell
membrane, which restricts the
emergence of resistance;
exible design freedom and
distinctive physio-chemical
features, which may be
exploited to optimize
disruptive actions

65–70

b-Lactams Porin alterations, drug-
modifying enzymes, and
binding site modications

Glycopeptides Modications to the
binding site

Quinolones Modications to the
binding site and porins

Intracellular component
damage

Penetration by membrane
fusion overcomes resistance
from restricted antimicrobial
access, the capacity to inhibit
efflux pumps and the
availability of numerous active
groups that target broad rather
than specialized routes

60, 66, 68, 71
and 72

Aminoglycosides Drug-modifying enzymes
Macrolides Binding site changes, efflux

pumps
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metabolic rates, a drop in drug concentration, and the transfer
of resistant genes.61 Moreover, misuse and overuse of antibi-
otics are responsible for eighty percent of the multi-drug
resistant or extensively drug-resistant microorganisms, and
infections caused by these germs are linked with signicant ill
effects. Due to the proliferation of multidrug-resistant bacteria
and other drug-resistant diseases, there are currently insuffi-
cient alternatives for treatment and prevention.62 Therefore,
nanomaterials have the potential to meet the demand for
alternate treatment alternatives for treating microbial infec-
tions, which has arisen because this need exists.

Nanotechnology is widely known as a potential therapeutic
approach because of its high effectiveness and treatment
response against germs. It provides a viable option for treating
most bacterial illnesses, particularly those involvingmulti-drug-
resistant microorganisms.63 Furthermore, nanomaterials that
can kill microorganisms in response to various internal and
external stimuli while providing improved drug delivery and
release are intriguing techniques.64 Nonetheless, nanomaterials
may be utilized independently or with antibiotics, resulting in
strong synergistic results. Table 1 demonstrates how nano-
materials may work to prevent antibiotic resistance. Further-
more, the effectiveness of nanoparticles against bacteria
resistant to many drugs, their modes of action and physical
characteristics, and the benets and drawbacks of using anti-
microbial nanomaterials are outlined in Tables 2 and 3,
respectively.

2. Synthesis of nanomaterials

There is a wide variety of nanoparticles that can be found widely
in nature or that can be manufactured articially. Even though
natural nanoparticles are present in living organisms, it is
assumed that they have been present in the biosphere since the
Earth was rst formed.84 As seen in Fig. 4, nanoparticles are
13868 | RSC Adv., 2024, 14, 13862–13899
separated into various categories according to their size and
dimensions, phase composition, and the kind of material they
are made of.

Furthermore, top-down and bottom-up methods are the two
primary strategies that can be utilized when fabricating nano-
materials. The top-down technique includes slicing massive
amounts of material into smaller, self-assembled nanoscale
units.85 On the other hand, the top-down method is turned on,
resulting in the term “molecular nanotechnology,” which refers
to assembling a specic structure by linking atoms, molecules,
clusters, or clusters inside clusters, respectively, or by self-
organization. Fig. 5 illustrates the synthesis of nanomaterials.
2.1. Top-down approach

The top-down approach is a complex synthesis technique used
for nanoparticles. The transformation of materials in bulk into
those on a nanometric scale underpins this approach.86 This
method may break large quantities of material into much
smaller nanoparticles. The manufacture of irregularly shaped
and extraordinarily tiny particles is not a good t for top-down
procedures despite these methods being easy to employ.87

Nonetheless, the most signicant drawback of using this
strategy is its difficulty in producing particles of the appropriate
size and form.

2.1.1. Mechanical milling. Ball milling is the top-down
approach's mechanical technique that is simplest and most
efficient. When contrasted with alternative mechanical top-
down techniques, the ball milling process is typically advanta-
geous for synthesizing various nanoparticles. Fracture of parti-
cles, plastic deformation, and cold-welding are three signicant
aspects that impact the manufacturing process and assist in
preserving the quality of nanomaterials.88

In addition, the ingredients are mixed in a sealed container
throughout this procedure. Then, small stainless steel,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Nanomaterial efficacy against multidrug-resistant bacteria, as well as modes of action and physical properties

Nanomaterials Size nm
Factors affecting antimicrobial
activity/toxicity Antibacterial mechanisms

Targeted bacteria and
antibiotic resistance References

Aluminum (Al) 10–100 Size, shape, and stability of the
particles

Reactive oxidative stress leads to
the breakdown of cell membranes

E. coli 73 and 74

Copper (Cu) 2–350 Concentration and size of the
particles

DNA breakdown, loss of cell
membrane potential, formation of
reactive oxygen species (ROS),
oxidation of proteins, and lipid
peroxidation

A. baumannii, E. coli: multi-
drug resistant (MDR)

74, 75, 76 and
77

Gold (Au) 1–100 Roughness and size of the
particles

Rupture of the bacterial
membrane, reduction in ATPase
activity, reduction in the potential
across the membrane,
development of holes in the cell
wall, disruption of the respiratory
chain, and fall in tRNA binding to
the ribosomal subunit

Staphylococcus aureus:
Methicillin-resistant
(MRSA)

76, 78 and 79

Iron oxide 1–100 It possesses a high level of
chemical activity, has
a propensity to form
aggregates, and, when exposed
to air, undergoes oxidation,
which causes a reduction in
magnetism and dispersibility

ROS-generated oxidative stress:
singlet oxygen, hydrogen
peroxide, hydroxyl radicals, &
superoxide radicals

E. coli: MDR, K.
pneumoniae, MRSA

76

Magnesium
oxide (MgO)

15–100 Size, pH, and concentration of
the particles

Alkaline effect, electrostatic
interaction, ROS production, and
lipid peroxidation

E. coli, S. aureus 73

Silver (Ag) 1–100 Size and shape of the particles Disintegration of bacterial
membranes, production of
reactive oxygen species (ROS),
suppression of cytochromes
involved throughout the electron
transport system, intercalation
between DNA bases, suppression
of cell wall formation, rise in the
permeability of the membrane,
adherence to cell surface resulting
in damage to lipids and proteins,
lysis because of the depletion of
the proton gradient, ribosomal
degradation

Escherichia coli: MDR,
MRSA, Klebsiella
pneumoniae, vancomycin-
resistant Enterococcus
(VRE), Pseudomonas
aeruginosa, A. baumannii:
carbapenem and
polymyxin B-resistant,
Staphylococcus epidermidis,
P. aeruginosa: carbapenem-
resistant, extended-
spectrum beta-lactamase
(ESBL)-producing
organisms, carbapenem-
resistant Enterobacteriaceae
(CRE)

77, 79 and 80

Silica (Si) 20–400 Size, shape, and stability of the
particles

Reactive oxidative stress leads to
the breakdown of cell membranes

MRSA 78

Titanium
dioxide (TiO2)

30–45 Structure, shape, and size of
crystal

Cell surface adsorption and the
production of ROS

S. aureus, E. coli,
Enterococcus faecium, P.
aeruginosa

73

Zinc oxide (ZnO) 10–100 Concentration and size of the
particles

Production of reactive oxygen
species, rupture of membranes,
adsorption to cell surfaces, and
damage to lipids and proteins

E. coli, ESBL-producing E.
coli, MRSA, Klebsiella
oxytoca, Enterobacter
aerogenes K. pneumoniae

74, 81 and 82
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ceramics, and glass rocks create shear force during grinding.
Aer that, bulk items are placed in an air-tight container.
Finally, the grinding process converts bulk materials to ne
nanoparticles.89,90

2.1.2. Laser ablation. The process of laser ablation, which
uses a pulsed laser to remove molecules off the surface of
a substrate to formmicro and nanostructures, has a wide variety
of applications in various materials.91 Laser ablation (LA) is
© 2024 The Author(s). Published by the Royal Society of Chemistry
a top-down technique that removes solid material from
a substrate by putting the laser beam over the substrate. A
popular LA method includes concentrating one laser beam
beyond the metal object immersed in liquid. Then, the proce-
dure generates vapor and molten metal or plasma droplets,
which combine with a liquid medium to produce certain
chemicals and grow as nanoparticles.92
RSC Adv., 2024, 14, 13862–13899 | 13869
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Table 3 Antimicrobial nanomaterials' advantages and disadvantages.83

Advantages Disadvantages

Reduced likelihood of developing resistance to bacteria A high level of exposure throughout the body to medications that have
been locally delivered, along with the appropriate dosages to achieve the
desired therapeutic effect

Longer lifespan of therapeutic effects as a result of delayed elimination Nanotoxicity affects the brain, kidneys, lungs, liver, metabolic pathways,
germ cells, and other tissues and organs

A wide range of therapeutic effectiveness Inability to characterize nanomaterials using methods that are not
inuenced by their physical characteristicsMinimal immunosuppression

Chemical antimicrobials with fewer adverse effects A high level of exposure throughout the body to medications that have
been locally delivered, along with the appropriate dosages to achieve the
desired therapeutic effect

May pass through tissue walls such as the blood–brain barrier

Enhanced ease of dissolution Accumulation of nanomaterials administered intravenously in the
body's cells and organsDelivery of drugs to specied areas using accumulation

Release of the drug under control

Fig. 4 Representative schematic flowchart of the nanomaterial's classification (Reprinted from84 with permission from Elsevier).

13870 | RSC Adv., 2024, 14, 13862–13899 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Schematic drawing related to the synthesis of nanomaterials (NPs) via top-down and bottom-up approaches (Reprinted from84 with
permission from Elsevier).
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Furthermore, adjusting the laser settings and liquid medium
may modify the nanoparticles' shape, composition, and other
features. Nonetheless, as a liquid, substances such as chloro-
form, acetone, water, isopropyl alcohol, and ethanol, amongst
others, may be used, whereas metal is most oen utilized as the
solid target.93

2.1.3. Sputtering. The production of nanomaterials may be
accomplished by a technique known as sputtering, which
involves hitting a solid plate with elements having higher
energy, like gas or plasma. Sputtering is oen regarded as an
efficient production process for creating thin nanomaterial
lm.94 The length of the annealing period, temperature, mate-
rials used for nanoparticle fabrication, and other factors all
have a role in determining the deposited layer thickness. In
addition, nanoparticles' sizes and shapes are also determined
by these characteristics, in addition to their shapes. Moreover,
sputtering is a method in which nanomaterials are accumulated
on the surface of a substrate by the ejection of particles due to
the assault of high-energy ions.

For plasma-based sources to function, an electric potential
must be applied between the electrodes when the environment
is in the gas phase and has low pressure. Plasma is the name
given to the ionized gas that results when accelerated electrons
© 2024 The Author(s). Published by the Royal Society of Chemistry
hit gas atoms; sputtering may be done using plasma ions, the
most straightforward source of sputtering material.95

2.1.4. Thermal evaporation. The thermal evaporation tech-
nique is considered endothermic, and the primary reaction during
this process occurs when exposed to a hot temperature.96 The
specic decomposition temperature is the temperature's value
when reactant metal complexes break down. Furthermore, the
decomposition process also involves several factors, including
reaction time and pressure. The reactant being broken down
creates nanoparticles that are stable and of a tiny size. Thermal
evaporation is among the most oen used ways to manufacture
stable nanoparticles with the capacity for self-assembly. However,
evaporation at high temperatures creates thin lms on many
substrates. This method is one of the several approaches used in
manufacturing inorganic nanoparticles.97 In thermal evaporation,
the heating of the target material is accomplished by an electrical
current. In contrast, in electron-beam evaporation, the source
material is heated by being bombarded by an electron beam.

2.2. Bottom-up approach

The production of nanocrystals from particles in the atomic
range is the premise behind this procedure, which is another
reason why it is regarded as a valuable technique. The top-down
RSC Adv., 2024, 14, 13862–13899 | 13871
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Fig. 6 Stages involved in producing gold nanoparticles by chemical reduction (Reprinted from ref. 103 with permission from Elsevier).
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method's antithesis, the bottom-up approach, is the exact
opposite of it. Through the top-down approach, the prolifera-
tion and self-assembly of molecules and atomsmay result in the
formation of nanomaterials with a chemical composition,
structure, and size that can be precisely specied.87

2.2.1. Chemical vapor deposition (CVD). When heated,
bombarded by photons, or exposed to a plasma, chemical vapor
deposition (CVD) occurs. This may include the dispersion of any
gaseous chemical or the chemical interactions between gaseous
reactants.98,99 The conventional plasma-assisted chemical vapor
deposition technique. The following concisely summarizes the
primary stages involved in an average CVD process.

1. Transfer of gaseous species that have been involved in
a reaction to the substrate surface,

2. Species adsorption onto that surface,
3. The substrate's surface catalyzes a heterogeneous reaction

on the surface,
4. The movement of the species from the surface to the

growing locations,
5. Film nucleation and growth upon that substrate,
6. Desorption and transfer of gaseous reaction products.
2.2.2. Physical vapor deposition (PVD). In this technique,

the target functions as a cathode and is equipped with an evap-
oration source that vaporizes the material from a source that may
be either liquid or solid. The particles of atomic size are evapo-
rated during the heating process with an electron beam, and the
collision of the newly freed particles with the gas molecules that
have been injected into the chamber causes the particles to
accelerate. This results in the generation of plasma, which travels
via a deposition compartment and then a vacuum pump before
reaching the surface, where it condenses and causes the devel-
opment of a thin coating. In addition, these lms might have
a thickness that ranges from a few nanometers to thousands of
nanometers, depending on the circumstances.100,101

2.2.3. Chemical reduction. The chemical reduction process
is the most exible method for manufacturing nanomaterials
since it is so easy to use and only requires a relatively simple
13872 | RSC Adv., 2024, 14, 13862–13899
apparatus. Steps involved in producing gold nanoparticles
using chemical reduction process are illustrated in Fig. 6. The
Brust governs most chemical reduction techniques–Schiffrin
two-phase process, in which chemical reduction occurs at the
oil–water interface. The thiolated atoms are adsorbable in the
organic phase and then stabilize in the subsequent step, which
follows directly on the heels of the rst step.102

2.2.4. Hydrothermal approach. Hydrothermal technique is
one of the most popular nanoparticle production.104 Crystalli-
zation is a process that may occur directly from solutions during
the process of material synthesis via the use of hydrothermal or
solvothermal processes. This process will typically entail two
parts: nucleation or crystal formation and consequent devel-
opment. The phenomena that lie behind regulating size and
morphology via modifying the processing parameters are the
cumulative nucleation and growth rates depending on the level
of supersaturation.105 Nonetheless, since water is utilized as
a solvent in the hydrothermal process, this procedure is referred
to as the hydrothermal process. The procedure is carried out
within an autoclave, a kind of pressure vessel made of steel, and
here, the processing conditions may be controlled by changing
the temperature and/or the pressure. Furthermore, the
temperature is raised above the point at which the water would
boil, achieving the desired level of vapor saturation.

2.2.5. Sol–gel approach. The sol–gel method is widely
regarded as a unique synthetic method for fabricating high-
quality nanomaterials like metal oxide nanomaterials and
composites of mixed oxide.106 In addition, over the last several
decades, the automotive industry has made signicant invest-
ments in the research and development of nanocomposites that
are disseminated inside polymer matrices to create lightweight
components.

The morphology and physical features of the materials may
be precisely controlled using this process, and the sol–gel
method can, in general, be broken down into ve primary
stages, which have been briey explained later in this section.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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3 Hydrolysis: Oxygen (O2) is required to form a metal oxide
that may be provided when creating metal oxide nanomaterials
utilizing either aqueous or organic solvents. The technique is
called the aqueous sol–gel approach, while water is the reaction
media. On the other hand, when an organic solvent is utilized in
the process as the reactionmedium, themethod is referred to as
the nonaqueous sol–gel. However, using either a base or an acid
is helpful to hydrolyse the precursors. The following is
a detailed description of the typical chemical reaction during
hydrolysis.

M − OR + H2O / MOH + ROH (hydrolysis)

Here, M and R have expressed metal and alkyl groups, respec-
tively. In addition, the alkyl group is denoted by CnH2n+1

3 Polycondensation: In this stage, neighboring molecules
condense whilst the material is still liquid. This results in the
elimination of alcohol and water, the development of metal
oxide interconnections, and the growth of polymer lms to
microscopic dimensions. The basic chemical reaction which
takes place during the condensation process is specied below,

M − OH + XO − M / M − O − M + XOH (condensation)

Here, metal and alkyl groups have been expressed by M and X,
respectively. In addition, the alkyl group is denoted by CnH2n+1

3 Aging: The aging process causes ongoing shis and
modications to the structure and characteristics of the gel.
Porosity goes down, and the space between colloidal particles
goes up as a result.

3 Drying: Drying is more difficult since organic constituents
and water are separated to yield gel, affecting the substance's
structure. Many drying methods include freeze-drying,
atmospheric/thermal drying, and supercritical drying. Each
method inuences the development of the gel network in
a distinct way from the others.

3 Thermal decomposition: In the nal step, a thermal treat-
ment known as calcination is carried out to remove residues as
well as molecules of water from the intended sample. The
temperature at which the calcination is carried out is a signi-
cant factor in inuencing the size of pores and material density.
Consequently, calcination is carried out to yield nanoparticles.

2.2.6. Green synthesis. A growing amount of research is
being conducted on synthesizing nanoscale metals using phys-
ical, chemical, physical, and green synthesis approaches.107–110

Nevertheless, due to problems with hazardous chemical release,
high energy consumption, usage of complicated equipment, and
synthesis conditions, physical and chemical procedures are
progressively substituted by green synthesis approaches.111 The
followingmay be a concise summary of themethodologies112 and
processes for the green or environmentally friendly synthesis of
various nanomaterials.

To get the desired nanoparticle, rst acquire plant extract,
combine the extract with a metal salt solution under a pre-
determined set of circumstances, decrease the size of the metal
particles, and nally carry out ltering and any other necessary
operations.
© 2024 The Author(s). Published by the Royal Society of Chemistry
3. Physicochemical features of the
nanomaterials

Antibiotics made of chemicals can be quite hazardous to their
users as the composition of bulk materials primarily inuences
their toxicity. However, the physicochemical properties of
nanomaterials, namely size, shape, surface area, composition,
etc., signicantly impact their toxicity.113 In addition, using
phytochemicals in synthesizing biocompatible NPs in various
concentrations makes the NP non-toxic, making it ideal for
antibiotic application. Some important physicochemical prop-
erties of the nanomaterials are specied in the following
subsections.
3.1. Size

Surface area and particle size are important factors in how
materials interact with biological systems. Surface area
increases exponentially in relation to volume with the decrease
of the material size, increasing the surface reactivity of the
nanomaterial both on its own and in its surrounding environ-
ment. Notably, how the system reacts, distributes, and gets rid
of the materials depends on the size of the particle and surface
area.114 The size of the material has been found to affect
a number of biological methods, including cellular uptake,
endocytosis, and the endocytic pathway's particle processing
effectiveness.115,116 The capacity of nanoparticles to penetrate
biological systems and alter the structure of different macro-
molecules, so interfering with vital biological activities, is oen
responsible for their size-dependent toxicity.117,118

The size of nanoparticles also affects how they behave
pharmacologically. NPs smaller than 50 nm, when adminis-
tered intravenously, transverse almost all tissues quickly and
can cause potentially toxic manifestations in different tissues;
however, NPs larger than 50 nm, especially positively charged
particles between 100 and 200 nm, are easily absorbed by RES
and do not travel to other tissues. While RES protects other
tissues through clearance, RES organs, including the spleen and
liver, are the primary oxidative stress targets.119

Numerous toxicological investigations have indicated that, in
comparison to bigger particles of the same substance, smaller
nanoparticles with diameters less than 100 nm have detrimental
effects on respiratory health.120,121 The human respiratory system
displays varying fractional depositions of inhaled particles based
on size. It has been noted that all locations are deposited with
ultrane particles with diameters less than 100 nm. In contrast,
the tracheobronchial region is deposited with particles less than
10 nm, and the alveolar region is deposited with particles
between 10 and 20 nm.122 Consequently, it has been discovered
that the translocation or distribution of NPs is size-dependent,
which determines their toxicological concerns.

Furthermore, the level of oral toxicity typically increases as the
size of a nanoparticle decreases, which in turn effects its toxicity
when swallowed. One study found that the toxicity of copper
nanoparticles in the mouth rose as their size decreased. More
signicantly, bigger particles remained benign even at increasing
dosages, whereas smaller particles were somewhat hazardous.123
RSC Adv., 2024, 14, 13862–13899 | 13873
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In general, biodegradable nanoparticles are probably less
dangerous than nonbiodegradable ones. Semete et al.124 exam-
ined the biodistribution and in vivo toxicity of 200–300 nm-sized
(poly (D, L-lactic-co-glycolic acid)) or PLGA nanoparticles.
Following a seven-day oral dosing in mice, around 40% of the
PLGA particles were detected in the liver, and the remaining
particles were found in the kidney and brain with no discernible
damage. Particle size can impact the breakdown of the polymer
matrix in addition to its size-dependent toxicity because of its
capacity to produce reactive oxygen species. It is not that fewer
NPs were entering the brain in this instance; rather, the surface
area to volume ratio increases signicantly as particle size
decreases, making it simpler for the polymer breakdown prod-
ucts to penetrate and be released.125

3.2. Shape

At the nanoscale level, a nanomaterial's shape or morphology is
just as signicant as its size. Nonetheless, the biological or toxi-
cological link connected to this characteristic alone is the subject
of very few studies. Nevertheless, metallic nanomaterials' shapes
signicantly impact a range of properties, such as electromag-
netic, optical, and catalytic properties.126–129 As a result, it is
thought that nanomaterial shape also signicantly impacts nano-
bio interfaces in addition to nanoparticle size. Apart from being
the primary factor in cellular absorption, a material's size is
crucial in determining its surface area at a givenmass dosage. The
form of the nanoparticles will generally contribute signicantly to
the total surface area. For example, a nanomaterial with an
octagonal form will have a different surface area than a sphere of
the same size. The greater catalytic activity of a nanomaterial with
a bigger surface area increases its reactivity because surface atoms
tend to retain unfullled high-energy bonds.130 Therefore, these
nanomaterials will have a higher chance of interacting with cell
biomolecules aer successfully entering the cellular environment
than their micron-sized counterparts, leading to direct cellular
damage and the promotion of oxidative stress131,132

Nanoscaled bers (like carbon nanotubes) are known to
provide a signicant risk of lung inammation, much like other
well-known inhalable bers (like asbestos).133 Additionally,
repeated exposure has been linked to a number of
malignancies.134–136 Determining whether a single nanotube or
a group of them has a specic hazardous impact is challenging.
According to certain research, carbon nanotubes are more
hazardous than silica dust or other ultra-ne carbon black. The
majority of workers who were exposed to single-walled carbon
nanotubes (SWCNTs) more than the permissible exposure limit
(PEL) at the time had lung injuries.137 Interestingly, studies have
demonstrated that carbon nanotubes (CNTs) kill specic kidney
cells by preventing cell development due to a loss in cell adhe-
siveness.138 In addition to killing sh brains and causing water ea
deaths, fullerene has been linked to serious lung damage in
humans.139–142

3.3. Composition and crystalline structure

Research showing similar toxicities for various nanoparticle
chemistries with identical dimensions cannot be ignored
13874 | RSC Adv., 2024, 14, 13862–13899
despite particle size being a major factor in determining
a nanoparticle's toxicity. These studies that a nanoparticle's
crystalline shape and content impact its toxicity concerns.
Griffitt et al.143 found that TiO2 of the same dimensions did not
cause any toxicity issues, while nano silver and nano-copper in
their soluble forms caused toxicity in all tested organisms. This
highlights the role of compositions in determining the toxicities
of NPs. The study used algal species, daphnids, and zebrash as
models of various trophic levels.143

Their crystal structure can also inuence the toxicity of
nanoparticles. In the absence of light, rutile TiO2 NPs have been
shown to cause lipid peroxidation, oxidative DNA damage, and
micronuclei formation, while anatase nanoparticles with the
same size and chemical makeup did not.121 Furthermore, upon
interacting with water or another dispersion media, NPs can
alter their structural structure. According to a report, ZnS
nanoparticles reorganize their crystal structure in water,
approaching the structure of a bulk ZnS piece.144
3.4. Surface area

The surface area is a crucial factor in demonstrating toxic
manifestations (epithelial-induced inammatory responses in
the lungs and other organs) in rodents, according to a number
of studies employing nanoparticles of various classes.145 An
increase in the surface area of nanoparticles results in a dose-
dependent enhancement of their oxidation and DNA-
damaging capabilities, which are signicantly greater than
those of larger particles containing the same mass dose.120,146

Investigations on the detrimental effects of a large surface area-
induced change in the band gap, decrease in melting point, and
increase in reactivity revealed that these characteristics led to
pulmonary inammation, cytotoxicity, and in vivo toxicity.147–149

When utilized as drug carriers, additives, or cosmetics, a greater
surface area may lead to increased reactivity with neighboring
particulates, which may have adverse effects.115 The conclusion
that can be drawn is that a signicant increase in biological activity
results from a reduction in particle size. As a consequence of
reduced volume, a greater quantity of particles can be accommo-
dated per unit area, leading to heightened pathophysiological
toxicity mechanisms such as oxidative stress, reactive oxygen
species (ROS) production, mitochondrial disruption, and others.150

The characteristics of nanoparticles that induce such pronounced
biological toxicity remain to be ascertained. It is hypothesized that
the total number of nanoparticles per unit volume may be signif-
icant rather than the size of the particles alone, which could
account for toxicity. To comprehensively understand the correla-
tion between the surface area of a nanoparticle and its biological
toxicity, a cohort of scientists examined acute lung inammation
in the presence and absence of specic reactivity of various
nanoparticle surface areas.151 No statistically signicant variations
in toxicity were observed according to size. However, pulmonary
inammation was signicantly inuenced by the total surface
area. It has been unequivocally established that ultrane and ne
materials with substantial surface areas can induce pulmonary
toxicity, as determined by testing the effects of treatment with
titanium dioxide, carbon black, and various other particles.152,153
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Toxicity analysis of traditional antibiotics and nanomaterials.167,168

Aspect Traditional antibiotics Nanomaterials

Nature of toxicity Specic drug-related reactions (e.g.,
phototoxicity, ototoxicity, nephrotoxicity, etc.)

Diverse effects are inuenced by size, shape,
composition, etc., and are oen related to
oxidative stress, DNA damage, and cell death

Mechanisms of toxicity Primarily target bacterial structures or
functions, affecting specic microbial processes

Act on diverse cellular targets, including
mammalian cells. Nanoparticles can induce
oxidative stress and damage various cellular
components, leading to cytotoxicity

Long-term effects Long-term effects may include antibiotic
resistance and potential side effects in
individuals

Long-term exposure, especially through
incorporation into products like dental
materials, raises concerns about systemic effects
due to nanoparticle release
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Cytotoxicity may also be signicantly inuenced by particle surface
reactivity, dened as the ease with which individual particles
aggregate. Additionally, dosing should be determined by the
surface area of the nanoparticles.154–156
3.5. Surface charge

In addition to the dimensions and morphology of the nano-
particles, their antibacterial efficacy and cytocompatibility are
signicantly inuenced by their surface charge.157 Positive charge
nanoparticles are encouraged to adhere to bacterial internal
components, including DNA, which possess negative charge in
addition to their negatively charged surfaces. The binding effi-
ciency of positively charged nanoparticles to bacterial cell surfaces
Fig. 7 Comparison between some nanobiotics and traditional antibiotic

© 2024 The Author(s). Published by the Royal Society of Chemistry
is enhanced compared to negatively charged nanoparticles, owing
to an electrostatic phenomenon.158 How nanoparticle surfaces
form in situ complexes with bacterial cell surfaces remains
a matter of debate, which impedes the development of
a comprehensive comprehension of the relationship between
binding and charge efficacy.159 The process of ion exchange
facilitated by cationic nanoparticle deposition at sites of infection
may enable access to bacterial cells.160 Several studies have
demonstrated that cationic liposomes encapsulate antibiotics
more effectively, facilitating the internalization of the drugs to the
biolm at reduced concentrations.161 On the other hand, some
studies found that charge-negative nanoparticles could remark-
ably bind to bacteria, indicating that electrostatic repulsion is not
s.169
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the dominant force at work when it comes to nanoparticles' high
surface energy.162 Mixed-charged nanoparticles, which disrupt
bacterial cell walls via electrostatic and noncovalent attachment,
have recently garnered considerable attention.163
3.6. Concentration

Concentration is a crucial last factor to consider while assessing
nanomaterials' toxicity. According to research by Santos et al.,164

thermally carbonized and hydrocarbonized porous silicon parti-
cles were harmful to cells at concentrations of [mt]2 mgmL−1; for
porous silicon particulates that are thermally oxidized, the non-
toxic threshold value was 4 mg mL−1. Research on the toxicity
of several nanoparticle types (TiO2, MoO3, Al, and Fe3O4) in vitro
was done by Hussain et al.165 in BRL 3A rat liver cells. They c that
mitochondrial activity will drastically deteriorate when subjected
to Ag nanoparticles at concentrations of 5–50 mg mL−1. When Ag
nanoparticle concentrations reached 100–250 mg mL−1, cell LDH
leakage increased. Similar ndings were made by Usenko et al.,166

who used embryonic zebrash to test the toxicity of carbon
fullerene and found that exposure to 200 mg mL−1 C60 and C70
signicantly increased the number of abnormalities.

Thus, it is evident that nanomaterials' toxicity depends on
their physicochemical properties. The comparison of the
Fig. 8 Nanomaterial action mechanisms in bacterial cells (Reprinted with
terms of the Creative Commons Attribution License).

13876 | RSC Adv., 2024, 14, 13862–13899
toxicity between traditional antibiotics and nanomaterials is
specied in Table 4.

Mohamed et al.169 conducted an experiment on rats to deter-
mine the level of toxicity between nanobiotics and conventional
antibiotics. Aer 24 hours exposure to various concentrations of
linezolid, doxycycline, and clindamycin nanobiotics, the
percentage of viable rat hepatocytes relative to the control group
in comparison to their conventional antibiotic counterparts is
depicted in Fig. 7. The values presented are the means (± stan-
dard deviation) of three separate experiments.

The results of the cell viability experiment, as shown in Fig.
7, conrmed that hepatocytes treated with nanobiotic formu-
lations had greater percentages of live cells than those treated
with traditional antibiotics, indicating that nanobiotics are
more cytocompatible and less toxic.
4. Interaction of nanomaterials with
microorganisms and antibacterial
potential

Several mechanisms determine interactions between nano-
materials and bacteria, including electrostatic attraction,
hydrophobic contact, the interaction between receptors and
permission from ref. 174, An open access article distributed under the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Schematic diagram showing cell wall structures of Gram-positive and Gram-negative bacteria.13

Table 5 Techniques of interacting nanoparticles with microorganisms

Nanomaterial Methods of interacting nanomaterials with microorganisms References

Au Strong attraction due to electrostatic force, interactions with the membranes of the
cells

183

Ag Ionization with Ag+ being released, damage of DNA, interference with the cell
membrane and the electron transport system

184

CNTs Oxidation of the proteins and lipids that are found in cell membranes, ROS causes
cell membrane deterioration

185

Chitosan Inhibition of enzyme activity, chelation of several metals, including trace elements,
rupture of the membrane, and an increase in its permeability

186

NO-releasing nanoparticles The release of NO and reactive oxygen species (ROS) generation 187
ZnO The formation of H2O2, the aggregation of nanoparticles inside of cells, disruption

to the cell membrane, ionization with Zn2+ being released
188

Fullerenes Boosting the activity of invading neutrophils, loss of structural integrity of the cell
membrane

139

TiO2 Deterioration of the cell membrane and walls, reactive oxygen species (ROS)
generation

189

Nanoemulsion Disruption of the membrane as well as spore coat 190
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ligands, and van der Waals forces. Studying fundamental inter-
actions between nanoparticles and bacteria gives vital knowledge
for formulating innovative antimicrobial drugs. Nanoparticles
have six primary antibacterial actions, which are as follows:170–172

(i) Direct contact with the cell wall and membrane of the
bacterial organism,

(ii) Cell membrane penetration,
(iii) Production of reactive oxygen species (ROS),
(iv) Protein synthesis inhibition and damage of DNA,
(v) Damage to the pathway of metabolism and
(vi) Inhibition of biolm formation.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Fig. 8 demonstrates the mechanism of nanomaterial anti-
bacterial action mentioned above. In addition, nanomaterials
can potentially be of tremendous value in the ght against MDR
bacteria as they do not exhibit the same modes of action as
conventional antibiotics.173

As can be seen in Fig. 8, bacteria have developed several
defense mechanisms that allow them to avoid being killed by
antibiotics. This is how bacteria have survived the widespread use
of antibiotics. Biolm formation independently confers antibiotic
resistance, which is a distinct phenomenon from the genetic
acquisition of resistance.175 Bacteria can self-colonize, which
RSC Adv., 2024, 14, 13862–13899 | 13877
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Table 6 Resistance against microbial pathogens using nanomaterials

Nanomaterials Target microorganisms Size Mechanism of activity References

Ag S. typhimurium 35 � 15 nm (spheroide) The combination of Ag nanoparticles and the
antibiotic caused damage to the membrane

191
B. subtilis
E. coli
S. aureus
S. haemolyticus 8–21 nm (spherical) ROS production and augmentation 192
S. epidermis
P. aeruginosa 10 nm Nanoparticles of silver may inltrate cells, blocking

enzyme systems in the respiratory chain and
affecting DNA synthesis

193

E. coli 26 nm (spheres) Antibiotic mode of action and ROS production 194
A. actinomycetemcomit-
ans
S. aureus MRSA
P. aeruginosa

Mesoporous silica A. baumannii 50–100 nm (spherical) Mechanisms of antibiotic action 195
Au S. aureus MRSA 8 � 2 nm ROS production resulting from the impact of the

antibiotic
196

S. aureus 33 � 14 nm The interaction between bacteria and antibiotics
results in an increase in the concentration of the
antibiotic due to the combination of antibiotics and
NPs. Moreover, the multivalent appearance of
amoxicillin prevents the microbial efflux pump
from functioning

197
E. coli
S. epidermis

S. aureus 25 nm The capacity of Au nanoparticles to interact with
bacterial cell walls and rupture them and their
potential to impair bacterial metabolism by
interfering with bacterial DNA makes Au
nanoparticles a potent bactericidal agent

182
P. aeruginosa

E. coli 5 nm — 198
A. baumannii 200 nm Themechanism of action of antibiotics is enhanced

due to the NPs
199

Klebsiella pneumaniae 35 nm
P aeruginosa 30 � 20 nm (irregular) Biolm harm 200

TiO2 P. aeruginosa 64 � 0.14 nm (irregular
Spheres)

When combined with the nanostructure, the
antibacterial agent boosts the synergistic action of
the antibiotic, which may impede cell growth

201

MDR S. Aureus 20 nm ROS destroys cell components 202
S. aureus
E. coli
B. subtilis
S. typhimurium
K. pneumoniae

Compounds of
ferrocene and
carborane containing
nano-sized TiO2

MDR A. baumannii 20–95 203

Magnetic nanoparticles
with Fe3O4 at their TiO2

core or shell

S. aureus MRSA 20–100 (NO as donor
particle)

204
Multiantibiotic-
resistant S. pyogenes

Iron oxide Staphylococcus aureus 9 � 4 nm ROS produces oxidative stress, which is harmful to
proteins and DNA and causes damage to both

205

Zinc oxide K. pneumoniae and E.
coli with a broad range
of b-lactase production

12–60 Within the bacterial cell, the production of
oxidative stress

206

S. epidermidis MRSE
S. aureus MRSA Internalization of nanoparticles inside cells leads to

damage and disorganization of the cell membrane,
increasing the membrane's permeability

206
Streptococcus agalactiae
MRSA
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results in the formation of biolms. Infections caused by biolms
are difficult to cure because the extracellular matrix formed by the
bacteria forms amicroenvironment inside the host. This makes it
13878 | RSC Adv., 2024, 14, 13862–13899
possible for bacteria to elude the immune system's defenses and
dramatically increases their resistance to conventional antibiotic
treatments.176 The creation of biolm therapies relies heavily on
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 6 (Contd. )

Nanomaterials Target microorganisms Size Mechanism of activity References

Nitric oxide S. aureus MRSA 20–100 (NO as donor
particle)

When reactive nitrogen oxide species, also known
as RNOS, attach to heme proteins, they do so in an
irreversible manner, ultimately resulting in heme
loss from the protein

207 and 208
Acinetobacter baumannii

E. coli Liposomes' lipids were peroxidized by the RNOS
that was generated

209
P. aeruginosa
E. faecalis
K. pneumoniae
S. pyogenes

Copper–cotton
nanocomposites

A.baumannii 5 nm Copper nanoparticles have a biocidal effect
because, when they come into contact with water,
Cu nanoparticles disperse their bound Cu(II) ions
into the surrounding environment, creating an
environment that is hostile to microorganisms.
These copper ions form covalent bonds with the SH
and COOH groups found on the protein molecules
that make up the cell wall of bacteria

210

Chitosan/silver
nanocomposite

S. aureus MRSA 43–55 nm Chitosan interacts with ionic groups on the surface
of cells to improve permeability or chelates trace
elements needed for enzyme function. Silver
nanoparticles' antibacterial activity is connected to
their ions

211

Chitosan–nanosilver
composite

ZnTe/dendrimer
nanocomposites

E. coli MDR 3 nm Amine-ended ZnTe/dendrimer nanoparticles were
charged positively and preferred negatively charged
bacterial membranes. This gave them great
penetrating power, making them efficient in
binding to substrates on outer membranes and cell
membranes

212
V. cholerae MDR

TiO2/Ag nanocomposite A.
actinomycetemcomitans

20–50 nm TiO2/Ag nanocomposite can inhibit the growth of
bacteria because of the electrostatic repulsion
between E. coli, which has a negative charge, and
the nanocomposite, which has a high positive
charge, stimulates the contact between bacterial
cells and silver nanoparticles

213

S. mutans
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the nanomaterials' ability to penetrate biolms and deposit them
inside. Nanomaterials are uncharted territory for bacteria; they
can sidestep resistance mechanisms posed by conventional
antibiotics and target biolms produced by bacteria.

Antimicrobials can't penetrate the bacterial cell membrane
since they have been modied through time to behave as
a physical barrier. The bacterial cell wall composition is the
primary factor determining whether bacteria are categorized as
Gram-negative or Gram-positive. Teichoic acids are found in the
cell walls of Gram-positive bacteria, whereas lipopolysaccharide
is in the outer membranes of Gram-negative bacteria. Both
types of bacteria include phosphate groups, which cause the
surfaces of the bacteria to be negatively charged. This extremely
polar environment restricts hydrophobic antimicrobials'
membrane penetration and bacterial action. Gram-negative
bacteria are distinguished by the presence of an additional
layer that may be found between the plasma membrane and the
outermost layer. However, this layer is far thinner compared to
the outer layer of Gram-positive bacteria. As a result, it is more
vulnerable to penetration by antimicrobial nanomaterials,
which may eventually lead to the cell's demise177,178 (Fig. 9).
© 2024 The Author(s). Published by the Royal Society of Chemistry
The fundamental method via which nanoparticles might
harm bacterium is oxidative stress induced by reactive oxygen
species (ROS) since bacteria can keep a balance throughout the
formation of ROS under normal circumstances. Nonetheless,
this equilibrium is inuenced when it touches some nano-
particles. This results in excessive ROS, eventually changing the
state of oxide-reduction molecules, favoring the oxidation of
biological constituents. Once the nanoparticles have broken
through the cell wall, they tend to release ions and produce ROS
via a process known as adsorption, which is a kind of diffu-
sion.179 Moreover, DNA damage and impairment of protein
synthesis are other processes linked to metal nanoparticles in
most studies. These typically induce a breakdown in enzymes,
ribosomal component proteins, and other proteins generated in
bacterial cell membranes, as well as compaction, degradation,
and bacterial DNA fragmentation, reducing the physiological
function of genes.180 However, it has been revealed that when
nanostructures enter the bacterial cell, there are alterations in
the metabolism of the bacterium, which in turn causes cell
damage to the membrane, which in turn induces oxidative
stress, which ultimately leads to the killing of the bacterium.181

Finally, nanoparticles interacting with bacterial biolms
RSC Adv., 2024, 14, 13862–13899 | 13879
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connect with EPS, allowing any chemical molecule to reach the
bacterium and destroy the cell.38

In contrast to antibiotics, nanomaterials may have more
contact with cells owing to a larger volume-to-surface ratio,
making nanoparticles adaptable for use as strategic active ingre-
dients. Nanomaterials on their own oen contain complicated
processes that function concurrently to prevent the generation of
genetic alterations in bacteria and to restrict their development.182

In addition, nanoparticles as antibiotic adjuvants also work as
protectors, meaning they may boost serum concentrations of the
medications and protect against the enzyme system of the target.
On the contrary, antibiotics lose some of their effectiveness over
time, and the body of a human can only absorb half of the
medication before the other half is ushed out during urination,
reducing the antibiotic's effectiveness. Techniques for interacting
nanoparticles with microorganisms are outlined in Table 5.
Further, the investigations listed in Table 6, which various
researchers carried out, showed that using metal nanoparticles
functionalized with antibiotics resulted in a more potent
suppression of multi-resistant bacteria, demonstrating the anti-
bacterial potential of several nanomaterials.
5. Application of nanomaterials in
medical science

Nanotechnology is extensively employed in contemporary
biomedicine, particularly in the eld of drug delivery. A signif-
icant obstacle in attaining the intended bioavailability and
suitable levels of drug efficacy is the considerable difficulty
posed by the near-insolubility of an estimated 60% of all drug
entities in development.214 The advancement of nanotechnology
has facilitated not only the encapsulation of drugs to increase
their solubility but also their permeation through membranes,
which results in extended circulation durations and improved
overall efficiency. Targeted therapeutics have emerged with
expanding knowledge in this domain and implementing
a multidisciplinary strategy. These enable the desired drug to
selectively target a specic site of action within the body. As
a result, numerous toxic, immobile, and impermeable
substances have been permitted to progress to clinical trials as
prospective treatments.215

Nanomaterials are used in medical diagnoses like imaging
diagnosis, laboratory diagnosis, genetic disease diagnosis, and
tumor early diagnosis. They are also used in the synthesis of
medical instruments—for instance, nanoprobes, nanorobots,
handheld disease diagnosis instruments, and nanosensors. Most
importantly, nanomaterials are becoming very common in tissue
engineering to fabricate nanobones. Nanomaterials are also
utilized as nanoscale red blood cell substitutes. In the drug
industry, applications of nanomaterials in therapeutic drugs
include antibacterial nano-drugs, antiviral nano-drugs, antitumor
nano-drugs, analgesic and anti-inammatory nano-drugs,
encapsulating hormone drugs, nanometer polypeptide, and
protein drugs. Furthermore, nanomaterials are very efficient and
widely used in nanogene medicine, gene therapy of cancer, nano
vaccines, and as radiosensitizers in radiation therapy.216
13880 | RSC Adv., 2024, 14, 13862–13899
Nanomaterials are being extensively studied in medical
science for drug delivery due to the mutual penetration of
nanoscience and current technology.217 Drug delivery aims to
maximize bioavailability at certain sites in the body and over an
extended period. Molecular targeting using nanoengineered
carriers may be one way to do this.218 The following features of
medications transported by nanocarriers are different from
those of conventional pharmaceuticals.

⁃ Nanoscale carriers can encapsulate hydrophobic drugs due
to their substantial surface area. This results in enhanced drug
solubility and diminished reliance on co-solvents, customary in
conventional drug formulations, to mitigate adverse effects.219

⁃ Through the endothelial cell gap, nano-drug carriers can
traverse into the lesions, in addition to traversing the blood circu-
lation into the capillaries. Phosphocytosis enables the cellular
uptake of drugs transported by nanodrug carriers. Signicant
improvements will be observed in the bioavailability of the drugs.220

⁃ Tailored nanodrug carriers, including magnetic NPs and
drug-loading NPsmodied with folic acid, facilitate the efficient
delivery of drugs to the intended tissue. This reduces the
required dosage for drug administration and mitigates the
associated adverse effects.221

⁃When utilizing nanocarriers to deliver drugs, as opposed to
simply administering them, it is possible to attain targeted drug
therapy that is highly bioavailable while simultaneously miti-
gating drug adverse effects, which results in reduced treatment
costs and dosage.222–224

⁃ Nanomaterial drug carriers can reduce the frequency of
drug administration by enhancing the duration and efficacy of
drug concentration in the blood and extending the half-life of
drug elimination.225

⁃ Nanomaterial drugs have the capability to traverse various
cellular biological membrane barriers, including those between
the blood and eyes, brain, and blood vessels. This capability
enables the drugs to target the lesions effectively.226–228
6. Advantages of NMs based
antimicrobial over chemical antibiotics

Antibiotics are substances that, when administered correctly,
inhibit the development of pathogens, combat certain diseases,
and potentially preserve lives. These are the fundamental
pharmacological options for biolm and planktonic infec-
tions.229 On the other hand, Nano antibiotics (nAbts) refer to
antibiotic molecules in their puried form that have undergone
synthetic growth to achieve a minimum average diameter of
100 nm in a single dimension, or engineered nanoparticles
(NPs) that contain the antibiotic molecules.

Conventional or chemical antibiotics oen induce bacterial
mortality through various mechanisms, including inhibition of
protein synthesis, disruption of cell wall structural components,
and inhibition of proton transport across the cell membrane.230 In
response to stimuli, multifunctional antimicrobials encapsulated
in NPs interact with the bacterial cell wall surfaces and
membranes, thereby enhancing drug distribution to target sites
and passage through membranes. Moreover, nAbts possess
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 7 Difference between nanoantibiotics and chemical antibiotics

Chemical antibiotics Nanoantibiotics Ref.

Antibiotics possess distinct functional groups
that effectively impede the activity of
biomolecules and their production

DNA and enzyme synthesis are inhibited.
Generation of ROS that induces harm to cellular
constituents. In addition, prevents energy
transduction by interfering with the chain
reaction of transmembrane electron transport
and emitting heavy metal ions that induce
detrimental consequences

234

Permeability loss at the membrane's niche Transport across membranes is disrupted.
Adsorbing on the surface, metal nanoparticles
(e.g., ZnO, Ag) generate ROS that harm cellular
components (e.g., cell membrane/wall)

235 and 236

The potential for antibiotic resistance exists, as
bacteria can develop genes that confer
resistance

Provide bacterial organisms with resistance to
genetic molecules

234 and 235

Highmanufacturing costs and time are required Need low manufacturing costs and times 236

Table 8 A comparative analysis of antimicrobial nanomaterials and antibiotics.237

Intensity

Antibiotics Antimicrobial nanomaterials

Production Scale-up production High Low
Purication High Low
Standardization High Moderate

Biolm prevention Efficiency Low Moderate
Durability Low High
Permeability Low Low

Bacterial killing Target Specic Multiple
Killing efficiency High Moderate
AMR evolution High Moderate
AMR prevention Low Moderate
Biodistribution Intracell or intermembrane Extracell/intracell/intermembrane

In vivo application Controllability Low Moderate
Selectivity Moderate Low
Side effect Low Moderate
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a controlled, target-specic release mechanism that enables their
administration in a single dose in contrast to the majority of
conventional antibiotics, which necessitate the administration of
numerous dosages for systematic release.231 Likewise, when
comparing chemical or traditional antibiotics to nanoparticle-
based delivery systems, the dosage of antibiotics administered
through such systems offers several additional advantages. These
include reduced dosage and frequency requirements, sustained
drug release that enhances targeted drug delivery, and drug effi-
ciency to a particular site within the bacterial cell.231,232

Unlike molecular substances, nanoparticles (NPs) possess
a highly capacious contact area due to their distinctive surface
area and high surface-to-volume ratio. Antibiotics are delivered
to the intended sites of action, while the NPs activate an array of
antibacterial defenses concurrently when they are combined
with antibiotics. For the treatment of multi-drug resistant
(MDR) strains, NPs, therefore, offer a greater number of func-
tionalities than the effects of a single medication or a combi-
nation of multiple therapies.76,233 The benets and intensity of
© 2024 The Author(s). Published by the Royal Society of Chemistry
antimicrobial nanoparticles compared to chemical antibiotics
are discussed in Tables 7 and 8, respectively.

A side effect is dened as an unintended consequence of
antibacterial compounds that is neither suboptimal nor
complements their intended function. Controllability pertains
to the capacity of antibacterial agents to undergo engineering
processes that produce desired biological responses within the
body, including but not limited to protracted blood circulation
and targeted biodistributions.

Antibiotic discovery and development in the twentieth century
had a substantial impact on the battle against bacterial illnesses.
In contrast, bacterial antibiotic resistance represents a far more
signicant problem due to the constant evolution of bacterial
genomes. In order to address this challenge, numerous domains
are implementing nanotechnology, including targeted antibiotic
delivery and antibacterial vaccination facilitated by nano-
particles.238 According to several reports, zinc oxide, silver, and
gold nanoparticles work well as antimicrobial agents against
bacteria that are resistant to multiple drugs, including Escherichia
coli, MRSA, Pseudomonas, and Klebsiella. Nanoparticles present
RSC Adv., 2024, 14, 13862–13899 | 13881
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Table 9 Nanomaterial against the emergence of antibiotic resistance

Name of nanomaterials Applications Ref.

Polymeric nanoparticles Overcoming cancer cells' resistance to many drugs with combination treatment 245
Metal-based nanoparticles Enhancing the efficacy of antimicrobial agents against resistant pathogens 246
Gold nanoparticles Treating chemotherapy-associated multidrug resistance 247
Lipid-based nanoparticles Preventing bacterial resistance through targeted administration of antibiotics 248
Quantum dots Pharmaceutical personalizedmedicine through imaging andmonitoring of drug-resistant cancer cells 249
Mesoporous silica nanoparticles Controlled release of antibiotics to combat bacterial resistance 250
Nano emulsions Antimicrobial drugs delivered specically to combat resistant infections 251
Dendrimers Delivering gene-silencing drugs to ght medication resistance in viral illnesses 252
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several benets when employed as transport for antimicrobial
agents. These include enhanced bioavailability, decreased prob-
ability of drug toxicity, and the ability to accumulate sub-
therapeutic drugs. Furthermore, an additional promising
approach that may yield positive results is nanophotothermal
therapy, which makes use of fullerene and functionalized anti-
bodies as nanostructures.239 However, despite its ability to aid in
the battle against antibiotic-resistant bacteria, nanopreparations
may be hazardous to the environment. Even though they have
antibacterial action and other promising applications, it is
important to consider any possible harm to the environment. In
addition, the environmental and biological risks posed by nano-
particles vary. Their large surface area, compact size, and unique
physicochemical properties allow them to interact with both
biological matter and the surrounding environment. Ecological
processes, ecosystems, and species may suffer as a result of these
interactions. Therefore, in order to address the potential ecotox-
icity of nano preparations, comprehensive risk assessment
processes should be devised. This involves evaluating the poten-
tial risks to the environment and public health, in addition to the
exposure routes and hazards. It is essential to establish regulatory
frameworks that ensure the ethical and sustainable development,
use, and disposal of nanopreparations.240,241

Several methods using drug delivery systems based on
nanotechnologies, such as silica mesoporous nanoparticles,
polymeric nano-vehicles, and liposomes, have been shown to be
successful in combating bacterial strains that are resistant to
drugs.63,242–244 Considering all of the useful uses for nano-
particles, scientists are now investigating possible drug delivery
methods that might use nanoparticles to maximize the thera-
peutic usage of antibiotics while minimizing their negative
Table 10 Advantages and disadvantages of nanomaterials in therapeutic

Advantageous effects

Enhanced solubility and regulated medication release
Extended duration of therapeutic effects due to the gradual elimination
process
A wide variety of therapeutic efficacy
Less chance of bacterial resistance emerging
The capacity to cross biological barriers, such as the blood–brain barrier
Low level of sensitivity

Relatively little side effects as compared to chemical antimicrobials
Accumulation of medications for the purpose of delivering them to
specic sites

13882 | RSC Adv., 2024, 14, 13862–13899
effects. Table 9 shows instances of how applied nanomaterials
are being used to ght drug resistance.

The high therapeutic index and effectiveness of nanotech-
nology against microorganisms make it a potential therapeutic
approach.63 For the majority of bacterial infections, particularly
those involving pathogens resistant to several drugs, nano-
particles provide a promising substitute. Antibiotics and
nanoparticles work very well together when paired, either alone
or in combination. Promising approaches include nano-
materials that may support improved medication delivery and
release while also responding to a variety of endogenous and
external stimuli to kill microorganisms.64,253
7. Safety and efficacy of
nanomaterials

Antimicrobial nanomaterials have recently been the subject of
much-increased research with the goal of treating biolm infec-
tions and multidrug-resistant (MDR) planktonic bacteria. The
creation of appropriate in vivo and in vitromodels that accurately
reect the safety and efficacy of nanoparticles is necessary to
provide clinical feasibility for their use.254 Antimicrobial Ag NPs
make up the majority of formulations that are presently in clin-
ical trials. Although NPs can potentially treat bacterial infections,
a number of obstacles need to be overcome before they can be
effectively applied in the clinic. These include further research
into howNPs interact with different cells, tissues, and organs, the
best dosage, appropriate delivery methods, and toxicity following
both acute and extended exposure.255,256 Despite the fact that
nanoparticles (NPs) have demonstrated promise in antimicrobial
treatment, there are several drawbacks to using them.
usage

Negative consequences

Long-term systemic exposure enhances the therapeutic effect of
medications delivered locally
Organs and metabolic systems exposed to nanotoxicity
Intravascular nanoparticles are deposited in the body's cells and organs

Inadequate accessibility to characterization techniques that are
independent of nanoparticle properties

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Toxicity: Certain NP forms may be harmful to cells, resulting
in unfavorable side effects. NP toxicity can be impacted by
surface charge, shape, and size.255

Difficulty in targeting particular cells: It limits the efficiency
of NPs and raises the possibility of adverse effects. It can be
difficult to target certain cells or tissues in the body.

Ineffective against some bacteria: Treatment may be more
difficult when using NPs since they may be less efficient against
certain bacterial species or bacterial biolms.257

Potential for resistance: It is feared that similar to how
bacteria become resistant to antibiotics, they may also become
resistant to NPs. This may restrict the long-term efficacy of
antibacterial medicines based on NPs.255,258

Regulatory obstacles: As NPs are a relatively new eld of
study in antimicrobial treatment, getting regulatory permission
for their usage may be difficult. Their usage and availability in
therapeutic settings may be restricted as a result.259

Cost: Because NPs can be costly to create and produce, some
patients may not be able to obtain or afford them.

However, in contrast to conventional antibiotics, the
distinctive physical structure of NPs confers a number of
substantial advantages. The advantageous effects and negative
Fig. 10 Different parts of the plant are used for extract and mechanism

© 2024 The Author(s). Published by the Royal Society of Chemistry
consequences of nanomaterials in therapeutic usage are spec-
ied in Table 10.
8. Plant-based nanomaterials as
a viable substitute for multidrug-
resistant bacterial infections

Plant-based nanoparticles for treating MDR-bacterial infections
are produced by the secondary metabolism of plant tissues,
such as roots, owers, bark, stems, shoots, seeds, and leaves.
These secondary metabolisms react very quickly when exposed
to external stimuli and other signals.260 The biosynthesis of
metal nanoparticles (NPs) aroused interest in the clarication
and characterization of the processes of metal ion absorption
and bioreduction by plants due to the great stability and quick
pace of biosynthesis of plant-based NPs. Numerous studies have
demonstrated that plant extracts contain a wide range of
secondary metabolites, including coenzymes that function as
reducing and stabilizing agents in the bioreduction reaction
that produces metallic NPs, as well as phenolic compounds,
alkaloids, avonoids, tannins, saponins, steroids, terpenoids,
of formation of nanoparticles.

RSC Adv., 2024, 14, 13862–13899 | 13883
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etc. These metabolites can act as potential precursors for the
safe synthesis of nanomaterials.

In contrast to AgNPs used alone, Jyoti et al. (2016) demonstrate
that ‘green’ AgNPs, combined with conventional antibiotics, have
an advantageous synergistic effect.261 The study revealed that the
aqueous extract of Urtica dioica (Urticaceae) leaves capped AgNPs,
and amoxicillin had a synergistic enhancing role. The maximum
impact was reported for amoxicillin with easy bottom-up ‘green’
generated AgNPs against Serratia marcescens, with a 17.8-fold
increase in the inhibitory zone.261 Antibiotics and plant-based
nanoparticles (NPs) have been found to interact in additional
ways, including AgNPs and Zea mays extract (Poaceae) from corn
leaf detritus. AgNPs and Typha angustifolia leaf extract (Typha-
ceae), combined with gentamicin, cefotaxime, and meropenem,
demonstrated efficacy against E. coli and Klebsiella. Kanamycin
and rifampicin were efficacious against ve strains of bacteria.262

Thus, antibiotics and synthetic greenmetallic nanoparticles seem
to work well together to reduce toxicity and resistance in
multidrug-resistant bacterial infections.263 The green synthesis of
metal NPs is shown in Fig. 10.
9. Extraction of plant extract

Extracts from a wide variety of plant species have already been
applied to the biosynthesis of NPs, with success, including cobalt,
copper, silver, gold, palladium, platinum, zinc oxide, and
magnetite.260 Plant extracts are made by drying and treating plant
parts such as leaves, roots, owers, fruits, peel, seeds, bark, and
stems with methanol.264 Plant extracts contain various phyto-
chemicals such as proteins, avonoids, phenols, carbohydrates,
amino acids, terpenoids, saponins, tannins, steroids, anthocy-
anin, alkaloids, and coumarins, which carry out the reduction,
capping, and stabilizing processes on the metals added to the
extract, resulting in the synthesis of green metal NPs.265

Plants such as Aspalathus linearis, Caesalpinia spinosa, Centella
asiatic, Cinnamomum cassia, Citrus unshiu, Coffea canephora,
Myrica Esculenta, and Vitis vinifera produce aspalathin, tannic
acid, kaempferol, cinnamic acid, narirutin, chlorogenic acid,
myricetin, and resveratrol phytochemical compounds respec-
tively for the synthesis of AuNPs and Centella asiatic, Cinnamo-
mum zeylanicum, Cinnamomum zeylanicumverum, Citrus paradise,
Curcuma longa, Cyclopia intermedia, Cynomorium coccineum,
Eucalyptus globus, Memecylon umbellatum, Mentha pulegium, Sta-
chys tuberifera, Thymus vulgaris, and Vitis vinifera, which further
produce quercetin, cinnamaldehyde, eugenol, naringin, curcu-
min, hesperidin, gallic acid, caffeic acid, 4N-methyl benzoic acid,
diosmin, stachyose, thymol, and resveratrol compounds respec-
tively for synthesis of Ag NPs. Moreover, Aspalathin and ellagic
acid extracted from Aspalathus linearis and Rubus idaeus are used
to produce RhNP and ZnNP, respectively.266

In addition to plant extracts, live plants can synthesize metal
nanoparticles. When silver is present in the substrate, some
plants, such as Brassica juncea (Mustard greens), Medicago sativa
(Alfalfa), and Helianthus annuus (Sunower), can accumulate
a signicant amount of silver. In addition, Ni, Co, Zn, and CuNPs
have been synthesized in living plants. The bioaccumulated
13884 | RSC Adv., 2024, 14, 13862–13899
metals are stored in various parts of the plants, andmetal NPs are
obtained directly from these parts through chemical processes.267
9.1. Types of phytochemicals in the extract and their role

Proteins, avonoids, phenols, carbohydrates, amino acids,
terpenoids, saponins, tannins, steroids, anthocyanin, alkaloids,
and coumarins are some of the most common phytochemicals
used in the production of metal NPs. These phytochemicals
reduce, cap, and stabilize metal nanoparticles (NPs). For
example, polysaccharides, vitamins, amino acids, proteins,
phenolics, saponins, alkaloids, and/or terpenes are used to
reduce and stabilize the Ag ions in AgNPs.268 In producing gold
NPs, various chemical moieties in biogenic complexes act as
reducing agents, reducing gold metal ions and forming nano-
particles. According to some studies, biomolecules such as
avonoids, phenols, proteins, and others are essential in
lowering metal ions and topping gold nanoparticles in plant
extracts.269 Aromatic amines can also produce Pt and Pd-based
NPs via domino and tandem reactions.270

Metal NPs (such as Au, Ag, Cu, Pd, Se, and Pt NPs) are
produced by amino acids such as -amylase, urease, and protease
by binding metal ions to exposed free cysteine and reducing the
metal ion. The reduced metal ions are then capped by the
formation of disulde bonds with the help of the lysosome
enzyme. Polyphenols such as avonoids, phenolic acid, terpe-
noids, and proteins reduce and stabilize metal NPs via a similar
mechanism271—the metal-chelating ability and, thus, the metal-
reducing ability of phenolic acid's nucleophilic aromatic rings.
During bioreduction, the –OH groups of avonoids (quercetin
and myricetin) and terpenoids combine with metal ions and are
oxidized to carbonyl groups. Proteins aid in stabilising metal
NPs during the nucleation process, and capping the nucleated
metal NPs aids in their stability.272
9.2. Various parameters of extract affecting morphology and
size of particles

Factors inuencing the preparation and properties of plant-
based metal NPs include the type of plant extract used, its
concentration, the pH of the medium, the concentration of the
metal salt, contact time, and temperature. These variables have
been shown to inuence the rate, properties, and quantity of
prepared nanoparticles. Makarov et al. (2014) observed that the
size and shape of the NPs are highly dependent on their loca-
tion. The most common plant extract parameters inuencing
particle morphology, shape, and size are described below.268

3 Plant extract type and concentration: The concentration of
plant biomass/extract oen determines the efficiency of nano-
particle synthesis. Several researchers discovered that increasing
the biomass dosage boosts nanoparticle production and changes
the shape of nanoparticles.273 Chandran et al. (2006) used Aloe
vera leaf extract to modulate the shape and size of the synthe-
sized Au nanoparticles.274 Most of the Au nanoparticles were
triangular and ranged in size from 50 to 350 nm, depending on
the extract used. Adding small amounts of the extract to the
HAuCl4 solution resulted in the formation of larger nanogold
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 11 Different parts of various plants used in the synthesis of metal nanoparticles

NPs
Plant
parts Scientic names References

Ag Leaf Acalypha indica, Alstonia scholars, Achras sapota, Arbutus unedo,
Azhadirachta indica, Bixa orellana, Catharanthus roseus, Cinnamomum
camphora, Coleus aromaticus, Coriandrum sativum, Citrus limon,
Calotropis gigantia, Ceratonia siliqua, Cassia auriculata, Cephalandra
indica, Desmodium triorum, Dalbergia sissoo, Euphorbia hirta,
Elaeagnus indica, Elaeagnus latifolia, Ficus carica, Ficus religiosa,
Gliricidia sepium, Lippia citriodora, Parthenium, Paederia foetida,
Phyllanthus amarus, Hevea brasiliensis, Musa paradisiaca, Nerium
oleander, Ocimum bacillicum, Odina wodier, Juglans regia, Phyllanthus
reticulates, Brillantaisia owariensis, Crossopteryx febrifuga, Senna
siamea, Urtica dioica, Zea mays, and Typha angustifolia

267, 282, 283
and 284

Roots Portulaca oleracea, Macrotyloma uniorum, Glycyrrhiza glabra,
Cochlospermum religiosum, Boswellia ovalifoliolata, Thespesia
populnea, Svensonia hyderobadensis, Shorea tumbuggaia, and
Catharanthus roseus

282

Stem Portulaca oleracea, Macrotyloma uniorum, Glycyrrhiza glabra,
Cochlospermum religiosum, Boswellia ovalifoliolata, Thespesia
populnea, Svensonia hyderobadensis, and Shorea tumbuggaia

Fruit Solanum xanthocarpum, Vitis vinifera, Solanum trilobatum, Carambola
sp., Carica papaya, Momordica cymbalaria, Piper longum, and
Lycopersicon esculentum

Flower Ipomoea indica,Mirabilis jalapa, Plumeria alba,Millingtonia hortensis,
Cassia auriculata, Carthamus tinctorius, Gnidia glauca, and Boswellia
serrate

Fruit peel Musa sp
Seed Brassica nigra, Glycine max, Cyperus esculentus, Butyrospermum

paradoxum, and Syzygium cumini
Tuber Curcuma longa and Dioscorea bulbifera 267

Au Leaf Abutilon indicum, Acalypha indica, Aloe vera, Amaranthus spinosus,
Argemone mexicana, Azadirachta indica L., Bacopa monnieri,
Bougainvillea glabra, Butea monosperma, Cacumen platycladi, Cicer
arietinum L., Cinnamomum zeylanicum, Costus igneus,Diospyros ferrea,
Erythrina variegate, Euphorbia hirta, Ficus benghalensis, Geranium sp.,
Gymnema sylvestre, Hibiscus rosa-sinensis, Hibiscus sabdariffa,
Hygrophila spinosa, Ipomoea carnea, Magnolia kobus, Diopyros kaki,
Mangifera indica, Mimosa pudica, Nepenthes khasiana, Nerium
oleander, Ocimum sanctum, Olea europaea, Padina gymnospora,
Phoenix dactylifera, Salix alba, Sesbania grandiora, Silybum
marianum, Spinacia oleracea, Suaeda monoica, Terminalia arjuna,
Terminalia catappa, Vitis vinifera, and Piper guineense

282 and 285

Stem Ipomoea carnea, Hibiscus sabdariffa, and Salvadora persica 282
Root Ipomoea carnea, Morinda citrifolia, Coleus forskohlii, Morinda

citrifolia L., and Panicum maximum
Bark Eucommia ulmoides, Acacia nilotica, Ficus religiosa, and Cassia stula
Fruit Averrhoa bilimbi, Lansium domesticum, Genipa americana, Citrus

limon, Citrus reticulate, Citrus sinensis, Citrus maxima, Terminalia
arjuna, and Nitraria schoberi

Fruit peel Punica granatum
Flower Tagetes erecta, Moringa oleifera, Cassia auriculata, Ixora coccinea,

Nyctanthes arbor-tristis, Bauhinia purpurea, Plumeria alba, and Gnidia
glauca

Seed Cajanus cajan, Abelmoschus esculentus, and Vitis vinifera
Seed pod Elettaria cardamomum

ZnO Leaf Pongamia pinnata, Solanum nigrum, Eichhornia crassipes, Ocimum
basilicum, Anisochilus carnosus, Azadirachta indica, Aloe vera,
Agathosma betulina, Phyllanthus niruri, Moringa oleifera, Plectranthus
amboinicus, Santalum album, Vitex negundo, Parthenium
hysterophorus, Calatropis gigantean, and Sphathodea campanulata

Flower Trifolium pretense and Vitex negundo
Fruit Rosa canina
Fruit peel Nephelium lappaceum
Rhizome Coptidis rhizoma

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 13862–13899 | 13885
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Table 11 (Contd. )

NPs
Plant
parts Scientic names References

In2O3 Aloe vera
Pt Leaf Diopyros kaki and Anacardium occidentale
Pb Jatropha curcas
CuO Leaf Phyllanthus reticulates and Erigeron bonariensis 286
TiO2 Leaf Catharanthus roseus, Syzygium aromaticum, Elettaria cardamomum,

Cinnamomum verum,Withania somnifera, Eclipta prostrate,Glycyrrhiza
glabra, andLedebouria revolute

287 and 288

Se Leaf Capsicum annuum and Urtica dioica 289
Fe Leaf Terminalia chebula, Hordeum vulgare, Rumex acetosa, Ruellia tuberose,

Tridax procumbens, Gardenia jasminoides, Lawsonia inermis, Moringa
oleifera; Ageratum conyzoides, Eichhornia crassipes, Eichhornia
crassipes, Anacardium occidentale, Cynometra ramiora, and Lantana
camara

290 and 291

Bran Sorghum bicolour 282
Root Ageratum conyzoides 292
Fruit peel Garcinia sp., Mangostana sp., and Punica granatum 293
Fruit Couroupita guianensis 282
Flower Callistemon viminalis 294

Pd Peel Annona squamosa and Piper betle 282
Leaf Pulicaria glutinosa, Pulicaria glutinosa, and Terminalia chebula
Fruit Vitis vinifera 267

Ni Leaf Ocimum tenuiorum

RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
m

ai
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

6.
08

.2
02

4 
19

.4
0.

00
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
triangles. Furthermore, as the amount of extract increased, the
ratio of nanotriangles to spherical nanoparticles decreased.273

3 pH: A solution's pH inuences nanoparticle synthesis using
green technology methods. According to the researchers, the
solution medium's pH affects the synthesised nanoparticle's size
and texture. This is caused by the formation of nucleation centers,
which increases as pH increases.273 As a result, the size of nano-
particles can be controlled by adjusting the pH of the solution
media. Soni and Prakash (2011) demonstrated the effect of pH on
the shape and size of the synthesized silver nanoparticle.275

3 Temperature: In most cases, using green technology to
synthesize nanoparticles requires temperatures less than 100 °C
or ambient temperature. The nature and size of the nano-
particle formed are determined by the temperature of the
reaction medium.276

3 Pressure: The shape and size of the synthesized nano-
particles are affected by the pressure applied to the reaction
medium. The rate of metal ion reduction using biological
agents was discovered to be much faster at ambient pressure
conditions.277

3 Time: The time and the incubated reaction medium
signicantly impact the quality and type of nanoparticles
synthesized using green technology.278 Variations in time can
occur in various ways, including particle aggregation because of
long-term storage; particles may shrink or grow due to long-
term storage; they may have a shelf life, and so on, all of
which affect their potential.

3 Environment: The surrounding environment signicantly
impacts the nature of the synthesized nanoparticles. In many
environments, a single nanoparticle quickly transforms into
core–shell nanoparticles by absorbing materials or reacting
13886 | RSC Adv., 2024, 14, 13862–13899
with other environmental materials via oxidation or corro-
sion.279 In a biological system, the nanoparticles form a coating
that thickens and expands them. Furthermore, the environment
inuences the physical structure and chemistry of the synthe-
sized nanoparticles. There are a few examples of how the envi-
ronment affects the nature of synthesized nanoparticles. When
the environment of the zinc sulde nanoparticles was changed
from wet to dry, the crystalline nature of the nanoparticles
changed immediately. Similarly, the chemical nature of cerium
nitrate nanoparticles changes depending on the amount of
peroxide present in the solution in which they are suspended.

3 Proximity: When individual or isolated nanoparticles meet
or near the surface of another nanoparticle, their properties are
altered in most cases. This changing behavior of nanoparticles
can be used to create more tailored nanoparticles. The prox-
imity effect of nanoparticles has many implications, including
particle charging, substrate interactions, and magnetic prop-
erties of the nanoparticles.280

3 Other considerations: Secondary metabolites are abundant
in various living systems, including plants, and act as reducing
and stabilizing agents in the synthesis of nanoparticles.
However, the composition of these metabolites varies depending
on the type of plant, plant part, and extraction method used. The
concentration of metal ions also signicantly impacts the effec-
tiveness of various phytochemicals, which in turn determines
the morphology and size of the metal NPs produced.281
9.3. Literature reports on different parts of plants used as an
extract for the synthesis of NPs

AgNPs and AuNPs are the most investigated plant-based NPs,
primarily associated with developing potent antimicrobial NPs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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CuO, ZnO, Fe, Pt, Pd, Pb, Ni, In2O3, TiO2, and Se NPs are other
metal NPs produced from plants for antimicrobial activities.
Plant parts such as leaf, roots, stem, fruit, ower, seed, stem,
bark, peel, and tuber synthesize metal NPs.282 The details of
various plant parts of different plants that are used for the
synthesis of metal NPs are discussed in Table 11.

Plant leaves are the most common parts used in biosynthesis
metal NPs. Leaf of various plants such as Acalypha indica,
Alstonia scholars, Achras sapota, Arbutus unedo, Azhadirachta
indica, Bixa orellana, Catharanthus roseus, Cinnamomum cam-
phora, Coleus aromaticus, Coriandrum sativum, Citrus limon,
Calotropis gigantia, Ceratonia siliqua, Cassia auriculata, Cepha-
landra indica, Desmodium triorum, Dalbergia sissoo, Euphorbia
hirta, Elaeagnus indica, Elaeagnus latifolia, Ficus carica, Ficus
religiosa, Gliricidia sepium, Lippia citriodora, Parthenium, Pae-
deria foetida, Phyllanthus amarus, Hevea brasiliensis, Musa
paradisiaca, Nerium oleander, Ocimum bacillicum, Odina wodier,
Juglans regia, Phyllanthus reticulates, Brillantaisia owariensis,
Crossopteryx febrifuga, Senna siamea, Urtica dioica, Zea mays,
and Typha angustifolia are used in the synthesis of AgNPs
whereas leaf of Abutilon indicum, Acalypha indica, Aloe vera,
Amaranthus spinosus, Argemone mexicana, Azadirachta indica L.,
Bacopa monnieri, Bougainvillea glabra, Butea monosperma,
Cacumen platycladi, Cicer arietinum L., Cinnamomum zeylanicum,
Costus igneus, Diospyros ferrea, Erythrina variegate, Euphorbia
hirta, Ficus benghalensis, Geranium sp., Gymnema sylvestre,
Hibiscus rosa-sinensis, Hibiscus sabdariffa, Hygrophila spinosa,
Ipomoea carnea,Magnolia kobus, Diopyros kaki,Mangifera indica,
Mimosa pudica, Nepenthes khasiana, Nerium oleander, Ocimum
sanctum, Olea europaea, Padina gymnospora, Phoenix dactylifera,
Salix alba, Sesbania grandiora, Silybum marianum, Spinacia
oleracea, Suaeda monoica, Terminalia arjuna, Terminalia catappa,
Vitis vinifera, and Piper guineense are used in the synthesis of
AuNPs.261,267,282–284

Even the roots of Portulaca oleracea, Macrotyloma uniorum,
Glycyrrhiza glabra, Cochlospermum religiosum, Boswellia ovalifo-
liolata, Thespesia populnea, Svensonia hyderobadensis, Shorea
tumbuggaia, and Catharanthus roseus and stem of Portulaca
oleracea, Macrotyloma uniorum, Glycyrrhiza glabra, Cochlo-
spermum religiosum, Boswellia ovalifoliolata, Thespesia populnea,
Svensonia hyderobadensis, and Shorea tumbuggaia used for
production of AgNP show an extensive range plants. Various
plants' fruits, owers, and seeds are also used to synthesize
AgNP. In addition to the fruit, ower, and stem, the barks of
Eucommia ulmoides, Acacia nilotica, Ficus religiosa, and Cassia
stula synthesize AuNPs.282 Even the rhizomes of Coptidis sp.,
Bran of Sorghum bicolour, and coconut water are also used to
synthesize the metal NPs. Fruit extracts of Vitis vinifera, Cour-
oupita guianensis, and Rosa canina help synthesize Pd, Fe, and
ZnO metal NPs. Thus, every part of a plant can be used to
synthesize metal NPs.

10. Challenges and future perspective

There is a growing interest in improving drug delivery for
disease resolution. As a result, candidates such as biogenic
metal-based nanoparticles with improved biodistribution and
© 2024 The Author(s). Published by the Royal Society of Chemistry
pharmacokinetics have a one-of-a-kind opportunity.295 Metallic
nanoparticles inspired by nature represent a new generation of
innovative nanomedicines that mimic natural circulatory cells.
These materials have been discovered to have the ability to
increase blood circulation time and improve drug distribution
to cells and tissues.223 The role of nanotechnology in the precise
treatment of diseases, which oen has less life-threatening side
effects, has the potential to contribute to a positive shi in
clinical practice toward life-saving approaches. However, their
immunogenicity, scale-up, and characterization remain signif-
icant challenges during clinical trials.296 Aside from scaling-up
issues, government regulations and overall cost-effectiveness
compared to currently available chemotherapies are substan-
tial barriers to the success of nanomedicines. The oen-
complex architectural design of many biogenic metal NPs may
also make it challenging to perform reproducible, safe, and
sufficient sample preparations. One of the most difficult chal-
lenges has been reproducibility, as minor changes in NPs size,
shape, and/or surface chemistry can dramatically affect their
stability, interaction with biological media, and bio-
distribution.265 As a result, reproducible nanoparticles require
reliable and standardized methodologies.

Furthermore, for these materials to be excellent biological
tools, the gap between the laboratory, where innovative mate-
rials are designed, and the industrial replication of the process,
where reproducible preparation and manufacturing processes
are carried out, must be narrowed. There is an exciting future
for NPs in combining them to act as ‘nanomachines’: their
mode of interaction would have a non-linear dependence on
changed parameters such as temperature or pH. This approach
appears to be working, and the future of nanotechnology is
getting closer; however, its potential threats must be consid-
ered, and the effects of new procedures must be carefully
examined before they are implemented. For example, the
toxicity of nanoparticles (NPs) is critically discussed to identify
potential issues before they are widely used in medicine. On the
other hand, synthesis mediated by plant extracts is said to be
environmentally friendly. One of the most notable trends in the
synthesis of metallic NPs from plant extracts could be a bene-
cial strategy for characterizing the mode of action of NPs.267 It is
a controlled synthesis that can be easily transferred to a large
scale and ensures environmental safety while reducing the
process's environmental impact. Taken as a whole, the use of
plant-based NPs has demonstrated a variety of benets and
applications in medicine and the pharmaceutical industry.
More specically, studies show that NPs can exert antimicrobial
properties alone or in combination with antibiotics, reducing
the current problem of acquired resistance caused by antibiotic
overuse or misuse. Given this potential application, future
research should concentrate on two areas: assessing the safety
aspects of using plant-based NPs (toxicity to human health and
environmental safety) and reducing the environmental impact
of their synthesis. More detailed development of synthesis
procedures is required, as is research into the action mecha-
nisms that mediate the antibacterial effect of NPs to make
plant-based NPs a viable strategy capable of meeting society's
demand for an effective solution to antibiotic resistance.
RSC Adv., 2024, 14, 13862–13899 | 13887
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11. Summary

This review meticulously summarized the various emerging
nanomaterial platforms to mitigate antimicrobial resistance.
The review includes the synthesis of nanomaterials the extrac-
tion of cost-effective and eco-friendly plant-based nano-
materials as a viable alternative to combat multidrug-resistant
bacterial infections. In addition, this study examines the
toxicity of nanomaterials by thoroughly investigating the phys-
icochemical properties of these materials, intending to utilize
them as a feasible alternative to chemical antibiotics. The
mechanism of action of nanomaterial on pathogenic organisms
is also elaborately presented in this review, along with the
techniques of different nanomaterials to ght against microbial
pathogens. Moreover, applications of nanomaterials in medical
science, novel drug delivery systems for nanomaterials, and the
advantages of antimicrobial nanomaterials over chemical anti-
biotics are also covered in this review. Therefore, this review
could be valuable in establishing innovative and effective ther-
apeutic approaches for antimicrobial therapy. It is evident that
nanomaterials have the potential to bring about a revolutionary
change in medical science by mitigating antimicrobial resis-
tance in the human body, and they can serve as a substitute for
conventional chemical antibiotics. Plant-based nanomaterials
can be crucial in reducing toxicity in the human body and
ensuring human safety, offering both environmental friendli-
ness and economic benets. In addition, nanomaterials have
the potential to have a signicant impact on novel drug delivery
methods and therapeutic applications.
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antibiotics against bacterial resistance, Infection, 2019,
23(4), 382, DOI: 10.22354/in.v23i4.807.

33 H. Green-Pedersen, B. T. Jensen and N. Pind, Nickel
Adsorption on MnO2, Fe(OH)3, Montmorillonite, Humic
Acid and Calcite: A Comparative Study, Environ. Technol.,
1997, 18(8), 807–815, DOI: 10.1080/09593331808616599.

34 M. Lipsitch and M. H. Samore, Antimicrobial use and
antimicrobial resistance: a population perspective,
Emerging Infect. Dis., 2002, 8(4), 347–354, DOI: 10.3201/
eid0804.010312.

35 L. Leibovici, Considering resistance in systematic reviews of
antibiotic treatment, J. Antimicrob. Chemother., 2003, 52(4),
564–571, DOI: 10.1093/jac/dkg409.

36 A. P. MacGowan, Clinical implications of antimicrobial
resistance for therapy, J. Antimicrob. Chemother., 2008,
62(Supplement 2), ii105–ii114, DOI: 10.1093/jac/dkn357.

37 A. MacGowan and E. Macnaughton, Antibiotic resistance,
Medicine, 2013, 41(11), 642–648, DOI: 10.1016/
j.mpmed.2013.08.002.

38 N. Niño-Mart́ınez, M. F. Salas Orozco, G.-A. Mart́ınez-
Castañón, F. Torres Méndez and F. Ruiz, Molecular
Mechanisms of Bacterial Resistance to Metal and Metal
Oxide Nanoparticles, Int. J. Mol. Sci., 2019, 20(11), 2808,
DOI: 10.3390/ijms20112808.

39 N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan and
R. Hazan, Alternative antimicrobial approach: nano-
antimicrobial materials, J. Evidence-Based Complementary
Altern. Med., 2015, 2015, 246012, DOI: 10.1155/2015/
246012.
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