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valent organic polymers with nano
carbonaceous composites for efficient
supercapacitive energy storage†

Mohsin Ejaz, ‡a Mohamed Gamal Mohamed, ‡*ab Wei-Chun Huanga

and Shiao-Wei Kuo *ac

Covalent organic polymers (COPs) show great potential as supercapacitor electrodes due to their

tunable properties, stability, and high capacitance. In this work, we prepared a covalent organic

polymer (Py-DSDA-COP) through a Schiff base reaction of the 1,3,6,8-tetrakis(4-formylphenyl)pyrene

monomer (Py-Ph-CHO) and 4,4′-disulfanediyldianiline (DSDA), validated its chemical structure, and

investigated its thermal stability, porosity, morphology, and electrochemical properties. The Py-DSDA-

COP displayed high semi-crystallinity, good porosity, and a specific capacitance of 56.18 F g−1. To

improve its electrochemical performance, we incorporated different nano-carbonaceous materials

[fullerene (C60), MWCNTs, and SWCNTs] into Py-DSDA-COP and compared their characteristics. The

Py-DSDA-COP/SWCNTs showed the highest specific capacitance (171 F g−1) at 1 A g−1and highest

energy density (23.7 W h kg−1) with a capacity retention of 93% after 2000 cycles, which is superior to

those of Py-DSDA-COP/MWCNTs and Py-DSDA-COP/C60 nanocomposites. These superior

electrochemical characteristics of Py-DSDA-COP/SWCNTs are attributed to the excellent p–p

stacking interactions, higher EDLC behavior, higher conductivity, lower diameter, and higher surface

area of SWCNTs than those of MWCNTs.
Introduction

Covalent organic polymers (COPs) are a class of organic mate-
rials composed of repeating units linked by covalent bonds,
resulting in a three-dimensional network structure.1–6 They are
typically made up of light elements such as carbon, nitrogen,
and oxygen, and can have diverse chemical structures, allowing
for a wide range of properties and potential applications.7–12 In
recent years, there has been a growing amount of attention
towards COPs because of their unique properties, including
high surface area, tunable porosity, and chemical stability.13–20

COPs can also be synthesized in a variety of ways, including
through the polymerization of small molecules or through self-
assembly of pre-formed building blocks.21–25 Some potential
applications of COPs include gas storage materials for hydrogen
and carbon dioxide,26–28 heterogeneous catalysts for organic
c Science, Center for Functional Polymers

un Yat-Sen University, Kaohsiung 804,

m; kuosw@faculty.nsysu.edu.tw

Assiut University, Assiut 71515, Egypt

emistry, Kaohsiung Medical University,

tion (ESI) available. See DOI:

22868–22883
reactions,29–31 and electrode materials for supercapacitors and
battery devices.32–35 Supercapacitors (SCs), in particular, have
emerged as potential electrochemical energy storage systems
and have gained popularity due to their outstanding high-power
density, quick charge/discharge processes, exceptional stability,
and environmental friendliness.36–45 They have the capability to
perform like batteries and traditional capacitors. Electrostatic
interactions between the electrolyte ions and the carbon elec-
trodes lead to storing energy in them. One of the key advantages
of COPs for supercapacitor applications is their high surface
area, which can be tuned by adjusting the size and shape of the
monomers used to synthesize the polymer.46–48 The signicant
surface area offered by these materials provides numerous
active sites for electrochemical reactions to occur which can
enhance the energy storage capacity of the supercapacitor.49,50

Additionally, COPs can be easily synthesized using simple and
cost-effective methods, which makes them attractive for large-
scale production. However, one of the current limitations of
COPs for supercapacitor applications is their relatively low
electrical conductivity, which can limit their charge/discharge
rate.51–54 Incorporating conducting carbon materials (such as
CNTs and graphene) into COFs, CMPs, and MOFs is an effective
way to boost their conductivity, improving their electrochemical
performance.55–58 The Py-OXD-CMP/CNT nanocomposites
prepared by our group have exhibited a capacitance of 504 F
g−1.55 In addition, our group has developed the TBN-Py-CMP/
This journal is © The Royal Society of Chemistry 2023

http://crossmark.crossref.org/dialog/?doi=10.1039/d3ta02741d&domain=pdf&date_stamp=2023-10-28
http://orcid.org/0000-0002-5634-9450
http://orcid.org/0000-0003-0301-8372
http://orcid.org/0000-0002-4306-7171
https://doi.org/10.1039/d3ta02741d
https://doi.org/10.1039/d3ta02741d
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA011042


Scheme 1 Synthesis of (a) Py-Ph-CHO and (b) Py-DSDA-COP.
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CNT nanocomposite, which has exhibited a specic capacitance
of 430 F g−1.56

The Duan group found a capacitance of 365 F g−1 for a CoPc-
CMP/CNT material.57 Lin et al. synthesized a CNT@Mn-MOF
composite for supercapacitor application.58 We hypothesized
that combining nano carbonaceous materials with COPs would
be a suitable way to develop active electrode materials for
supercapacitor application. Therefore, in this study, we blended
three different carbonmaterials (fullerene (C60), MWCNTs, and
SWCNTs) into Py-DSDA-COP to improve and compare the
electrochemical performance of COP-based supercapacitors.
The preparation of Py-DSDA-COP through Schiff base coupling
of Py-Ph-CHO and 4,4′-disulfanediyldianiline (DSDA) is shown
in Scheme 1. The chemical structure, thermal stability, nature,
porosity, and electrochemical performance of three electrode
systems and symmetric coin cells are discussed below in detail.
This journal is © The Royal Society of Chemistry 2023
Experimental section
Materials

Potassium carbonate (K2CO3), sodium hydroxide (NaOH), pyr-
ene (Py), 4-formylphenylboronic acid (4-FP-BO), and nitroben-
zene (C6H5NO2) were purchased from Sigma-Aldrich.
Mesitylene, acetic acid (AcOH), 1,4-dioxane (DO), 4,4′-disul-
fanediyldianiline (DSDA), acetone, and tetrahydrofuran (THF)
were obtained from Alfa Aesar.
Preparation of 1,3,6,8-tetrabromopyrene (Py-Br4)

Py-Br4 was obtained as a green solid (17 g) by reuxing 80 mL of
C6H5NO2, 8 g of Py (40 mmol), and Br2 (9.2 mL, 176 mmol) at
120 °C for 24 hours, according to Scheme S1.† The FTIR spec-
trum (Fig. S1†): 3054 cm−1 (aromatic CH) and 681 cm−1 (C–Br).
J. Mater. Chem. A, 2023, 11, 22868–22883 | 22869
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Fig. 1 (a) Chemical structure of Py-DSDA-COP. (b) FTIR spectra of Py-Ph-CHO, DSDA and Py-DSDA-COP. (c) Solid state 13C NMR of Py-DSDA-
COP. (d) TGA of Py-Ph-CHO, DSDA and Py-DSDA-COP.
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Preparation of 1,3,6,8-tetrakis(4-formylphenyl)pyrene (Py-Ph-
CHO)

4-FP-BO (4.40 g, 29.00 mmol), K2CO3 (5.30 g, 37.86 mmol), Py-
Br4 (2.50 g, 4.83 mmol), and Pd(PPh3)4 (0.23 g, 0.25 mmol) were
reuxed in 80 mL of DO and 40 mL of H2O at 110 °C under N2

for 72 h. Aer working up the reaction mixture with 100 mL of
HCl (2 N), a yellow solid was obtained which was washed with
water and MeOH to yield pure Py-Ph-CHO [Scheme 1(a), 2.13 g].
FTIR (cm−1, Fig. 1(a)): 3061, 2813–2732 (aldehydic CH), 1706
(C]O), and 1598 (C]C). ssNMR (Fig. S2†): 182.38 (CHO),
143.85–121.36 (aromatic carbons).
Preparation of Py-DSDA-COP

The solution of Py-Ph-CHO (0.15 g, 0.24 mmol), DSDA (0.12 g,
0.48 mmol), mesitylene (5 mL), acetic acid (0.65 mL), H2O (0.35
mL), and DO (5 mL) was degassed two times under vacuum and
then stirred at 75 °C for 72 h, ltered and washed with THF,
H2O, MeOH, and acetone to get a yellow solid, which was dried
in a vacuum oven overnight.
22870 | J. Mater. Chem. A, 2023, 11, 22868–22883
Preparation of Py-DSDA-COP/nanocomposites

Py-DSDA-COP (2 wt%), and C60, MWCNTs, and SWCNTs
(2 wt%) were individually dissolved in THF and sonicated
overnight, and then the solvent was removed by rotary evapo-
ration to afford Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs,
and Py-DSDA-COP/SWCNTs nanocomposites, respectively as
shown in Scheme 2.
Results and discussion

Pyrene is a polycyclic aromatic hydrocarbon that has been
explored for various applications, including its potential use in
energy storage due to its high electrical conductivity, surface
area, porous structure, and redox activity. These characteristics
make pyrene a good candidate to be used as an active electrode
material for supercapacitors. The synthesis of a porous COP
material based on Py-Ph-CHO and DSDA to afford Py-DSDA-COP
is shown in Scheme 1. The Py-Ph-4CHO monomer was synthe-
sized via the Suzuki coupling reaction of Py-Br4 with 4-FP-BO in
the presence of DO/K2CO3/H2O at 110 °C for 72 h [Scheme 1(a)].
This journal is © The Royal Society of Chemistry 2023
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Scheme 2 Preparation of Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs and Py-DSDA-COP/SWCNTs nanocomposites.
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Finally, Py-DSDA-COP was obtained by a Schiff base reaction of
Py-Ph-CHO and DSDA in the presence of dioxane/mesitylene at
110 °C [Scheme 1(b)]. The resultant porous Py-DSDA-COP
Fig. 2 (a) N2 adsorption/desorption curve and (b) pore size of Py-DSDA

This journal is © The Royal Society of Chemistry 2023
material is insoluble in acetone, methanol, and THF. The
chemical structure of Py-DSDA-COP [Fig. 1(a)] was validated
through FTIR and 13C solid-state NMR as shown in Fig. 1(b) and
-COP.

J. Mater. Chem. A, 2023, 11, 22868–22883 | 22871
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Fig. 3 SEM (a and b) and TEM images (c and d) of Py-DSDA-COP.
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(c). The FTIR spectrum of Py-Ph-CHO showed peaks at 2813–
2732 and 1706 cm−1, representing the aldehydic C–H and C]O
groups, respectively (Fig. 1(b)). The absorption bands of the NH2

group in the DSDA monomer appeared at 3411 and 3328 cm−1.
The FTIR spectrum of Py-DSDA-COP showed a peak at
1605 cm−1 corresponding to C]N, with the complete absence
of N–H and C]O peaks from the starting monomers Py-Ph-
CHO and DSDA, respectively. Furthermore, Py-DSDA-COP
exhibited a peak at 1592.11 cm−1 representing an aromatic
C]C unit. The solid-state NMR of Py-DSDA-COP showed
signals at 156.5 ppm for C]N and 148.5–128.0 ppm for
Fig. 4 TEM images of (a) SWCNTs, (b) MWCNTs, (c) C60, (d) Py-DSDA-C

22872 | J. Mater. Chem. A, 2023, 11, 22868–22883
aromatic carbons (Fig. 1(c)). The FTIR and NMR analyses
conrmed the successful synthesis of Py-DSDA-COP. The
thermal stabilities of Py-DSDA-COP and its ingredients (Py-Ph-
CHO and DSDA) were measured through thermogravimetric
analysis, as shown in (Fig. 1(d)).

The thermal decomposition temperature (Td5, Td10) and char
yield were observed as 240 °C, 258 °C, and 25 wt% for DSDA,
while 320 °C, 340 °C, and 31 wt% for Py-Ph-CHO, respectively.
We observed that aer the Schiff base reaction of Py-Ph-CHO
and DSDA, the thermal stability of the resultant porous mate-
rial (Py-DSDA-COP) improved. The values of Td5, Td10, and char
yield were 335 °C, 360 °C, and 57 wt%, respectively. Moreover,
FTIR analysis [Fig. S3†] of Py-DSDA-COP shows distinct peaks at
3058 and 1592.11 cm−1, corresponding to the aromatic CH and
C]C groups. These peaks serve as evidence of the robustness
and integrity of the chemical structure of the Py-DSDA-COP
framework, even aer exposure to various temperatures
ranging from 25 to 180 °C. Notably, the absence of an absorp-
tion peak at 2515 cm−1 in the Py-DSDA-COP FTIR spectrum,
typically associated with –SH groups, further supports the
stability of the S–S bond within the material.

The nature of the Py-DSDA-COPmaterial was validated by the
powder X-ray diffraction (XRD) pattern, as shown in Fig. S4.†
The result revealed the semi-crystallinity behavior of Py-DSDA-
COP from the existence of some sharp peaks in its XRD
prole. The porosity of Py-DSDA-COP was examined by N2

absorption at 77 K, as shown in Fig. 2. The Py-DSDA-COP
showed a type II isotherm curve according to IUPAC. The Py-
DSDA-COP exhibited rapid intake at high pressure demon-
strating a mesoporous structure as shown in Fig. 2(a).
Furthermore, we observe a SBET, pore size, and pore volume of
OP/SWCNTs, (e) Py-DSDA-COP/MWCNTs and (f) Py-DSDA-COP/C60.

This journal is © The Royal Society of Chemistry 2023
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45 m2 g−1, 2.15 nm [Fig. 2(b)], and 0.16 cm3 g−1, respectively. In
summary, Py-DSDA-COP showed signicant mesoporous char-
acteristics. The SEM images of Py-DSDA-COP revealed a nano-
rod-like structure with aggregated particles [Fig. 3(a) and (b)],
which was also validated by TEM analysis (Fig. 3(c) and (d)) with
porous characteristics.

Scheme 2 outlines the process for creating Py-DSDA-COP/
nanocomposite materials using p–p stacking interactions
between Py-DSDA-COP and C60, MWCNTs, or SWCNTs. The
process involves placing the Py-DSDA-COP and the chosen
nanomaterial into a THF solution and sonicating the mixture
overnight. This results in the formation of Py-DSDA-COP/C60,
Py-DSDA-COP/MWCNTs, or Py-DSDA-COP/SWCNTs nano-
composites, respectively. TEM images of SWCNTs, MWCNTs,
and fullerene (C60) and Py-DSDA-COP nanocomposites (Py-
DSDA-COP/SWCNTs, Py-DSDA-COP/MWCNTs, Py-DSDA-COP/
C60) are shown in (Fig. 4(a–f)). The SWCNTs and MWCNTs
were observed as nanotube-like structures, while C60 has
a circular shape. The SWCNTs and MWCNTs dispersed very
uniformly in Py-DSDA-COP due to excellent p–p stacking
interactions between them [Fig. 4(d) and (e)]. But in the case of
Fig. 5 CV curves of (a) Py-DSDA-COP, (b) Py-DSDA-COP/C60, (c) Py-D

This journal is © The Royal Society of Chemistry 2023
C60, poor dispersion was observed with Py-DSDA-COP sug-
gesting no interaction between them (Fig. 4(f)).
Electrochemical performance of Py-DSDA-COP and its
nanocomposites with C60, MWCNTs, and SWCNTs

The electrochemical performance of C60, MWCNTs, SWCNTs,
Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs,
and Py-DSDA-COP/SWCNTs nanocomposites was measured by
performing cyclic voltammetry (CV) and galvanostatic charge–
discharge (GCD) analysis through a three-electrode system (1 M
KOH solution). The CV curves of all Py-DSDA-COPs samples
were measured at various sweep rates (5 to 200 mV s−1) corre-
sponding to the potential window between 0 and −1 V, as
shown in Fig. 5(a–d) and S5(a–c).† The CV curves for MWCNTs
and SWCNTs exhibited quasi-rectangular shapes with humps,
indicating the presence of electric double-layer capacitance
(EDLC) and pseudocapacitive responses.

In contrast, C60 displayed oxidation and reduction peaks
with humps, showcasing a more pronounced pseudocapacitive
nature along with EDLC.59,60 Notably, the CV-integrated area for
SWCNTs was signicantly larger than that observed for
SDA-COP/MWCNTs and (d) Py-DSDA-COP/SWCNTs.

J. Mater. Chem. A, 2023, 11, 22868–22883 | 22873
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MWCNTs and C60, as illustrated in Fig. S5(a–c).† The CV curves
of Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs,
and Py-DSDA-COP/SWCNTs nanocomposites showed quasi-
rectangular curves with humps, revealing that the capacitive
feedback was inuenced by the EDLC.59,60 The presence of
humps suggests that faradaic redox currents induced another
minor pseudocapacitance effect, due to the blending of nano
carbonaceous materials and sulfur species (heteroatom inu-
ence) in these Py-DSDA-COPs electrodes.55,56 The CV curves of all
Py-DSDA-COP electrode samples have redox peaks, corre-
sponding to the pseudocapacitance nature, the presence of the
conjugated system, and N and S atoms in the pure Py-DSDA-
COP.55,56 Furthermore, with increasing sweep rates, current
density also increased without affecting CV proles, suggesting
high-rate capability.55,56 The CV-integrated area of Py-DSDA-
COP/MWCNTs and Py-DSDA-COP/SWCNTs nanocomposites
improved as compared to pure Py-DSDA-COP, indicating their
higher specic capacitance. The GCD curves of Py-DSDA-COP
and its nanocomposite samples were recorded at various
current densities from 1 to 20 A g−1, as shown in Fig. 6(a–d) and
S5(d–f).† The GCD curves of C60, MWCNTs, and SWCNTs are
triangular with slight bends revealing EDLC and
Fig. 6 GCD curves of (a) Py-DSDA-COP, (b) Py-DSDA-COP/C60, (c) Py

22874 | J. Mater. Chem. A, 2023, 11, 22868–22883
pseudocapacitive behavior.†59,60 The specic capacitance of C60,
MWCNTs, and SWCNTs at 1 A g−1 was 9.8 F g−1, 31.75 F g−1,
and 73.42 F g−1 respectively. The SWCNTs showed higher
electrochemical performance than C60 and MWCNTs. These
GCD curves of Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/
MWCNTs, and Py-DSDA-COP/SWCNTs nanocomposites have
triangular shapes with a slight bend, demonstrating both
pseudocapacitive and EDLC characteristics.59,60 The Py-DSDA-
COP nanocomposites (Py-DSDA-COP/C60, Py-DSDA-COP/
MWCNTs, and Py-DSDA-COP/SWCNTs) experienced a higher
discharging time curve than those of pure Py-DSDA-COP,
revealing that aer blending of different nanoparticles (C60,
MWCNTs, SWCNTs), the specic capacitance of Py-DSDA-COP
was improved. The specic capacitance from GCD curves at
1 A g−1 was observed as 56 F g−1, 61 F g−1, 123 F g−1, and 171 F
g−1 for Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/
MWCNTs, and Py-DSDA-COP/SWCNTs nanocomposites,
respectively (Fig. 7(a)). The Py-DSDA-COP/SWCNTs showed
higher specic capacitance than Py-DSDA-COP/MWCNTs,
possibly due to the higher EDLC behavior, higher conduc-
tivity, and lower diameter of SWCNTs than those of MWCNTs
and C60.61,62 In addition, based on TEM images, the successful
-DSDA-COP/MWCNTs and (d) Py-DSDA-COP/SWCNTs.

This journal is © The Royal Society of Chemistry 2023
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Fig. 7 (a) Specific capacity, (b) stability, (c) Ragone profiles, and (d) Nyquist plots for Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/
MWCNTs, and Py-DSDA-COP/SWCNTs.
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dispersion of Py-DSDA-COP within SWCNTs results in
enhanced ion mobility within the nanotubes, leading to
improved ion migration efficiency and an increased capaci-
tance. Moreover, the specic capacitance of Py-DSDA-CO’ didn't
enhance much by incorporating C60, due to their poor inter-
action as discussed above in the TEM analysis. The electro-
chemical performance evaluation of Py-DSDA-COP, Py-DSDA-
COP/C60, Py-DSDA-COP/MWCNTs, and Py-DSDA-COP/
SWCNTs was conducted using three electrode systems, and
this assessment was repeated three times. The specic capaci-
tance values were determined from the GCD curves at a current
density of 1 A g−1 and were found to be 56.18 F g−1 for Py-DSDA-
COP, 60.96 F g−1 for Py-DSDA-COP/C60, 122.3 F g−1 for Py-
DSDA-COP/MWCNTs, and 170.8 F g−1 for Py-DSDA-COP/
SWCNTs (Fig. S6†). Numerous materials with high capaci-
tance values, such as MWCNT@SACMP (594 F g−1 at
1.0 A g−1),63 pNTCDA-TPAT (217.4 F g−1 at 0.5 A g−1),64

PTPA@MWNT-4 (410 F g−1),65 and CNT@TFA-COF-3 (338 F
g−1),66 have been reported in the literature. The stabilities of Py-
DSDA-COP and their nanocomposites were also evaluated
through GCD at 10 A g−1 over 2000 cycles (Fig. 7(b)). The
This journal is © The Royal Society of Chemistry 2023
capacitance retention of Py-DSDA-COP, Py-DSDA-COP/C60, Py-
DSDA-COP/MWCNTs, and Py-DSDA-COP/SWCNTs nano-
composites was observed as 79%, 81%, 88%, and 93%,
respectively, demonstrating the high stability of Py-DSDA-COP/
MWCNTs. This revealed that the stability of Py-DSDA-COP
improved aer blending with C60, MWCNTs, and SWCNTs.
The nanorod-like structure of Py-DSDA-COP remained intact,
even aer undergoing 2000 cycles at a rate of 10 A g−1, as
illustrated in Fig. S7.† We also display the Ragone plot
(Fig. 7(c)), by calculating energy and power density [eqn (S2)†].
The energy density of the Py-DSDA-COP/SWCNTs nano-
composite (23.7 W h kg−1) is much higher than those of
Py-DSDA-COP/MWCNTs (16.9 W h kg−1), Py-DSDA-COP/C60
(8.4 W h kg−1) and Py-DSDA-COP (28 W h kg−1). Furthermore,
the internal resistance of these electrode materials was also
investigated by electrochemical impedance spectroscopy (EIS).
The tted Nyquist plots (Fig. 7(d)) were used to determine series
resistance (Rs) from an equivalent circuit (Fig. S8†). The series
resistance was observed as 10.78, 11.02, 13.6, and 6.6 U for
Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs,
and Py-DSDA-COP/SWCNTs nanocomposites, respectively. The
J. Mater. Chem. A, 2023, 11, 22868–22883 | 22875
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Py-DSDA-COP/SWCNTs displayed the smallest resistance and
hence had superior electrochemical performance to the other
three COP electrode materials. The blending of different
carbonaceous materials in Py-DSDA-COP resulted in excellent
electrochemical performance compared to other porous mate-
rials (Table S1†).
Electrochemical performance of symmetric coin cells based
on Py-DSDA-COP and its nanocomposites with C60, MWCNTs,
and SWCNTs

The electrochemical performance of Py-DSDA-COP and its
nanocomposites were also investigated by preparing symmetric
CR2032 coin cells at various sweep rates (5 to 200 mV s−1)
corresponding to the potential window between 0.4 and−0.6, as
shown in Fig. 8. All CV curves showed quasi-rectangular curves
with humps demonstrating EDLC and pseudocapacitance effect
Fig. 8 CV curves of symmetric coin cells based on (a) Py-DSDA-COP, (b
COP/SWCNTs.

22876 | J. Mater. Chem. A, 2023, 11, 22868–22883
(Fig. 8(a–d)).55,56 The GCD curves of all electrode materials are
triangular with bend-assisted EDLC and pseudocapacitance
characteristics (Fig. 9(a–d)). The specic capacitance from GCD
curves at 1 A g−1 was observed as 17 F g−1, 19 F g−1, 54 F g−1, and
79 F g−1 for Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/
MWCNTs, and Py-DSDA-COP/SWCNTs nanocomposites
respectively (Fig. 10(a)). The incorporation of SWCNTs into Py-
DSDA-COP led to higher specic capacitance due to their good
dispersion, higher EDLC behavior, higher conductivity, and
lower diameter than those of MWCNTs, while C60 showed poor
dispersion in Py-DSDA-COP, revealing no interaction between
them. The stability of Py-DSDA-COP and its nanocomposites
were also evaluated through GCD at 10 A g−1 over 2000 cycles for
symmetric coin cells (Fig. 10(b)), showing a capacitance reten-
tion of 95%, 89.4%, 80.6%, and 78.4% for Py-DSDA-COP/
SWCNTs, Py-DSDA-COP/MWCNTs, Py-DSDA-COP/C60, and Py-
DSDA-COP, respectively.
) Py-DSDA-COP/C60, (c) Py-DSDA-COP/MWCNTs and (d) Py-DSDA-

This journal is © The Royal Society of Chemistry 2023
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Fig. 9 GCD curves of symmetric coin cells based on (a) Py-DSDA-COP, (b) Py-DSDA-COP/C60, (c) Py-DSDA-COP/MWCNTs and (d) Py-DSDA-
COP/SWCNTs.

Fig. 10 (a) Specific capacity and (b) stability of symmetric coin cells based on Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs,
and Py-DSDA-COP/SWCNTs.
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Fig. 11 CV curves of asymmetric coin cells based on (a) Py-DSDA-COP, (b) Py-DSDA-COP/C60, (c) Py-DSDA-COP/MWCNTs and (d) Py-DSDA-
COP/SWCNTs.
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Electrochemical performance of asymmetric coin cells based
on Py-DSDA-COP and its nanocomposites with C60, MWCNTs,
and SWCNTs

We conducted experiments involving asymmetric coin cells
using Py-DSDA-COP and its nanocomposites to examine their
electrochemical performance. In these coin cells, activated
carbon served as the negative electrode, while Py-DSDA-COP or
its nanocomposites acted as the positive electrode. We con-
ducted tests at various sweep rates, ranging from 5 to 200 mV
s−1, within a potential window spanning from 0.4 to −0.4 V, as
illustrated in Fig. 11. The CV curves for Py-DSDA-COP, Py-DSDA-
COP/MWCNTs, Py-DSDA-COP/SWCNTs, and Py-DSDA-COP/C60
exhibited nearly rectangular shapes with slight humps, as
depicted in Fig. 11(a–d). However, Py-DSDA-COP/C60 displayed
a non-rectangular shape. These variations in CV curve shapes
were primarily due to differences in potential windows when
compared to three-electrode and symmetric coin cells. GCD
22878 | J. Mater. Chem. A, 2023, 11, 22868–22883
analysis showed that all electrode materials exhibited triangular
curves with bends, indicating a combination of EDLC and
pseudocapacitance characteristics, as shown in Fig. 12(a–d).
Specic capacitance measurements at 1 A g−1 revealed values of
30.52 F g−1 for Py-DSDA-COP, 36.57 F g−1 for Py-DSDA-COP/C60,
79.21 F g−1 for Py-DSDA-COP/MWCNTs, and 113.17 F g−1 for Py-
DSDA-COP/SWCNTs nanocomposites, as demonstrated in
Fig. 13(a). Notably, Py-DSDA-COP/SWCNTs exhibited the high-
est specic capacitance among the prepared nanocomposite
electrode materials, consistent with the results obtained using
three-electrode and symmetric coin cell congurations. To
assess the stability of these electrode materials, we subjected
them to 10 A g−1 cycling for 2000 cycles in asymmetric coin
cells, as shown in Fig. 13(b). The capacitance retention
percentages for Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-
COP/MWCNTs, and Py-DSDA-COP/SWCNTs nanocomposites
were 78%, 82%, 88%, and 95%, respectively.
This journal is © The Royal Society of Chemistry 2023
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Fig. 12 GCD curves of asymmetric coin cells based on (a) Py-DSDA-COP, (b) Py-DSDA-COP/C60, (c) Py-DSDA-COP/MWCNTs and (d) Py-
DSDA-COP/SWCNTs.

Fig. 13 (a) Specific capacity and (b) stability of asymmetric coin cells based on Py-DSDA-COP, Py-DSDA-COP, Py-DSDA-COP/MWCNTs, and
Py-DSDA-COP/SWCNTs.
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Conclusion

We used the Schiff base reaction to synthesize Py-DSDA-COP
and investigate it as an electrode material for supercapacitors,
demonstrating good porosity and a specic capacitance of 56.18
F g−1 at 1 A g−1. We incorporated different carbonaceous
materials into Py-DSDA-COP to afford Py-DSDA-COP/SWCNTs,
Py-DSDA-COP/MWCNTs, and Py-DSDA-COP/C60 nano-
composites to improve and compare the electrochemical
performance of these electrode materials. The Py-DSDA-COP/
SWCNTs displayed superior specic capacitance (171 F g−1) at
1 A g−1 and higher energy density (23.7 W h kg−1) with
a capacity retention of 93% aer 2000 cycles than those of Py-
DSDA-COP/MWCNTs (123 F g−1) and Py-DSDA-COP/C60 (61 F
g−1) for three electrode congurations. For symmetric coin
cells, the specic capacitance was observed as 79, 54, 19, and 17
F g−1 for Py-DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/
MWCNTs, and Py-DSDA-COP/SWCNTs nanocomposites,
respectively. For asymmetric coin cells, the specic capacitance
was observed as 30.52, 36.57, 79.21, and 113.17 F g−1 for Py-
DSDA-COP, Py-DSDA-COP/C60, Py-DSDA-COP/MWCNTs, and
Py-DSDA-COP/SWCNTs nanocomposites, respectively. The
superior electrochemical properties of Py-DSDA-COP/SWCNTs
are attributed to the good dispersion, higher EDLC behavior,
higher conductivity, and lower diameter of SWCNTs compared
to MWCNTs, while C60 doesn't show any compatibility with Py-
DSDA-COP.
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