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The search for environmentally friendly and sustainable energy sources has become necessary to alleviate
the issues associated with the consumption of fossil fuel such as air pollution and global warming.
Furthermore, this is significant considering the exhaustible resources and burgeoning energy demand
globally. In this regard, hydrogen, a clean fuel with high energy density, is considered a reliable

alternative energy source. The hydrogen evolution reaction (HER) is one of the most promising methods

to produce green hydrogen from water on a large scale. However, the HER needs effective
electrocatalysts to address the concerns of energy consumption; thus, finding active materials has
recently been the main focus of researchers. Among the various electrocatalysts, nickel sulfides and

phosphides and their derivatives with low cost,

high abundance, and relatively straightforward

preparation have shown high HER activity. In this review, we compare the diverse methods in the

synthesis of nickel sulfides and phosphides together with effective synthesis parameters. Also, the
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optimum conditions for the preparation of the desired active materials and their properties are provided.

Then, the performance of nickel sulfide and phosphide electrocatalysts in the HER is addressed. The HER
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1. Introduction

Nowadays, due to the burgeoning world energy demand and
exhaustible fossil fuel resources, renewable energies have
received much attention.” In the last two centuries, although
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activity of the various crystalline phases is compared, and their most active crystalline phases are
introduced. Finally, the present challenges and perspectives for future HER electrocatalysts are presented.

fossil fuels as key energy carriers have played a significant role
in industrial development, they are non-renewable sources and
their formation through natural processes takes millions of
years. Also, there are many environmental concerns including
air pollution and global warming caused by combustion.®*
Thus, finding sustainable energy sources to replace fossil fuels
is vital.
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Fig. 1 Graphical representation of the applications of hydrogen.

Renewable energies such as solar and wind energy are
potential substitutes for fossil fuels. However, their intrinsic
fluctuation has led to their low energy efficiency and has limited
their usage. Accordingly, storing the energy from these types of
sources in the chemical bonds of molecules is a viable solution.®
In this regard, one of the best energy storage molecules is
hydrogen. The high energy density (about three times greater
than standard fuels such as natural gas and gasoline) and clean
hydrogen combustion demonstrate that it is as a considerable
alternative to fossil fuels.*” In addition, currently, hydrogen
plays a crucial role in many applications, making it and its
production methods critical. Fig. 1 shows a graphical repre-
sentation of the applications of hydrogen.
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Hydrogen is mainly produced by natural gas and oil
reforming or coal gasification. However, these processes
consume a great amount of fossil fuels, emit CO,, and have low
energy efficiency due to severe operational conditions. Also, the
presence of carbon residue and sulfur contaminants leads to
the production of hydrogen with low purity, which can easily
poison sensitive catalysts.® Thus, it is necessary to develop
suitable strategies for the efficient and clean production of pure
hydrogen.

The hydrogen evolution reaction (HER), the cathodic half-
reaction of water electrolysis, is a clean and efficient alterna-
tive energy source, which produces highly pure hydrogen from
water or aqueous solutions at ambient pressure and tempera-
ture without undesirable emissions. Similar to many other
electrochemical processes, the HER requires electrocatalysts
with high electrocatalytic activity, long-term stability, and low
price for sustainable hydrogen production to overcome the
energy barriers. Accordingly, Pt-group metals are the best elec-
trocatalysts for the HER in terms of activity. However, their high
cost and scarcity limit their use.®*® Thus, significant research
efforts have been devoted to finding effective non-noble metal
electrocatalysts. In this regard, nickel sulfides, phosphides and
their derivatives with low cost, high abundance, and relatively
easy preparation have shown high activity toward the HER and
are known as promising materials for the efficient electro-
catalysis of the HER. However, these materials have not been
studied in detail. Hence, in this review article, we provide
a complete overview of these materials.

This review introduces the fundamentals of the HER and
approaches for evaluating electrocatalysts in detail. Then, the
different methods for the synthesis of nickel sulfides and
phosphides, including the electrodeposition technique, sol-
vothermal route, thermal decomposition, and vapor-solid
reaction, are investigated and compared, their effective

RSC Adv, 2022, 12, 29440-29468 | 29441


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ra04897c

Open Access Article. Published on 17 oktober 2022. Downloaded on 06.01.2026 20.59.49.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

parameters and how they affect the properties of the synthe-
sized materials are comprehensively discussed, and the best
parameters for obtaining the desired materials and properties
are provided. Then, the performance of nickel sulfide and
phosphide electrocatalysts in the HER is studied, the HER
activity of their different crystalline phases is compared, and
their most active crystalline phase is introduced. Finally, the
present challenges and perspectives for future works are
presented.

2. Fundamentals of the HER

The overall water splitting reaction is as follows:

1 o
H,Oy, —H,, + 502@, E =123V (1)

The HER is the cathodic half-reaction of the overall water
splitting reaction, and its mechanism consists of two main
steps. The first step is the electrochemical hydrogen ion
adsorption reaction, which is known as the Volmer step
(discharge reaction). In this step, a proton or water molecule
reacts with an electron in acidic or alkaline media to produce an
adsorbed hydrogen atom (H*) on the electrode surface (see
reactions (%) and (%)).

Acidic medium:

H" +e” — H* (2)
Alkaline medium:
H,O+e” — H*+ OH™ (3)

In the second step, molecular hydrogen is formed, which can
occur through a chemical desorption reaction (Tafel reaction) or
electrochemical desorption reaction (Heyrovsky reaction). In
the Heyrovsky reaction, a hydrogen ion (H') or water molecule
in the electrolyte combines with an adsorbed hydrogen (H*) on
the electrode and an electron to produce one hydrogen
molecule.

Acidic medium:

H*+H" +e¢  — H, (4)
Alkaline medium
H*+ H,O +e~ — H,+ OH™ (5)

Two adsorbed hydrogens (H*) combine to form molecular
hydrogen in the Tafel reaction.

H* + H* — H, (6)

Thus, in general, the HER has two mechanisms, i.e., Volmer—
Heyrovsky and Volmer-Tafel. The classification of the reactions
based on acidic and alkaline media shows which reaction is
dominant but does not mean that only the mentioned reaction
proceeds in a particular medium. Also, hydrogen is produced in
an electrolyte through both Volmer-Heyrovsky and Volmer-
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Tafel mechanisms, not just one of them. The Tafel plot can be
employed to determine the dominant mechanism and the rate-
determining step, which will be discussed in Section 3.2.

3. Evaluation criteria of HER
electrocatalysts

3.1. Overpotential

In the equilibrium state, the net current density is zero, and to
perform an electrolytic reaction at current densities greater
than zero, energy more than the equilibrium electromotive
force have to be applied to the system. This extra energy is used
to overcome several energy barriers and resistances such as
electron transfer resistance and mass transfer resistance. The
difference between the applied and equilibrium electromotive
forces is the overpotential (7).

n= Eapplied - Eequilibrium [7)

The overpotential is one of the main evaluation parameters
of electrocatalysts. The lower the overpotential an electro-
catalyst needs to deliver a specific current density, the lower the
amount of energy is consumed, and thus the electrocatalyst
shows a better performance. Commonly, electrocatalysts are
evaluated and compared based on the required overpotentials
at current densities of 1, 10 and 100 mA cm 2. The overpotential
at 1 mA cm ™2, which is mainly known as the onset potential,
shows the intrinsic activity of electrocatalysts for triggering an
electrochemical reaction and significantly affects the overall
performance. The current density of 10 mA cm™? is the current
density on which photovoltaic cells usually operate, and the
current density of 100 mA cm ™ > has been selected as a criterion
to show the performance of electrocatalysts on an industrial
scale. These values are measured by linear sweep voltammetry
(LSV). It should be noted that usually, the ohmic loss due to the
resistance of the electrolyte (R;) is compensated to investigate
only the performance of electrocatalysts (Ersy = Emeasured — IRs)-

In the HER field, the electric potential is often reported
relative to the reversible hydrogen electrode (RHE). However,
reference electrodes such as Ag/AgCl and saturated calomel
electrode (SCE) are commonly used in practice. The following
equations can be employed to convert the potential measured
by these two reference electrodes with saturated electrolyte at 25
OC:ll

Erug (V) = Eagaga (V) +0.199 + 0.059 x pH (8)
Erue (V) = Escg (V) + 0.244 + 0.059 x pH 9)

In the case of the use of these two reference electrodes at
different temperatures and concentrations, the above-
mentioned equations must be corrected accordingly.

3.2. Tafel plot

According to the previous section, the overpotential is depen-
dent on the current density. The relationship between the
overpotential and current density, where electron transfer

© 2022 The Author(s). Published by the Royal Society of Chemistry
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controls the electrochemical reaction (most cases), can be
explained by the Butler-Volmer equation, as follows:

=1 {exp (—(1 _I;X ;nFn) —exp (%71:"77)]

where 7, i, iy, o, n, F, R, and T are the overpotential, current
density, exchange current density, transfer coefficient, number
of electrons exchanged, Faraday constant, gas constant, and
temperature, respectively. Eqn (10) can be simplified based on
the cathodic or anodic nature of the reaction and the range of
the overpotential. In the HER, which is a cathodic reaction, at
high overpotentials, eqn (10) can be simplified as follows:

—anFn)

(10)

(11)

= ioexp( RT

Extraction of 7 and converting the logarithm base from e to
10 give the following equation:

_ 23RT 2.3RT
~ anF anF

n logliy| — log|i| = a + blog|i] (12)

As is evident, the overpotential against the logarithm of
2.3RT

current density is a straight line with the slope of b = — —
o

) 3RT, L .
and intercept of a = oF log|iy|.. This linear equation and
«

slope (b) are called the Tafel equation and Tafel slope, respec-
tively, which were proposed for the first time in 1905 by Julius
Tafel.

The values of a and b are usually obtained from LSV. Plotting
the overpotential against the logarithm of current density gives
a curve with a linear part, which can be interpolated with a line
equation, and a and b are obtained from the intercept and slope
of this line, respectively. The exchange current density can be
determined from a according to its definition. It is worth
mentioning that the Tafel slope value can also be obtained
using EIS, which will be explained in Section 3.3.

The unit of Tafel slope is mV dec*, which indicates how
much overpotential has to be applied to increase the current
density by 10-fold. Thus, the lower the Tafel slope of an elec-
trocatalyst, the better its performance. The exchange current
density is the current density at the equilibrium state (zero
overpotential), which indicates the intrinsic activity of electro-
catalysts. Thus, the higher the exchange current density of an
electrocatalyst, the better its electrocatalytic performance.

Besides the above-mentioned application of the Tafel slope
for the evaluation of electrocatalysts, it also can be used to
determine the dominant HER mechanism and the rate-
determining step (RDS) of the HER. The Tafel slopes of the
Volmer, Heyrovsky, and Tafel reactions at 25 °C and assuming
o = 0.5 are 118, 39 and 30 mV dec™ ", respectively. Based on
these values, the RDS of the HER can be specified. For example,
if the Tafel slope of an electrocatalyst is more than 118 mV
dec™!, the Volmer reaction (electrochemical adsorption)
controls the HER or if the Tafel slope is between 118 and 39 mV
dec™’, the HER mechanism is the Volmer-Heyrovsky, and the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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HER proceeds through a relatively fast Volmer reaction and
a controlling Heyrovsky reaction.

3.3. Conductivity/charge transfer resistance

Conductivity or charge transfer resistance is one of the essential
characteristics of electrocatalysts. Specifically, the higher the
conductivity of an electrocatalyst, the less energy will be wasted
during charge transfer. One of the most accurate and advanced
techniques for measuring and comparing the charge transfer
resistance of electrocatalysts is electrochemical impedance
spectroscopy (EIS) (impedance in alternating current (AC)
systems is equivalent to the resistance in direct current (DC)
systems). In this technique, the impedance of electrocatalysts is
measured by applying an AC voltage with a constant amplitude
and frequency usually in the range of 100 kHz to 100 mHz. The
use of an alternating current enables the effects of resistances
caused by redox reactions to be considered or eliminated by
adjusting the frequency. One of the outputs of EIS is the Nyquist
plot, which depicts the imaginary parts of impedances against
the real parts. In the case of electrocatalysts, which usually have
both capacitive and resistive behavior, the Nyquist plot is
approximately a semi-circle. The beginning of the plot (semi-
circle) at high frequencies shows the resistance of the electro-
Iyte. This is because redox reactions cannot proceed at high
frequencies due to the quick change of the anode and cathode,
and only the movement and the conductivity of ions are
monitored. The end of the plot (semi-circle) at low frequencies
(close to zero) in which the current is somehow direct shows all
the resistances of the system, including the charge transfer
resistance of the electrolyte and electrocatalyst. Thus, the
diameter of the semi-circle indicates the charge transfer resis-
tance of the electrocatalyst (note that in general, fitting tech-
niques should be applied to extract the resistance values). To
compare different electrocatalysts, the smaller the diameter of
the EIS semi-circle of an electrocatalyst, the smaller its charge
transfer resistance, and in terms of conductivity, it is the best
electrocatalyst. Note that Nyquist plots and EIS are only
addressed practically here, while their fundamentals are more
than explained. Thus, it is suggested that EIS be studied in
detail in the relevant sources.

In addition to evaluating conductivity, a newly developed
application of EIS is the calculation of the Tafel slope.” To do
this, EIS is performed at different amplitudes, and in each case,
the charge transfer resistance (R.) is extracted. Then, the

1
amplitude is plotted versus log R which gives a straight line,
Cl

with its slope equal to the Tafel slope of the electrocatalyst. The
Tafel slope calculated by this method is more accurate than that
calculated using LSV data because only the charge transfer
resistance of the electrocatalyst is included, and the other
resistances of the system, such as the resistance of the elec-
trolyte, are not considered.

3.4. Stability and durability

Stability/durability is one of the most important properties of
electrocatalysts, especially in industrial applications. This is
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because with the use of more stable and durable electro-
catalysts, maintenance costs are lowered, and thus processes
become more cost-effective. The stability of electrocatalysts is
usually evaluated using two electrolysis approaches, i.e., galva-
nostatic polarization (chronopotentiometry) and potentiostatic
polarization (chronoamperometry). In chronoamperometry/
chronopotentiometry, the current density/overpotential is
tracked against time at a constant overpotential/current density.
After a period of time, if the change in potential or current
density is negligible, the electrocatalyst is considered stable. It
is worth mentioning that the currently used electrocatalysts in
industrial water electrolyzers have shown a stable operation for
as long as 80 000 h."® The durability of electrocatalysts can be
assessed by continuous cyclic voltammetry (CV) tests. In this
method, the performance of the electrocatalyst is evaluated by
LSV plots before and after applying several continuous CV or
LSV tests. The smaller the difference between the LSV curves of
an electrocatalyst, the more durable it is.

3.5. Electrochemical active surface area

Three types of surfaces can be considered for an electrocatalyst,
as follows: (1) geometric surface, (2) physical specific surface
area (SSA) and (3) electrochemical active surface area (ECSA).
The geometric surface is the area that can be seen visually and
measured using simple tools such as a ruler. This surface
usually is used to report the current density relative to the
surface area. The SSA is the total surface area of a material
exposed per mass unit, which is measured by gas adsorption
methods. However, the whole SSA is not active for reactions,
and an electrocatalyst with a high SSA does not necessarily have
high electrocatalytic activity. Thus, the surface area that is active
for a reaction becomes important in the field of electrochemical
reactions, which is called the electrochemical active surface
area (ECSA). The higher the ECSA per unit of mass of an elec-
trocatalyst, the more active sites it provides for the desired
reaction, resulting in a better electrocatalytic performance. In
the HER field, usually a CV test is used to calculate the ECSA. In
this case, initially, the open circuit potential (OCP), which is the
working potential of the electrode without applying any load to
the system, is measured. The CV test is conducted at various
scan rates in a potential range around the OCP. This potential
range is selected because the current density is almost non-
faradaic, and the electrical energy is consumed to store
charges on the surface of the electrode. Then, the current
density is plotted versus the scan rate, which gives a line with
a slope equal to the electrochemical double-layer capacitance
(Caqy) of the electrocatalyst. The selected current densities must
be non-faradaic (charging) and almost in the plateau part of the
CV curves selected at the OCP. To consider both the anodic and
cathodic paths in CV, the difference between the cathodic and
anodic current density is commonly plotted against scan rate.
Accordingly, it must be noted that the Cq, is equal to half of the
slope. The Cg is directly proportional to the ECSA. Thus, the
higher the Cy, the higher the ECSA. Based on the type of
materials and the capacitance per unit of area (C;), the ECSA can
be calculated according to the following equation:
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ECSA = Cy/C, (13)

3.6. Turnover frequency

The electrocatalytic performance of electrocatalysts and their
intrinsic activity is a function of their mass loading and SSA.
Different electrocatalysts have different loadings and SSAs,
making it difficult to compare their intrinsic activity. For
example, an electrocatalyst with lower intrinsic activity but
higher mass loading or SSA may perform better than an elec-
trocatalyst with higher intrinsic activity but lower mass loading
or SSA. Thus, comparing the intrinsic activity of electrocatalysts
is challenging, and defining a parameter that can indicate the
intrinsic activity of materials regardless of the mass loading and
SSA is of great importance. The turnover frequency (TOF) is
obtained by normalizing the amount of evolved hydrogen in
relation to the number of active sites, which can indicate the
intrinsic activity of electrocatalysts and used to compare
different electrocatalysts in a meaningful manner. In the HER
field, the TOF is defined as the number of hydrogen molecules
produced per number of active sites in one second. According to
this definition, the higher the TOF of an electrocatalyst, the
higher its intrinsic activity. Because the number of produced H,
per unit time depends on the current density and overpotential,
the TOF of different electrocatalysts is compared at the same
overpotentials. At the same overpotentials, an electrocatalyst
with a higher TOF has higher intrinsic activity toward the HER.
It should be noted that the number of active sites is calculated
using the ECSA based on some assumptions that make calcu-
lating the exact number of active sites inaccessible. Neverthe-
less, the TOF can be considered an acceptable parameter for
comparing the intrinsic activity of different electrocatalysts.

3.7. Hydrogen adsorption

Hydrogen adsorption is one of the most important aspects of
HER electrocatalysis. Materials with moderate (neither too low
nor too high) hydrogen adsorption ability show better perfor-
mances in the HER than materials with too low or too high
hydrogen adsorption ability. In detail, according to the Sabatier
principle,™ the closer to zero the Gibbs free energy of hydrogen
adsorption (AGy), the better the HER performance. This is
because although materials with high hydrogen adsorption
ability (AGy < 0) can adsorb hydrogen species such as H' or H,0
very well, they cannot properly release hydrogen in the desorption
steps (Heyrovsky or Tafel reaction), thus limiting the reaction
rate. Alternatively, materials with low hydrogen adsorption ability
(AGy > 0) will face the problem from the first step (Volmer
reaction) because they cannot adsorb reactants of the HER well.
Therefore, the best electrocatalysts in terms of hydrogen
adsorption are those that have a closer to zero AGy. In addition to
being used as a criterion for hydrogen adsorption ability, AGy is
also used in combination with the exchange current density to
provide a good view for comparing the HER activity of different
materials. For this purpose, the exchange current densities of
materials are depicted versus their AGy, which gives a semi

© 2022 The Author(s). Published by the Royal Society of Chemistry
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theoretical-semi experimental volcano-type plot. In the volcano
plot, the best materials are at the top of the plot, which are Pt-
group metals. Thus, the closer to the top of the volcano plot
the location of an electrocatalyst, the better it is.

4. Synthesis methods

4.1. Electrodeposition technique

Electrodeposition is an easy synthesis method with mild
conditions in which both synthesis and deposition occur
simultaneously. Briefly, in the electrodeposition technique,
a precursor solution is prepared and used as the electrolyte.
Then, by applying an electric field in the electrolyte in an elec-
trochemical cell, cations move toward the cathode and deposit
through a reduction reaction. The electrolyte is usually a modi-
fied Watts bath in the electrodeposition synthesis of nickel
sulfides and phosphides. The conventional Watts bath, which is
commonly used for nickel electroplating, consists of NiSO,-
-7H,0, NiCl,-6H,0, and H3BO;. For modification, sulfur and
phosphorus precursors are added to the bath. Various precur-
sors are used as the sulfur source such as thiourea
(SC(NH,),),""?* sodium thiocyanate (NaSCN)** and sodium
thiosulfate (Na,S,03-5H,0).>* However, in the case of the
phosphorus precursor, NaH,PO,-H,O is generally always
used.**! In addition to sulfur and phosphorus precursors, it is
common to use salts such as NaCl,'*?2%**?* KCI** and NaOAc
(sodium acetate)***” to increase the conductivity of the electro-
lyte. However, the Watts bath and modifiers only ease the
synthesis procedure, and in general, it is possible to synthesize
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nickel sulfides and phosphides via the electrodeposition
method using a solution of only nickel and sulfur or phos-
phorus precursors. For example, Cao et al.>* synthesized Ni-P
on nickel foam using an aqueous solution containing only
NiCl,-6H,0 and NaH,PO,-H,0 as the nickel and phosphorus
precursor, respectively.

The parameters affecting the electrodeposition method
include the type of electrolysis (galvanostatic, potentiostatic,
cyclic voltammetry, etc.), current density (in galvanostatic
mode), potential (in potentiostatic mode), number of cycles (in
cyclic voltammetry mode), concentration of the precursors,
electrodeposition time, temperature, pH and additives
(conductivity adjusters, capping agents, etc.). The effects of
these parameters are discussed below.

Han et al.*® investigated the effect of several parameters,
including the concentration of the sulfur precursor, current
density, pH of the electrolyte, and temperature on the sulfur
content of the coating. Fig. 2a shows the effect of thiourea
concentration at two different current densities. At concentra-
tions below 100 g L', the sulfur content of the coating
increased sharply as the thiourea concentration increased.
However, at concentrations above 100 g L', the thiourea
concentration had little effect on the sulfur content of the
coating. A similar result also was obtained by Paseka.*

Fig. 2b shows the effect of electrodeposition current density
in the range of 5 to 30 mA em ™ on the sulfur content of the
deposited nickel sulfide. The sulfur content decreased with an
increase in current density. This is because of the different
polarizability of the Ni** ion and its complex with thiourea (Ni

Fig.2 Effect of electrodeposition parameters on the sulfur content of the coating: (a) effect of the thiourea concentration at current densities of
(1) 10 mA cm~2and (2) 30 mA cm~2 and (b) effect of the electrodeposition current density at thiourea concentrations of (1) 100 g L™t and (2) 50 g
L~ (reproduced from ref. 18 with permission from Elsevier, Copyright 2003). SEM images of the Ni—P electrode at different electrodeposition
times of: (c) 75's, (d) 150 s, (e) 300 s and (f) 1200 s (reproduced from ref. 17 with permission from Elsevier, Copyright 2001).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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[CS(NH,),]*") at high current densities, leading to different
deposition rates, and finally, a decrease in sulfur content. This
result was also reported by Zhang et al.** In the following, Han
and coworkers investigated the effect of pH and temperature.
They found that an increase in pH decreased the sulfur content
due to the co-deposition of hydride ions at pH above 4. Also, an
increase in temperature favored the dissolution of the depos-
ited nickel and slightly increased the sulfur content deposited.
Among these four factors, thiourea concentration and current
density had the greatest effect on the sulfur content of the
nickel sulfide coating, while pH and temperature had little
effect on it. Anyway, the electrodeposition of nickel sulfides and
phosphides is usually conducted in acidic media because it is
assumed that sulfur and phosphorus tend to be electro-
deposited more at low pH.

Although the temperature has little effect on the sulfur
content of Ni-S electrocatalysts, the phosphorus content of Ni-P
electrocatalysts dramatically depends on temperature.
However, there are contradictory reports about how tempera-
ture affects the phosphorus content. In this regard, Burchardt*
examined the effect of temperature on the phosphorus content
of Ni-P electrocatalysts. He reported that by increasing the
temperature, the phosphorus content increased, whereas
Wasalathanthri et al.* reported that a decrease in temperature
increased the phosphorus content. Thus, to date, it is only
known that temperature affects the phosphorus content of Ni-P
electrocatalysts, but it is not clear how it is influenced by
temperature, which needs to be further investigated in future
works.

Electrodeposition time is another parameter affecting the
electrodeposition method. The electrodeposition time can
affect the property of electrocatalysts by increasing their thick-
ness and changing the morphology of the coating. In this
regard, Paseka'” studied the effect of electrodeposition time on
the morphology of Ni-P and Ni-S electrocatalysts. Fig. 2c—f
shows the SEM images of Ni-P electrodes synthesized at
different electrodeposition times. As can be seen, the amount of
surface cracks increased with electrodeposition time. The
calculation of the roughness factor for Ni-P and Ni-S electrodes
at different electrodeposition times also confirmed this effect,
where the increase in electrodeposition time increased the
roughness factor of the electrodes.

Although electrodeposition mainly gives rise to amorphous
structures, crystalline nickel sulfides have also been synthesized
using this method. Current density is one of the critical factors
determining the crystalline phase of nickel sulfide synthesized
by the electrodeposition method. Zhang et al** synthesized
amorphous nickel sulfide, Ni;S, and NiS at 45 °C by changing
the electrodeposition current density in the range of 6 to 12 mA
cm 2. At current densities of 12, 10, 8 and 6 mA cm ™2, amor-
phous, a mixture of amorphous and Ni;S,, almost pure Ni;S,
and a mixture of Ni;S, and NiS phases were obtained, respec-
tively. In fact, sulfur-rich phases were obtained at lower current
densities. This is because as mentioned, more sulfur is depos-
ited as the electrodeposition current density decreases. In
another study, Murthy et al.** synthesized a pure NiS crystalline
phase via an electrodeposition method. They used cyclic
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voltammetry in the range of —1 to 0.4 V for deposition and re-
ported that the activity of the resulting electrocatalyst in the
HER depended on the number of cycles. Accordingly, in their
work, the best sample was obtained at 25 cycles. It is worth
mentioning that no report was found about the direct synthesis
of crystalline phases of nickel phosphide by an electrodeposi-
tion method, which should be considered a subject to be
studied in future works.

One of the advantages of electrodeposition is the facile
synthesis of various alloys and composites. Typically, only
a suitable precursor of the desired material is required together
with the main precursors. In this regard, the synthesis of Co-
Ni-S with CoCl,-6H,0%*3 or CoSO,-7H,0,* Mn-Ni-S with
MnSO,-2H,0,* B-Ni-S with Na,B,0,-10H,0* and Ni-P-Ag
with AgNO; (ref. 38) are some examples.

4.2. Solvothermal route

The solvothermal route is a popular and facile method for the
synthesis of various materials, including nickel sulfides and
phosphides. Concisely, in the standard solvothermal method,
a solution of precursors is heated in an autoclave at a certain
temperature for a specific time. If the solvent is water, this
method also is called hydrothermal synthesis. The synthesis of
nickel sulfides and phosphides via the solvothermal method
has been conducted with water (hydrothermal method)****” and
other solvents such as ethanol,*® oleylamine,* ethanolamine,>
ethylene glycol,* triethylene glycol,”> ethylenediamine® and
mixed solvents.>** The most used nickel precursor is nickel
chloride,’**#>47:545657 while other precursors such as nickel
nitrate,*%® nickel acetate***>9*561-63 and nickel foam?3*8°0-%3
have also been used. Similar to the electrodeposition method,
for the synthesis of nickel sulfides, different sulfur precursors
such as sulfur powder,****%* thiourea*»**** and thio-
acetamide® have been used, but only NaH,PO,-H,0*"**%¢:57:5
and red phosphorus*#°%32-53386 haye been commonly used as
the phosphorus precursor in the synthesis
phosphides.

There are several parameters affecting the solvothermal
method, which are mainly synthesis time, temperature, pH,
type of precursors, type of solvent, concentration of precursors,
and additives (capping agents, reducing agents, shape
controller, etc.). The effects of these factors, specifically on the
synthesis of nickel sulfides and phosphides, are discussed
below.

The synthesis time is one of the important parameters in the
solvothermal method. The general effect of the synthesis time is
through Ostwald ripening. Ostwald ripening is one of the
particle growth mechanisms in the wet synthesis methods,
including solvothermal route. Based on this mechanism, small
particles have high solubility and the potential to dissolve in
a solvent as they are synthesized due to their high surface
energy. After dissolution, these particles heterogeneously grow
on the larger particles with higher stability. The longer the
synthesis time, the more these smaller particles dissolve and
redeposit, leading to the formation of larger particles. Thus, one
of the effects of prolonging the synthesis time in the

of nickel
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Fig. 3 Effect of synthesis time on: (a)—(d) structure, (e) crystalline phase (reproduced from ref. 60 with permission from Elsevier, Copyright 2015),

and (f)—(h) morphology of nickel phosphides.**

solvothermal method is the formation of larger particles. It is
worth mentioning that the Ostwald ripening mechanism, in
addition to increasing the average particle size, also narrows the
particle size distribution. Beside these general effects, the
reaction time can also change the crystalline phase of the
product. In the solvothermal synthesis of nickel phosphides, it
seems that a longer reaction time favors the synthesis of Ni;,Ps
compared to Ni,P. Liu et al.*® reported that using a surfactant-
aided solvothermal method at a synthesis time of 8, 16-24,
and 36 h, spherical Ni,P, core-shell Ni,P/Ni;,Ps, and spherical
Ni;,P5s were achieved, respectively (Fig. 3a—e). This hypothesis
was also seen in the work by Liu et al.,** where under identical
conditions and different reaction times of 24 and 48 h, almost
pure Ni,P and Ni;,P5 were achieved, respectively. The synthesis
time can also influence the morphology of the product. In this
regard, Ni et al.** investigated the effect of the synthesis time on
the morphology of the Ni;,Ps product. According to Fig. 3f-h, by
prolonging the synthesis time from 3 to 15 h, almost smooth
spheres were converted to an immature porous structure, and
then a compact porous superstructure.

Temperature is another effective parameter in the sol-
vothermal method. An increase in temperature directs the
synthesis to the nucleation and formation of small particles. For
example, Liu et al* showed that increasing the reaction

© 2022 The Author(s). Published by the Royal Society of Chemistry

temperature from 120 °C to 200 °C decreased the average
particle size of Ni,P from 200 to 20 nm. In addition to the
decrease in particle size, synthesis at higher temperatures has
more potential to provide the needed crystallization energy,
causing the growth of more grains. This can be seen in the
sharper peaks of the XRD patterns, as was reported in work by
Wang et al.,*® in which the crystallite size of bimetallic sulfide
CoNi,S, was calculated using the Scherrer equation, which
increased from 9.3 to 14.3 nm with an increase of temperature
from 160 °C to 240 °C. Generally, the solvothermal synthesis of
nickel sulfides and phosphides is mainly conducted between
120 °C to 180 °C. Temperature can also change the crystalline
phase of the product. In the solvothermal synthesis of nickel
phosphides, it seems that higher temperatures are conducive to
the synthesis of Ni;,P5; compared to Ni,P. In a comprehensive
study, Deng et al.*® investigated the synthesis of nickel phos-
phides via the solvothermal method under different conditions.
They showed that with the use of different nickel precursors and
different mixed solvents, an increase in temperature favored the
synthesis of Ni;,Ps relative to Ni,P (Fig. 4a—-d). This was also
observed in the work by Menezes et al,** where at constant
conditions and different synthesis temperatures of 200 °C and
140 °C, Ni;,P5 and Ni,P were formed, respectively.
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Fig. 4 Synthesis of nickel phosphides via the solvothermal method with different nickel precursors: (a) NiCly-6H,0, (b) NiSO4-6H,0, (c)
Ni(acetate),-4H,0 and (d) Ni(NO3),-6H,O (mixed solvents are a mixture with equal volume ratio and MeOH, EtOH, EG, GL, and DEG stand for
methanol, ethanol, ethylene glycol, glycerol and diethylene glycol, respectively).** SEM images of NiCo,S4: (e) without using nickel foam and (f)
with use of nickel foam (reproduced from ref. 66 with permission from Wiley, Copyright 2016). SEM images of (g) V-doped NizS, using Naz-
VOy4-12H,0 and (h) NizS; (reproduced from ref. 68 with permission from the American Chemical Society, Copyright 2017).

The pH of the solution is also one of the parameters affecting
the solvothermal method. This parameter is crucial, especially
in synthesizing nickel phosphides with NaH,PO,-H,O0. This is
because when NaH,PO,-H,O is dissolved in the solution, it
dissociates into H,PO,'” and Na'. H,PO,'~ needs OH™ to
produce PH;, which will react with Ni** to form nickel phos-
phides. In this regard, Ni et al.** found that at pH below 4, no
product was obtained, and thus they used NaHCO; as the pH
adjuster. The reactions for the synthesis of Ni,P and Ni;,Ps with
NaH,PO,-H,O are as follows:

PH; generation reaction:

3H,PO; + OH™ — PH; + 2HPO?™ + H,0 (14)

Nickel phosphide formation reactions:
12Ni** + 5PH; + 9¢~ — NijoPs| + 15SH * (15)
ONi** + PH; + ¢~ — Ni,P| + 3H" (16)

The direct deposition of catalysts on substrates without the
use of a binder is one of the strategies to improve the ion/
electron transfer rate because polymer binders such as Nafion
and PVDF block the active sites and reduce the activity of the
electrocatalysts. In the solvothermal method, if a suitable
substrate such as nickel foam is placed directly in the autoclave,
the synthesis and deposition coincide, and there is no need to
use polymer binder. Nickel foam is one of the substrates with
the potential to be used as both a substrate and nickel
precursor.?>**#%*33 Moreover, nickel foam provides the oppor-
tunity to synthesize one-dimensional structures. Sivanantham
et al.*® synthesized NiCo,S, nanowire arrays using nickel foam
as the substrate via a two-step solvothermal method. They re-
ported that nickel foam was necessary for the growth of the one-
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dimensional structure because when NiCo,S, was synthesized
without nickel foam, an aggregated and irregular structure was
obtained (Fig. 4e and f).

Similar to electrodeposition, the solvothermal method also
has high ability to synthesize various complex compounds.
Dhandapani et al.®” synthesized N-doped carbon-embedded
NizS, (Ni3S,/NC) nanocubes via the solvothermal method.
They synthesized Ni;S,/NC by adding N-doped carbon dots
together with Ni;S, particles to an autoclave. Yu et al.>* simply
coated NigP; nanosheets with carbon using glucose as the
carbon source. In another work, Qu et al® synthesized
vanadium-doped Ni3S, nanowire arrays via the solvothermal
method. They found that using Na;VO,-12H,0 salt, in addition
to vanadium doped in the structure of Ni;S,, caused the growth
of one-dimensional nanowires. This is because, under the same
conditions and without using vanadium precursor, they
observed the formation of Ni,S, triangle-shaped nanoparticles
(Fig. 4g and h). This result was also reported by Shang et al.®®

4.3. Thermal decomposition

Thermal decomposition is a method for synthesis based on the
decomposition of materials in which the precursors are heated
to a specific temperature to break the existing chemical bonds
and create new ones. In the thermal decomposition synthesis of
nickel sulfides and phosphides, usually, nickel(u) acetylaceto-
nate,””” Ni(NO;),-6H,0,* nickel(n) acetate (Ni(OAc),-4H,-
0% and nickel foam® as the nickel precursor, 1-
dodecanethiol,* cysteamine® and thioacetamide®** as the
sulfur precursor, trioctylphosphine (TOP),7*7%77-79828  trj-
octylphosphine oxide (TOPO)™ and both of them”7**! as the
phosphorus precursor, and oleylamine (OAm),** 1-octadecane
(ODE), pentanediol,® n-octyl ether,””* and triethylene glycol®
as the solvent have been used.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(a) XRD pattern of nickel sulfides at different conditions: (A) Ni : S=0.18 in OAm, (B) Ni : S = 0.08 in OAm, (C) Ni; S= 0.18 in ODE, and (D)

Ni: S = 0.18 in OAm.?* (b) XRD pattern of nickel phosphides at different precursor ratios and synthesis time of 2 h. (c) XRD pattern of nickel
phosphides at different synthesis times and precursor ratio of (P/Ni) = 4.48 (reproduced from ref. 71 with permission from Wiley, Copyright 2018).
SEM images and corresponding particle diameter (for spheres) or length (for nanorods) distributions of nickel phosphides at different injection
rates: (d) and (e) all in one pot, (f) and (g) dropwise, and (h) and (i) with lower rate injection than that of (f) and (g).”®

The thermal decomposition synthesis of nickel sulfides and
phosphides is usually carried out at temperatures of around
280 °C and 320 °C, respectively. This is because at these
temperatures, the sulfur-carbon (S-C) and phosphorus-carbon
(P-C) bonds in the organic precursors are broken.”*"#*% Thus,
the temperature is usually a known and constant value in the
thermal decomposition synthesis of nickel sulfides and phos-
phides. Accordingly, other factors such as the precursor ratio,
type of solvent, synthesis time, injection rate, and additives are
adjusted to synthesize materials with desired properties.

As mentioned, the precursor ratio and type of solvent are two
parameters affecting the thermal decomposition method. Pan
et al.** investigated the effect of these factors on the structure of
the synthesized nickel sulfides. According to their result, at the
constant condition of 280 °C and 5 h synthesis time, the crys-
talline phase of the synthesized nickel sulfides depended on the
nickel to sulfur precursor ratio (Ni : S) and the type of solvent.
Consequently, by using OAm and decreasing the Ni: S ratio
from 0.36 to 0.08, the crystalline phase changed from Ni;,Se to -
NiS. By lowering this ratio, more sulfur atoms diffused from the
sulfur precursor to the nickel precursors, leading to the more
sulfur-rich phase of NiS. Regarding the solvent effect, at
a constant Ni : S ratio of 0.18 using OAm and octadecane (ODE),
Ni,Se and a mixture of a-NiS and B-NiS were obtained, respec-
tively. This result can be ascribed to the different capping
abilities of these solvents. ODE has weaker capping ability than
OAm, leading to the more effortless transfer of sulfur atoms and
the formation of NiS (Fig. 5a). The effect of the precursor ratio

© 2022 The Author(s). Published by the Royal Society of Chemistry

also has been investigated in the synthesis of nickel phos-
phides. Pan et al.” synthesized different crystalline phases of
nickel phosphide at constant conditions and just by changing
the molar ratio of TOP, as the phosphorus precursor, to
Ni(acac),, as the nickel precursor. Although they could synthe-
size pure Ni,;,Ps and Ni,P by changing the precursor ratio, pure
NisP, was not obtained in their experiments even by increasing
the precursor molar ratio from 2.18 to 8.75. In another work, Li
et al.”* completed the previous work and investigated the effect
of both precursor ratio and synthesis time on the crystalline
phase of the obtained nickel phosphide. They reported that
when the molar ratio of TOP to Ni(acac), was 0.56, the product
was pure Nij,Ps. By increasing this ratio from 0.56 to 1.12, the
pure Ni;,P5s was converted to a mixture of Ni;,P5 and Ni,P. A
further increase in the ratio to 2.24 resulted in pure Ni,P.
However, although at the ratio of 4.48, some weak peaks of
NisP, appeared, pure NisP, was not achieved even by increasing
the ratio to 5.6 (Fig. 5b). This showed that the desired crystalline
phase was not achieved only by increasing the precursor ratio.
Thus, they also investigated the effect of synthesis time, where
they found that at the constant precursor ratio of 4.48 and
increasing the synthesis time from 1 to 2 h, a mixture of Ni,P
and Nis;P, turned to pure NisP, (Fig. 5c). Thus, it can be
proposed that a higher P/Ni precursor ratio and longer
synthesis time are favorable for synthesizing phosphorus-rich
nickel phosphides.

The injection rate of the precursors is another parameter
affecting the thermal decomposition method. Li et al.” reported
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that when a mixture of Ni(acac), and TOP was injected into
a solution of TOPO in one pot at 330 °C, small particles with
a diameter of around 10 nm were obtained, whereas when the
mixture was injected dropwise in 1 h into the TOPO solution,
nanorods with a length of up to 30 nm and an average diameter
of 3 nm were achieved. In another work, Seo et al.”® synthesized
nanospheres and nanorods of Ni,P by changing the injection
rate. Ni,P nanospheres were obtained by adding all the TOP into
a solution containing Ni(acac),, while Ni,P nanorods were
synthesized by continuous injection of a mixture of Ni(acac),
and TOP into the TOPO solution. They also changed the
nanorod length by adjusting the injection rate, and thus a lower
injection rate favors the synthesis of longer nanorods (Fig. 5d-
i). In a similar work, Chung et al.”® obtained short and long Ni,P
nanowires by using this effect. Thus, it can be concluded that
lower injection rates facilitate the formation of one-
dimensional structures.

Reducing agents can ease the synthesis of nickel sulfides and
the formation of more sulfur-rich phases. Zheng et al®
synthesized NiS, NiS,, and Ni;S, phases via a reducing agent-
assisted thermal decomposition method. They synthesized
NiS and NiS, with a constant amount of precursors and
exploited hydrazine hydrate (N,H,-H,0) as the reducing agent
in the synthesis of NiS, to increase the reducing ability of the
solvent (triethylene glycol). Triethylene glycol has low reducing
ability because the electron in the reduction of thioacetamide
into S, is produced through the slow oxidation of its hydroxyl
groups into aldehydes. By using N,H,-H,O as the reducing
agent, an [S-NHHN-S]>~ complex is formed, which at high
temperatures easily turns to S,>~ and causes the synthesis of
a more sulfur-rich NiS, phase.

4.4. Vapor-solid reaction

The vapor-solid reaction (VSR) is a standard method for
synthesizing metal sulfides and phosphides, especially sulfur-
rich and phosphorus-rich samples. In this method, sulfuriza-
tion or phosphorization is typically conducted by heating
a suitable sulfur or phosphorus precursor in a tube furnace to
increase the vapor pressure of the precursor or to decompose it
and create a sulfurizing or phosphorizing vapor. Then, the
vapor is transferred to the nickel precursor location by flowing
an inert/carrier gas such as nitrogen or argon inside the tube
furnace. The vapor reacts with the solid-state nickel precursor
(in general, metal precursor) and forms nickel sulfides or
phosphides. Thus, this method is called vapor-solid reaction
(wrongly, sometimes this method is called chemical vapor
deposition (CVD)).

This method always uses sulfur powder as the sulfur
precursor. However, according to the synthesis procedure
explained above, other sulfur precursors that have sufficient
vapor pressure at moderate temperatures or sulfur precursors
will be decomposed to a gas mixture containing sulfurizing
components have the potential to be used as sulfur precursors.
For example, Li et al® used a sulfur-containing resin and
synthesized Ni;S, nanowires via the VSR method. Regarding the
phosphorus precursors, similar to the solvothermal method,
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only NaH,PO,-H,0 and elemental red phosphorus were used as
the phosphorus precursors. However, again, based on the VSR
synthesis procedure, it seems that other phosphorus precursors
with an appropriate vapor pressure at not too high temperature
or decomposable phosphorus precursors that decompose to
a gas mixture contain a phosphorizing component by heating to
a specific temperature can also be used as potential phosphorus
sources.

The VSR synthesis of nickel sulfides and phosphides can be
carried out through one-step or two-step synthesis. In the one-
step synthesis, nickel foam is used as the nickel precursor. In
the two-step synthesis, initially, a nickel precursor (mostly
Ni(OH),) is synthesized mainly via the solvothermal method,
but various methods such as electrodeposition,*® precipita-
tion®** and electrospinning® can generally be used. Then, the
nickel precursor is placed in a tube furnace for sulfurization or
phosphorization in the second step. These two routes each have
advantages and disadvantages. For example, one-step VSR
synthesis is more straightforward and shorter due to having one
less step, but it is limited to the use of nickel foam as the nickel
precursor and has limited flexibility to alter the morphology of
the product. Alternatively, two-step synthesis can enable the
synthesis of nickel sulfides and phosphides from different
nickel precursors, synthesis of various composites, and tuning
the morphology of the nickel precursor and the final product;
however, it needs one more step, which makes the whole
procedure more complicated and longer.

The main parameters affecting the VSR method are
temperature, synthesis time, position of the precursors, amount
of precursors, and type of precursors. The effects of these
factors, in particular, on the VSR synthesis of nickel sulfides and
phosphides are discussed in the following. Tempera