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Methanol (MeOH) adulteration in alcoholic beverages resulting in irreparable health damage demands
highly sensitive and cost-effective sensors for its quantification. As carbon dots are emerging as new
biocompatible and sustainable light-emitting detectors, this work demonstrates the hydrothermally
prepared nitrogen-doped oxidized carbon dots (NOCDs) as on-off fluorescent nanoprobes to detect
MeOH traces in water and alcoholic beverages. The presence of 1% of MeOH in distilled water is found
to decrease the NOCD fluorescent emission intensity by more than 90% whereas up to 70% ethanol
(EtOH) content changes the signal to within 20% of its initial value. HR-TEM analysis reveals the
agglomeration of the nanoprobes suspended in MeOH. Due to their selectivity towards MeOH, the

fluorescent nanoprobes were successfully tested using a few MeOH spiked branded and unbranded

Received 24th March 2020 ) . . . . .
Accepted 2nd June 2020 Mexican alcoholic beverages. Varying degrees of signal quenching is observed from the fluorescent
nanoprobes dispersed in different pristine beverages with a detection limit of less than 0.11 v%. Herein,

DOI: 10.1039/d0ra02694h we establish a new perspective towards economically viable non-toxic fluorescent probes as a potential
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1. Introduction

Methanol (MeOH) contamination of traditional alcoholic
beverages is increasing all over the world and has caused deaths
in several countries including Indonesia, Nigeria, Mexico and
India. According to the World Health Organization (WHO),
approximately 2.5 million deaths occur every year due to the
harmful use of alcohol." The production of alcoholic beverages
via fermentation has been a tradition all over the world. Typical
beverages from Mexico (Tequila and Mezcal) are produced in
enormous amounts by innumerable unmonitored/uncertified
small-scale enterprises located in almost all parts of the
country. As the basic method to produce alcohol is by fermen-
tation and simple distillation,* lack of proper fermentation and
distillation techniques has been one of the main reasons
leading to high risk of MeOH content in alcoholic beverages.®
MeOH contamination/adulteration of traditionally fermented
beverages has resulted in irreparable health damage (brain,
liver and permanent blindness) and even death.* The most
common source of MeOH contamination in Mexico and several
other developing countries is the above-mentioned illegal
manufacturing and distribution of alcoholic beverages coming
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alternative for the detection of MeOH in alcoholic beverages.

as a cheaper alternative for the local economically constrained
people along with the deliberate adulteration of beverages (for
cost reduction) from corrupt, opportunistic/unauthorized
producers/vendors.

The wide diversity in the sources (such as fruits, cassava,
palm wine, sugar cane, etc.) and fermentation processes
involved in the elaboration process of alcoholic beverages
makes the authenticity monitoring a challenging task. Besides,
the contaminants existing in the alcoholic beverages are usually
studied with expensive and sophisticated methods such as gas
chromatography,”” liquid chromatography® and mass spec-
trometry,>'® Therefore, it is very important to look for a facile
and cost-effective methods, to detect MeOH in alcoholic
beverages.

Carbon dots (CDs) have attracted much attention recently,
due to their non-toxic nature, biocompatibility, low-cost,
chemical inertness and ease of fabrication." Furthermore,
doping of CD's with heteroatom elements (such as nitrogen,
phosphorus, boron, etc.) changes their chemical and optical
properties, extending their applications in various field. Among
these heteroatoms, nitrogen is an ideal dopant due to its similar
atomic size as carbon. Recently, chemical sensors from carbon
nanoparticles have been demonstrated and employed to detect
the commonly used organic solvent acetone'” in water-based
fluids, as well as to detect water in organic solvents.'*' In
particular, P. Das et al., reported the detection of acetone' in
human fluids (blood and urine) using nitrogen and sulfur co-
doped carbon dots prepared with kappa carrageenan and urea

This journal is © The Royal Society of Chemistry 2020
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through fluorescence quenching. In addition, CDs functional-
ized covalently with an imidazole derivative'® has been reported
to regain the fluorescence (quenched due to photoinduced
electron transfer from imidazole to CDs) in the presence of trace
amounts of water in organic solvents. Recently, hydrothermally
prepared poorly water-soluble carbon dots from o-phenyl-
enediamine revealed solvent dependent emission (D. Chao
et al.)** and have been used for the visual as well as quantitative
detection of water in different organic solvents. An increase in
the solvent polarity was found to shift their absorption as well as
their emission peak, resulting in a change from cyan to orange
fluorescence. Similarly, J. Wei et al.*® showed excellent fluores-
cent properties of CDs prepared by the solvothermal method in
organic solvents (ethanol, tetrahydrofuran, 1,4-dioxane) from
sodium citrate, carbamide and cobalt chloride as precursors
and methylbenzene as a solvent, for fluorescence quenching
based sensitive detection of water in organic solvents.

Intrinsic characteristics, as well as specificity of CDs can be
tuned using different sources, dopants and synthesis
methods.”” The present work demonstrates fluorescent “turn-
off” sensors based on nitrogen-doped oxidized carbon dots
(NOCDs), prepared hydrothermally using citric acid and urea as
carbon and nitrogen precursors respectively. We verified the
selectivity of our sensors for MeOH with respect to different
polar solvents such as ethanol (EtOH), isopropyl alcohol (IPA),
acetonitrile (ACN), dimethylformamide (DMF), tetrahydrofuran
(THF) and acetone (AC). Synthesized nanoprobes were able to
quantify concentrations of MeOH as low as 0.00467 v% in
deionized (DI) water. Additionally, the sensitivity of the
proposed NOCDs was demonstrated in MeOH spiked branded
and unbranded Mexican alcoholic beverages. In the long-term,
this work yields the possibility of developing an economically
viable portable sensor system to quantify MeOH content in
alcoholic beverages, which can be used by academic institu-
tions, beverage companies, liquor stores, and even interested
individuals all over the world.

2. Experimental details
2.1 Materials

Citric acid (C¢HgO-), urea ((NH,),CO), ethanol (EtOH), isopropyl
alcohol (IPA), acetonitrile (ACN), dimethyl formamide (DMF),
tetrahydrofuran (THF), acetone (AC), methanol (MeOH) from
Sigma-Aldrich were used as received. A bottle of Tequila Don
Julio Blanco (tDJB) and bottles of traditional mezcal Tobala
Matatlan Oax Artesanal (mTMOA), 400 Conejos Joven (m400C]J),
Artesanal mezcal (mAR) and standard mezcal Mezcal de Chilapa
(mC), Mezcal Agasajo-Joven (mMA]) and Mezcal Agasajo Joven
con gusano (mMA]G) were acquired from a local market in the
state of Morelos, in the central part of Mexico.

2.2 Synthesis of nitrogen-doped oxidized carbon dots
(NOCDs)

The NOCDs were hydrothermally synthesized using citric acid
(C¢HgO,) and urea (NH,),CO as carbon (C) and nitrogen (N)
sources, respectively. A precursor solution was prepared by

This journal is © The Royal Society of Chemistry 2020
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dissolving 40 mg (0.0042 mol L") of C¢HgO, and 75 mg
(0.25 mol L™") of (NH,),CO in 100 mL of DI water at room
temperature (RT). The resulting transparent solution was
transferred into a Teflon lined autoclave and heated to 180 °C
for 1 h. After the autoclave cooled down to RT, the product was
gathered and used for further analysis.

2.3 Characterization

UV-visible absorbance spectra of as-prepared NOCDs was
measured in a dual beam PerkinElmer Lambda 950 spectro-
photometer and the fluorescence measurements were carried
out with Cary Eclipse Spectrophotometer. High-resolution
transmission electron microscopy (HR-TEM) measurements
were carried out in a JEM-ARM200F for determining the
particle size distribution of the synthesized NOCDs. A 100
mesh Cu grid with a lacey carbon film was used for the sample
preparation by drop-casting of (diluted) NOCDs and subse-
quent evaporation under ambient conditions. A Bruker D8 X-
ray diffractometer (XRD) with Cu Ko, radiation (A = 1.5406 A)
was used for measuring the diffraction pattern. For surface-
sensitive quantitative analysis, Al Ko radiation with photon
energy 1486.6 £ 0.2 eV from an ESCA Ulvac-PHI 1600 X-ray
photoelectron spectrometer (XPS) was used. The surface
characteristics of the fluorescent probes were studied using
Fourier transform infrared (FTIR) spectra-Varian 660-IR FTIR
spectrophotometer.

2.3.1 Procedures. For testing the selectivity of the fluores-
cent nanoprobes towards different solvents 35 pL of NOCDs
were diluted with 65 pL of water for dispersing in 400 pL of pure
solvent. For fluorometric sensing of MeOH different procedures
were followed.

(a) For mimicking the beverages like brandy, beer, Tequila,
mezcal, rum and neutral spirits, experiments were carried out
under certain (10, 40 and 90%) total alcohol content (EtOH +
MeOH) with variable proportions (MeOH : EtOH) to monitor
the corresponding response of the nanoprobes. A certain
amount of NOCDs (8 and 70 pL) was added to a 2 mL quartz
cuvette and the rest of the cuvette filled with appropriately
diluted alcohol mix. The MeOH concentration was varied from
0.0125% to 10.00% with respect to the EtOH concentration,
keeping the total alcohol content fixed. (b) Unspiked beverages
were tested with 8 uL of as-prepared NOCDs after diluting the
real samples by 40 times in a total volume of 2 mL. (c) For
testing, MeOH spiked branded and unbranded beverages, 8 pL
of NOCDs were added in 40 times diluted beverages.

3. Results and discussion
3.1 Characterization of NOCDs

Photoluminescence (PL) spectra of NOCDs (concentration 7%;
diluted in water) corresponding to different excitation wave-
lengths are shown in Fig. 1a. A strong blue emission peaked
around 445 nm, observed under excitation wavelength range of
300-400 nm, reveals no shift in the wavelength of the PL
maximum. The emission is largest when excited at 340 nm
(Fig. 1b). The independence of the fluorescence line shape and

RSC Adv, 2020, 10, 22522-22532 | 22523
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(a) PL emission spectra of NOCD's at different excitation wavelengths, (b) variation of PL peak emission intensity at 445 nm as a function of

different excitation wavelengths (maximas from (a) vs. excitation wavelength), (c) UV-vis absorption, PLE (corresponding to emission at 440 nm)
and PL emission spectrum (excited at 340 nm); inset images are photographs of NOCDs in normal daylight and under 365 nm UV irradiation (d)

FTIR spectrum corresponding to as prepared NOCDs.

peak on the excitation may be attributed to narrow size distri-
bution of the NOCDs."® As reported previously, the introduction
of N as dopant promotes the formation of many surface states
associated with the enhancement in the emission properties of
the synthesized particles with respect to the undoped CDs. The
obtained PL characteristics of NOCDs are the joint contribution
of surface states as well as the dimension of the particles
(confinement effect).*> The excitation-independent properties of
NOCDs open the possibility of extensive applications, where an
anchored fluorescence emission is required. Besides, the fluo-
rescence quantum yield of the NOCDs was calculated using
rhodamine 6G in DI water (quantum yield: 100%) as a standard
sample. The absorbance and photoluminescence measure-
ments were carried out using UV-visible absorbance and pho-
toluminescence spectrophotometer. The PL emission spectra of
all the samples were measured at 340 nm excitation wavelength.
Absolute values were calculated with the following equation:*

x = Dsr (mx/mst)(nxMst")

where X and ST represent sample and standard respectively, ®
is the quantum yield, m, and mgy are the slopes of NOCDs and
Rh6G, from the corresponding absorbance and PL intensity
graph (Fig. S11) and nx and nsr are refractive indices corre-
sponding to NOCDs and Rh6G suspension media (as the

22524 | RSC Adv, 2020, 10, 22522-22532

sample is extremely diluted the refractive indices are taken as
1.33 corresponding to water). The obtained quantum yield for
NOCDs was found to be 13.80% and details can be found in the
ESL+

The absorbance and fluorescence excitation spectra of the
sample in water are shown in Fig. 1c¢, which shows a predomi-
nant absorption band located at 344 nm along with an addi-
tional absorption band at 230 nm. NOCDs appear (inset Fig. 1c)
as a transparent solution under daylight while revealing
a strong bright blue emission under UV light (at 360 nm). FTIR
was also performed to obtain structural insights. As depicted in
Fig. 1d, a broad and intense peak around 3326 cm™ ", attributed
to the O-H stretching mode' indicates a large number of
hydroxyl groups. The peak at 1650 cm ™ corresponds to C=C
stretching of polycyclic aromatic hydrocarbons which reveals
the presence of sp* hybridization.? The C-N mode stretching is
observed at 2361 cm ™.

Basic structural characterization (including TEM, XRD and
XPS analysis) is given in the ESI Fig. S2.7 The size distribution of
as-prepared NOCDs, analyzed through TEM (Fig. S2a;f histo-
gram is taken over 60 particles shown as Fig. S2at inset), reveals
the particle size range of 2-6 nm (average diameter: 3.7 £+ 1.5
nm). Their XRD pattern (Fig. S2bf) exhibits a sharp peak
centered at 11.3°, which is attributed to the graphitic structure
with interlayer spacing (001) of 0.78 nm."” The XPS survey scan

This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Fluorescence of NOCDs in different solvents (a) PL spectra (dex = 340 nm) (b) variation in PL peak intensity (taken from (a)), (c) UV-vis

absorption spectra, (d) peak absorption of NOCDs in different solvents,
NOCD:s in different solvents irradiated by UV lamp (Aex = 365 nm).

of NOCDs clearly shows major peaks around 532, 400 and
285 eV, corresponding to the characteristic peaks of O 1s, N 1s
and C 1s, respectively (Fig. S2ct). The occurrence of the N 1s
(=400 eV) peak confirms the existence of an N atom in the
NOCDs. Furthermore, the XPS peaks of C 1s, O 1s and N 1s were
deconvoluted to understand the chemical species present in
NOCDs." After deconvolution of C 1s peak of NOCDs, C-C/C=C
(284.3 eV), C-O (285.6 eV), C=0 (287.4 eV) and O-C=0 (288.6
eV) streching modes are observed (Fig. S2dt), revealing the
existence of carbonyl and carboxyl functional groups of NOCDs.

This journal is © The Royal Society of Chemistry 2020

(e) photographs of NOCDs in different solvents under daylight and (f)

Fig. S2e and ff show the deconvoluted O 1s (531.6 and 533.3 eV
assigned as C=0 and C-O) and N 1s peaks (pyridinic N at
399.7 eV and graphitic N/amine N at 401.3 eV) of NOCDs and
they also reveal similar results. Hence, XPS results confirm the
presence of N as well as oxygen-containing functional groups in
NOCDs."

3.2 Detection of MeOH using NOCDs

In addition to the solvent-dependent optical properties of
NOCDs mentioned previously,"'* Wang et al. reported stronger

RSC Adv, 2020, 10, 22522-22532 | 22525
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Fig. 3 PL of NOCDs (excited at 340 nm) for different concentrations of EtOH and MeOH (a) spectra for 8 uL of NOCDs and different
concentrations of EtOH in H,O (b) normalized maximum PL intensity vs. EtOH concentration (c) spectra for 8 uL NOCDs and different
concentrations of MeOH in H,O (d) normalized maximum PL intensity vs. MeOH concentration. (e) Spectra for 70 pL NOCDs and different
concentrations of MeOH in H,O (f) normalized maximum PL intensity vs. MeOH concentration.

light absorption in polar solvents with Mn(u)-doped carbon dots
with respect to nonpolar ones.”* Similarly, Zheng et al. reported
that the carbon dots synthesized from (Z)-4-(2-cyano-2-(40-
(diphenylamine)-[1,10-biphenyl]-4-yl)-inyl)benzonitrile exhibi-
ted the higher optical absorption in polar solvents.’> In our
present study, NOCDs proved to be soluble in all the polar

22526 | RSC Adv, 2020, 10, 22522-22532

solvents such as EtOH, IPA, ACN, DMF, THF, AC and MeOH. As
can be seen in Fig. 2(a and b), the PL peak intensity of NOCDs in
different solvents can be ranked as follows: H,O > EtOH > IPA >
ACN > DMF > THF > AC > MeOH. ESI related to the PL emission
response of NOCDs (at different excitation wavelength) in each
solvent is shown in Fig. S3.7

This journal is © The Royal Society of Chemistry 2020
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Fig. S41 shows the PL spectra of NOCDs in different
concentration of organic solvents (DMF, THF and AC). Although
an increase in the DMF, THF and AC concentrations, the PL
intensity is found to reduce, the complete PL quenching was
observed only in case of MeOH (80 v%). which confirms the
highly sensitive nature of NOCDs towards MeOH in comparison
to other organic solvents (as shown in Fig. 2a). Hence, we have
chosen MeOH for further experiments.

Fig. 2(c and d) show that the absorption peaks at frequen-
cies that go from 340 to 351 nm as the solvent is changed.
Fig. 2(e and f) show images of NOCDs solutions in different
organic volatile solvents under daylight and UV light with an
illumination intensity of 365 nm. The observed variation in
the emission signal of NOCDs when dispersed in different
solvents suggests that the polar-polar interaction led to
changes in the optical properties of NOCDs. The observed
changes in the optical properties of NOCDs in volatile organic
compounds could be due to the change of polarization, solvent
relaxation, and energy transfer between solvent molecules and
NOCDs. The main outcome here is the drastic change in PL
intensity of NOCDs in the presence of MeOH.

Fig. 3a shows the effect of varying the concentration of EtOH
in the PL spectra of 8 uL of NOCDs and Fig. 3b shows the cor-
responding normalized peak intensities. The peak position
remains fixed and its intensity grows slightly as the volume
concentration of EtOH increases up to 40% of EtOH and then
decreases. Fig. 3c and d are similar, but they correspond to
different concentrations of MeOH, much smaller than those of
EtOH in Fig. 3a. As opposed to the EtOH case (Fig. 3b), as the
MeOH concentration increases (Fig. 3c and d), the PL intensity
is reduced very fast. Besides, using as-prepared NOCDs, the
minimum detection limit of MeOH was found to be 0.025 v%.
To extend the detection range we increased the volume of
NOCDs to 70 pL. Fig. 3e and f show the corresponding spectra
and maxima intensity and they show that the detection range
was increased up to 1 v%. In addition, these NOCDs used to

Table 1 Comparison of methanol detection techniques and different material-based sensing probes with their corresponding detection limits

Probe Technique LOD Ref.

Cds QDs Photochemical 0.14 pg L™ 22

Methylobacterium organophilium/ Gas chromatography 0.047 mM 23

gold nanoparticles

immobilized eggshell membrane

Alhagi maurorum L. (company) Gas chromatography 300 mg L* 24

Silicon epoxy coated platinum nanoparticles  Electrochemical 10 mM 25

PANPs@SBA-15-PrEn Electrochemical 12 uM 26

Carbon nanotube coated carbon fiber Electrical split ring resonator gas sensing 300 ppm 27

Functionalized pentacenequinone Colorimetric and fluorometric dual-modal ~ 0.038% in ethanol 28

N,N-Bis(5-nitro-salicylaldehyde)azine Fluorometric detection 70 v% 29

Pd-doped SnO, Gas chromatography and a 1 ppm of methanol at 50% RH 30

chemoresistive gas sensor
NOCDs Fluorometric approx. 0.005 v% of MeOH in DI water ~ Present
study

NOCDs Fluorometric 0.11 v% (visual detection) Present

of MeOH in real alcoholic study

This journal is © The Royal Society of Chemistry 2020
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detect the MeOH concentration in real alcoholic beverages as
discussed below.

PL emission corresponding to different concentration of
MeOH in different v% of alcohols can be found in Fig. S5 and
S6.f The summarized results using two different amounts of
NOCDs (shown in Fig. 4) reveal the dependence of the PL peak
intensity variation on the total alcohol content. For 10, 40 and
90% of total alcohol content, using 8 pL of NOCDs, the
measurable detection range of MeOH was 0.0125 to 1v% and
using 70 puL of NOCDs, the detection range of MeOH increases
to 10 v%. At higher concentrations of alcohol, along with
a decrease in the PL intensity, a redshift (Fig. S5e and S6e¥) of
the corresponding emission band is observed. An increase in
total alcohol content is found to decrease probe sensitivity. The
limit of detection (LOD) of MeOH in DI water (Fig. S5et) was
calculated using LOD = 3 x SD/m (where the signal to noise
ratio is 3, SD is standard deviation and m is their slope corre-
sponding to the linear range in MeOH concentration vs. PL
intensity graph)."* The calculated value was found to be =0.005
v% which is lower than the already reported values (Table 1). We
further studied the practical application of the NOCDs by
testing MeOH spiked branded and unbranded alcoholic bever-
ages. PL measurements done with unspiked unbranded bever-
ages (Fig. 5) diluted with water, reveals PL signal quenching up
to 50 and 60% with Artesanal mezcal (mAR) and Tobala Mata-
tlan Oax Artesanal-Mezcal (mTMOA) respectively. Don Julio
Blanco-Tequila (tDJB) and Mezcal Agasajo-Joven (mMAJG) con
gusano showed no change in the PL signal.

PL and absorbance spectra of NOCDs from MeOH spiked
beverages are shown in Fig. 6 and 7 respectively. From the
spectra, it is observed that the peak intensity decreased as the
MeOH concentration increases, while the peak position shifted
to lower wavelength for all the alcoholic beverages. Generally, in
aprotic solvents, dipole-dipole interactions play a vital role in
the peak shift." Herein, the observed peak shift is attributed to
the dipole-dipole interactions between the functional groups
present in NOCDs and -OH groups in alcoholic beverages. For
a fixed concentration of nanoprobes (8 uL NOCDs in the total

22528 | RSC Adv,, 2020, 10, 22522-22532

volume of 2 mL), the observed minimum detection limit of
MeOH concentrations were 0.75, 0.18, 0.42 and 0.11 v% while
the maximum detection limits (can be optionally enhanced by
increasing the NOCDs' concentration) were 3.50, 3.52, 4.20 and
3.37 v% for Don Julio Blanco-Tequila (tD]JB), Tobala Matatlan
Oax Artesanal Mezcal (mTMOA), 400 Conejos Joven-Mezcal
(m400C]) and Artesanal mezcal (mAR) respectively. From
Fig. 6g, the minimum visual detection of MeOH in mAR was
found to be 0.11 v%, which is less as compared to MeOH in DI
water, due to the effect of other alcohol species present in the
mAR. As the reference is the PL signal of our nanoprobes in
each pristine (unspiked beverage) sample, the proposed
method can be implemented directly without doing pH studies
and moreover sensitivity of our proposed (scalable, easy to
synthesize and implement) nanoprobes is found to be much
higher than the responses reported in the literature (shown in
Table 1).227°

3.3 Possible PL quenching mechanism

After the characterization of NOCDs in the presence of MeOH,
the extinction of the signal can possibly be jointly/
independently due to the following factors: (i) although lumi-
nescence signal from the small-sized (confirmed from TEM and
HRTEM images of Fig. S2(a)} and 8(i) respectively) CDs has
been attributed to the radiative recombination of electron-hole
pairs on the surface of the particles,® doping induced
enhancement of photogenerated charge carriers and hence an
enhanced emission in CDs have also been reported and
explored recently (e.g., dopants such as N generate defect
surface states).”> Depending on the dopant type and concen-
tration, the nature and the number of defect states on the
surface are expected to vary.”® As trapping of the photoinduced
charge carriers can suppress the luminescence signal, it can be
controlled by the electron-donating capacity of the surrounding
molecules. The electron donor species can stabilize the holes on
the surface.**** MeOH is an electron donor and being a smaller
molecule than the other tested solvents, it can easily penetrate

This journal is © The Royal Society of Chemistry 2020
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Fig. 6 Fluorescence response of NOCDs (measured at A, = 340 nm) in the presence of some tested spiked branded and unbranded alcoholic
beverages after dilution (a and b) Don Julio Blanco-Tequila (tDJB), (c and d) Tobala Matatlan Oax Artesanal (traditional branded)-Mezcal
(MTMOA), (e and f) 400 Conejos Joven-Mezcal (m400CJ) and (g and h) (traditional unbranded) Artesanal mezcal (mAR).
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Fig.7 UV-visible absorption spectra of NOCDs in the presence of some tested spiked branded and unbranded alcoholic beverages after dilution
(a and b) Don Julio Blanco-Tequila (tDJB), (c and d) Tobala Matatlan Oax Artesanal (Traditional branded)-Mezcal (MTMOA), (e and f) 400 Conejos
Joven-Mezcal (m400CJ) and (g and h) (traditional unbranded) Artesanal mezcal (mAR).

22530 | RSC Adv, 2020, 10, 22522-22532

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ra02694h

Open Access Article. Published on 12 juni 2020. Downloaded on 08.01.2026 10.38.23.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

View Article Online

RSC Advances

NOCDs in water

PL Intensity (a.u.)
a A o
N » [=2] =] (=3 N B
o o o o o o o
<

o
L

400 450 500 550 600
Wavelength (nm)

§ NOCDs in methanol

Fig. 8 Schematic representation of PL quenching mechanism (i) NOCDs in water and (ii) NOCDs in methanol.

the functional groups surrounding the NOCDs for direct elec-
tron donation to the core and/or surface states. Fig. 8 shows the
schematic representation of PL quenching mechanism of
NOCDs in MeOH. (ii) HRTEM image (Fig. 8(ii)) reveal the
aggregation of NOCDs in the presence of MeOH molecules,
which contribute towards the PL quenching and the similar
behaviour has been reported for the acetone molecules.*

4. Conclusion

In summary, solvent-dependent fluorescence from NOCDs with
an excitation wavelength-independent PL was synthesized via
a simple hydrothermal route. Benefiting from the sensitivity
towards solvent polarity, an efficient approach for the detection
of MeOH content in alcoholic beverages has been demon-
strated. After the calibration of the probing system, the tests
performed on real alcoholic beverages (Tequila and Mezcal)
from different sources (traditional as well as standard compa-
nies) validated the sensitivity and specificity of the proposed
sensor. Therefore, it is believed that these NOCDs can be an
effective tool for the rapid, highly sensitive and selective
detection of MeOH, which will have a great prospect in alcoholic
beverages in the future.
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