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Development of practical methods for the production of multi-functionalized amides is one of the most
important topics in both synthetic chemistry and drug discovery. Disclosed herein is a new, efficient,
site-selective heteroarylation of amides via C(sp®)—H bond functionalization. Amidy! radicals are directly
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process. A wide scope of aliphatic amides including carboxamides, sulfonamides, and phosphoramides
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Introduction

As a class of paramount chemical structures, amides consisting
of carboxamides, sulfonamides, and phosphoramides are
ubiquitous in natural and synthetic products (Scheme 1a). They
constitute the basic framework of proteins in the form of
peptides in life systems, and are engaged as key candidates for
structure design in drug development. An analysis reveals that
amide formation is one of the most frequently occurring reac-
tions used in current medicinal chemistry." Generally, amides
are readily obtained from the condensation of amines with
carboxylic/sulfonic/phosphoric acids and derivatives (Scheme
1b, path a). Alternatively, direct installation of the target func-
tional group at the aliphatic chain of amides via C(sp®)-H bond
functionalization provides an ingenious and powerful access to
the multi-functionalized amides (Scheme 1b, path b)> in
particular when the complex alkylamine precursors are inac-
cessible for the condensation approach.

Inspired by the classic Hofmann-Loffler-Freytag (HLF)
reaction,® recently the regioselective functionalization of
amides via C(sp’)-H functionalization enabled by hydrogen
atom transfer (HAT) has gained intense interest.* Due to the
high bond-dissociation free energy (BDFE) of N-H bonds (107-
110 keal mol™"),® it is a formidable challenge to directly
generate amidyl radicals from N-H bonds. Therefore, amides
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pragmatic consideration, this protocol can be used for the late-stage functionalization of amides.

are usually elaborated to other surrogates that deliver amidyl
radicals under mild conditions.®” Elegant modifications of HLF
reaction from Suarez® and others®'® convert the amide N-H
bonds to amidyl radicals by homolysis of the in situ formed N-I
species. But those reactions are limited to the cyclization to
afford the pyrrolidine derivatives (Scheme 1c). The recent
breakthroughs in the radical Michael addition achieved by
Knowles," Rovis,"” and Meggers™ significantly increase the
atom- and step-economy of the amide-directed C(sp®)-H func-
tionalization (Scheme 1d). Despite the notable progress, the
production of amidyl radicals direct from amide N-H bonds
and applications in the intermolecular transformation of
C(sp®)-H bonds still remains scarce.

Heteroarenes are extensively found in biologically active
compounds, including almost half of the top 200 pharmaceu-
ticals by prescriptions.* It is of great synthetic value to intro-
duce various heteroaryl groups to amides by C-H
functionalization. To the best of our knowledge, only two
examples from Zhu’® and Nagib,” respectively, reported the
remote C-H heteroarylation of amides. The preformed N-F
derivative of amides were employed as starting materials. Both
reports focused on the C-H arylation, while only a few examples
on heteroarylation were involved. Inspired by our recent
achievements in the alcohol-directed C(sp®)-H hetero-
arylation,” we herein report a novel, metal-free regioselective
heteroarylation of amides via C(sp*)-H bond functionalization
(Scheme 1e). A broad range of heteroarenes as well as amides
including carboxamides, sulfonamides, and phosphoramides
are tolerated in the reaction. Amidyl radicals are readily
generated from the amide N-H bonds under mild conditions,
manifesting the step-economy of the protocol. The metal-free
conditions avoid the metal contamination of products, boost-
ing the potential use in medicinal chemistry. Furthermore, the
method features the use of inexpensive reagent and easy
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Scheme 1 Amide N—H bond-directed functionalization of C(sp®)—H
bonds. (a) Classification of amides. (b) Synthesis of complex amides. (c)
Hofmann-Loffler—Freytag-type reactions. mCBA = 3-chlor-
obenzoate. (d) Intermolecular alkylation via generation of N-radicals
from amide N—H bonds. (e) Intermolecular heteroarylation directed by
amide N-H bonds.

operation, offering a practical approach for the late-stage
functionalization of amides.

Results and discussion

At the outset, a systematic survey of reaction parameters was
carried out to define the optimized conditions (for details, see
ESIt). In the presence of visible-light irradiation and phenyl-
iodine bis(trifluoroacetate) (PIFA), the reaction of tosylamide 1a
with lepidine 2a proceeded smoothly to furnish the desired
Minisci-type product 3a in 85% yield (Scheme 2). It should be
noted that the use of excess amides significantly improved the
yield, but the rest of amides could be recovered during the
purification. The dual-role PIFA that acted as both the initiator of
amidyl radical and oxidant was crucial to the reaction outcome.
Variation of PIFA to either PIDA or the conditions valid for the
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Scheme 2 Control experiments. Standard reaction conditions: tosy-
lamide 1a (0.6 mmol), lepidine 2a (0.2 mmol), and PIFA (0.46 mmol) in
DCE (2 mL), irradiated by 2 x 50 W blue LEDs at rt.

HLF reactions involving hypervalent iodine reagents (Scheme 1c)
did not efficiently afford the desired product, suggesting that the
current reaction pathway should be distinct to the previous
reports. The reaction did not take place without the photo-
irradiation or while heating the reaction in dark.
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Scheme 3 Scope of heteroarenes. Reaction conditions: tosylamide 1a
(0.6 mmol), heteroarene 2 (0.2 mmol), and PIFA (0.46 mmol) in DCE (2
mL), irradiated by 2 x 50 W blue LEDs at rt. Yields of isolated products
are given.
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With the optimized reaction conditions in hand, we firstly
examined the scope of heteroarenes (Scheme 3). A variety of six-
membered nitrogen-containing heteroarenes were proved to be
suitable reaction partners. Lots of functional groups were well
tolerated under the mild conditions. Various quinolines were
readily alkylated at either ortho- or para-position regardless of
the electronic characteristics, leading to the corresponding
products 3a-3h. The alkylation of isoquinolines only occurred
at the 1-position (3i-3Kk). Aryl bromide remained intact during
the reaction, reserving a platform for product processing by
cross couplings (3¢ and 3k). While other heteroarenes such as
phenanthridine (31), acridine (3m), quinoxaline (3n), pyrazine
(30), and pyrimidine (3p) resulted in single alkylated products,
the conversion of pyridine led to a mixture of regio-isomers (3q).
The five-membered heteroarenes are generally challenging
substrates for the Minisci reaction due to the disfavored high
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Scheme 4 Variation of sulfonamides. Reaction conditions: sulfon-
amides 1 (0.6 mmol), quinoline 2a (0.2 mmol), and PIFA (0.46 mmol) in
DCE (2 mL), irradiated by 2 x 50 W blue LEDs at rt. Yields of isolated
products are given. 5.0 equiv. amide was used. PPIFA (0.92 mmol),
added in four portions (every 3 h), “PIFA (0.92 mmol), added in two
portions (the second portion was added after 12 h).
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electron-density. In this reaction, the reaction of benzothiazoles
and thiazoles afforded the desired products 3r-3t in syntheti-
cally useful yields.

The scope of sulfonamides was next evaluated (Scheme 4). A
number of sulfonamides including both linear and cyclic
amides were suitable substrates. While the adduct 3u was ob-
tained in the form of regio-isomers via 1,5- and 1,6-HAT, other
products 3v-3ak were generated in unique regioselectivity. In
addition to secondary C-H bond, tertiary C-H bond was also
readily reacted (3v), albeit resulting in lower yield. Additionally,
primary C(sp®)-H bond adjacent to oxygen was also smoothly
functionalized (3w). Benzylic C-H bonds were not suitable
under the current conditions, the HLF-type byproduct was
identified as pyrrolidine obtained from the over-oxidation of
benzylic radical. Terminal alkene which is normally sensitive to
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Scheme 5 Transformation of carboxamides and phosphoramides.
Reaction conditions: amides (0.6 mmol), quinoline (0.2 mmol), and
PIFA (0.46 mmol) in DCE (2 mL), irradiated by 2 x 50 W blue LEDs at rt.
Yields of isolated products are given. ?PIFA (0.46 mmol), added in two
portions (the second portion was added after 12 h). PPIFA (0.92 mmol),
added in two portions (the second portion was added after 12 h).
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radical conditions was compatible in this transformation (3z).
The reaction directed by secondary amide offered the outcome
comparable to that of primary amide (3aa). Site-selective
abstraction of the C-H bonds on cycloalkanes provided an
efficient approach for the decoration of cycloalkyl skeletons
(3ab-3ae). Moreover, tosylamide could be altered to other
sulfonamides, such as the aryl (3af and 3ag), heteroaryl (3aj),
and alkyl (3ah and 3ak) substituted sulfonamides. Notably, this
method could be applied to the modification of complex natural
products and drug derivatives (3ai and 3ak). It should be
mentioned that while determining the relative configuration of
the products with low d.r. values (e.g., 3aa, 3ad, 3ak) was not
necessary, for other stereospecific cases (d.r. >19: 1, e.g., 3ab,
3ac, 3ae) the thermodynamically preferred products could be
assigned as the major isomers in theory.

The generality of this protocol was further illustrated by the
heteroarylation of carboxamides and phosphoramides
(Scheme 5). A portfolio of electron-rich or deficient benzamides
(4a-4f), acetamide (4g), and even the Boc-protected amide (4h)
served as competent precursors for the transformation. Only
the ¢-functionalized products were obtained, no matter whether
linear or cyclic amides were used. Likewise, various phosphor-
amide derivatives such as phosphoramidates (5a-5e) and
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Scheme 6 Mechanistic investigation and proposed mechanism. (a)
Reaction of tosylamide without N—H bond. (b) Absorption spectra (1a
+ PIFA) and emission spectra (blue LEDs). (c) Proposed mechanism.
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phosphinamide (5f) also provided the site-specific C-H heter-
oarylation exclusively at the ¢-position, furnishing the desired
products in synthetically useful yields.

A set of experiments were performed to shine light on the
mechanism. The free N-H bond of amides was requisite to the
transformation as the heteroarylation did not proceed with the
methylated tosylamide 6 (Scheme 6a), supporting the hypoth-
esis that HAT process was enabled by amidyl radical generated
from N-H bond. The mixture of 1a and PIFA showed a weak
absorption in the field ranging from 410 to 460 nm that over-
lapped with the emission of blue LEDs (Scheme 6b), indicating
that homolysis of the N-I intermediate might be triggered from
light absorption.

A proposed mechanism is depicted (Scheme 6c¢). Initially, the
interaction of 1a with PIFA generates the N-I(u1) complex A and
TFA.'® According to the DFT calculations,'*” the N-I(ur) complex
A is probably generated from amide and PIFA via the ligand
exchange on hypervalent iodine. The light-induced homolysis of
N-I bond of A affords the amidyl radical B that undergoes 1,5-
HAT to form the alkyl radical C. Meanwhile, heteroarene 2a is
pre-activated through the protonation with in situ generated
TFA and then reacts with the nucleophilic alkyl radical C,
leading to the intermediate E. Further single-electron oxidation
of E furnishes the final product 3a. The quantum yield (4.8%) of
this reaction also suggested a photochemical process (for
details, see ESIf).

Conclusions

In summary, we have described a simple and practical approach
for the regioselective heteroarylation of amides via unactivated
C(sp®)-H bond functionalization. The transformation is
promoted by visible-light irradiation which leads to the mild
generation of amidyl radicals directly from the amide N-H
bonds. A vast array of heteroarenes as well as amides including
carboxamides, sulfonamides, and phosphoramides are readily
functionalized. It is noteworthy that while the classic Minisci
reaction usually requires the addition of extrinsic acid, this
protocol takes place under neutral conditions. This metal-free
process may find the potential use in medicinal chemistry in
near future.

Experimental section

General procedure for heteroarylation of remote C(sp®)-H
bonds

Heteroarene 2 (0.2 mmol) and amide 1 (0.6 mmol) were loaded
in a reaction vial without N, atmosphere. Then DCE (2.0 mL)
followed by PIFA (0.46 mmol) was added to the mixture. The
reaction was irradiated with 2 x 50 W blue LEDs from 5 cm
away and kept at 25 °C under fan cooling. After the reaction
completion monitored by TLC, the mixture was neutralized by
aq. KOH until pH > 8 and then extracted with ethyl acetate (3 x
10 mL). The combined organic extracts were washed by brine,
dried over Na,SO,, filtered, concentrated, and purified by flash
column chromatography on silica gel (eluent: ethyl acetate/
petroleum ether) to give the desired products 3-5.

This journal is © The Royal Society of Chemistry 2019
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