Issue 10, 2019

Covalent organic frameworks for membrane separation

Abstract

Covalent organic frameworks (COFs), which are constructed from organic linkers, are a new class of crystalline porous materials comprising periodically extended and covalently bound network structures. The intrinsic structures and the tailorable organic linkers endow COFs with a low density, large surface area, tunable pore size and structure, and facilely-tailored functionality, attracting increasing interests in different fields including membrane separations. Exciting research activities ranging from fabrication strategies to separation applications of COF-based membranes have appeared. This review analyzes the synthesis and applications of diverse continuous/discontinuous COF membranes, such as COF-based mixed matrix membranes (MMMs), COF-based thin film nanocomposite (TFN) membranes, and free-standing COF films. Special attention was given to pore size, stability, hydrophilicity/hydrophobicity and surface charge of COFs in view of determining proper COFs for membrane fabrication, along with the approaches to fabricate COF-based membranes, such as blending, in situ growth, layer-by-layer stacking and interfacial polymerization (IP). Moreover, applications of COF-based membranes in gas separation, water treatment (deaslination and dye removal), organic solvent nanofiltration (OSN), pervaporation and fuel cell are disscussed. Finally, we illustrate the advantages and disadvantages of COF-based membranes through a comparison with MOF-based membranes, and the remaining challenges and future opportunities in this field.

Graphical abstract: Covalent organic frameworks for membrane separation

Article information

Article type
Tutorial Review
Submitted
22 feb 2019
First published
26 apr 2019

Chem. Soc. Rev., 2019,48, 2665-2681

Covalent organic frameworks for membrane separation

S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde and B. Van der Bruggen, Chem. Soc. Rev., 2019, 48, 2665 DOI: 10.1039/C8CS00919H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements