Issue 30, 2017

A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery

Abstract

Manganese dioxide (MnO2)–zinc (Zn) batteries are cheap and environmentally benign and have sufficient theoretical energy density to be used as an energy storage device for the grid; however, they have been relegated to primary systems, where the complete energy is delivered in a single discharge, due to the irreversibility of their active materials. Until recently, rechargeable MnO2–Zn batteries have only been able to cycle ∼10% of MnO2's theoretical 2-electron capacity (617 mA h g−1), thus delivering significantly reduced energy density. In a recent paper from our group, we reversibly accessed the full theoretical 2-electron capacity of MnO2 for >6000 cycles by using a layered polymorph of MnO2 mixed with bismuth oxide (Bi2O3) called Bi-birnessite (Bi–δ-MnO2) intercalated with Cu2+ ions. This discovery highlighted the possibility of achieving very high energy densities from inexpensive aqueous batteries; however, a full-cell demonstration with Zn as the anode was not studied. Here we report for the first time the effect of Zn anodes on the cycle life and energy density of a full cell, where we observe that 15% depth-of-discharge (DOD) of the Zn's theoretical capacity (820 mA h g−1) creates a cell energy density of ∼160 W h L−1; however, this causes a drastic shape change and formation of irreversible zinc oxide (ZnO) at the anode, which ultimately causes cell failure after ∼100 cycles. A drop in energy density is also observed as a result of the interaction of dissolved Zn ions with the cathode, which forms a resistive Zn-birnessite compound in the early cycles, and then forms a highly resistive haeterolite (ZnMn2O4) in the later cycles, and ultimately causes cathode failure. A possible solution using a calcium hydroxide layer as a separator is presented, where the layer blocks the interaction of zinc ions through a complexing mechanism to obtain >900 cycles with >80% retention of MnO2 DOD.

Graphical abstract: A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery

Article information

Article type
Paper
Submitted
19 jun 2017
Accepted
05 jul 2017
First published
05 jul 2017

J. Mater. Chem. A, 2017,5, 15845-15854

A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery

G. G. Yadav, X. Wei, J. Huang, J. W. Gallaway, D. E. Turney, M. Nyce, J. Secor and S. Banerjee, J. Mater. Chem. A, 2017, 5, 15845 DOI: 10.1039/C7TA05347A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements