Volume 223, 2020

The red admiral butterfly’s living light sensors and signals

Abstract

We studied the wing colouration and the compound eyes of red admiral butterflies with optical methods. We measured reflectance spectra of the wing and scales of Vanessa atalanta and modelled the thin film reflectance of the wing membrane and blue scales. We utilized the eyeshine in the compound eye of Vanessa indica to determine the spectral and polarisation characteristics of its optical sensor units, the ommatidia. Pupil responses were measured with a large-aperture optophysiological setup as reduction in the eyeshine reflection caused by monochromatic stimuli. Processing of spectral and polarisation responses of individual ommatidia revealed a random array with three types of ommatidia: about 10% contain two blue-sensitive photoreceptors, 45% have two UV-sensitive photoreceptors, and 45% have a mixed UV–blue pair. All types contain six green receptors and a basal photoreceptor. Optical modelling of the rhabdom suggests that the basal photoreceptors have a red-shifted sensitivity, which might enhance the red admiral’s ability to discriminate red colours on the wing. Under daylight conditions, the red shift of the basal photoreceptor is ∼30 nm, compared to the rhodopsin spectrum template peaking at 520 nm, while the shift of green photoreceptors is ∼15 nm.

Graphical abstract: The red admiral butterfly’s living light sensors and signals

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
05 jun 2020
Accepted
23 jun 2020
First published
23 jun 2020

Faraday Discuss., 2020,223, 81-97

Author version available

The red admiral butterfly’s living light sensors and signals

P. Pirih, A. Meglič, D. Stavenga, K. Arikawa and G. Belušič, Faraday Discuss., 2020, 223, 81 DOI: 10.1039/D0FD00075B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements